Can I use reinterpret_cast to destroy non dynamically allocated objects? - c++

I have done a very simple implementation of vector. I admit that I have cheated a lot and the only instance variables are for example size_t sz and T * elem. The one of many problems (but this one is the only problem I know of which may cause a crash) is the problem with pop_back().
template <typename T>
void vec<T>::pop_back() {
if (sz == 0)
return;
elem[sz-1].~T();
--sz;
}
The vector elem is a dynamically allocated array, but the objects in the array may or may not be. The problem I can see here is that this may crash in case I destroy an object in this array. This can happen in case I would destroy elements multiple times. So to say, in case I have used pop_back. This does not seem to happen for my compiler (which seems strange), but I have heard about someone having this problem with this function. I have been trying to do some research on the web and found another alternative. The zero check is not done here (probably laziness), and this example is using reinterpret_cast
template<class T>
void Vector<T>::pop_back() {
// You way want to do a check for empty() before calling the destructor.
// Call the destructor.
(reinterpret_cast<T*>(buffer)[_size-1]).~T();
// It is usual to prefer the pre decrement (and pre increment).
--_size;
}
The question is, Can I really use reinterpret_cast to be able to destroy non dynamically allocated objects in my vector class?
EDIT
By request I will show my push_back, which I was unsure how to properly write with the short time span I could spend on this. I admit that the main purpose of the class was not efficiency but a good way to handle resources instead of raw dynamic arrays (I can of course use a vector but this is rather a question about a smaller scope than general strategy so I would appreciate if the use-std::vector discussion was left out)
template <typename T>
void vec<T>::push_back(const T& obj) {
T* tmp = new T[sz+1];
if (sz > 0){
uninitialized_copy(elem, elem+sz, tmp);
delete[] elem;
}
elem = tmp;
elem[sz] = T{obj};
++sz;
}
The main problem was the capacity. I realized the capacity part would require a lot of work and without that I could just create new elements.

This answer is inspired by the stack implementation in the book Exceptional C++ by Herb Sutter (Item 12):
You can allocate memory for your vec, if you initialize your T * elem variable with
elem = static_cast<T*>(sz == 0 ? nullptr : operator new(sizeof(T)*sz));
This will give you memory on which no object has yet been constructed.
Edit(thanks to Cheers and hth. - Alf): You can also use the allocator instead of the above code by calling a.allocate(sz).
If you want to add new elements to the vector, you can use construct [1]. To call the destructor of an object you can use destroy [2].
If you now keep track on how many elements there are allocated in your vector in a variable used, you can deallocate the last by calling destroy(elem+used);
construct and destroy use the placement new and an explicit destructor call inside them. I would recommend using these functions instead of raw placement news and destructor calls.

Related

Controlling memory with std::vector<T*>

Suppose that T contains an array whose size may vary depending on initialization. I'm passing a pointer to the vector to avoid copying all the data, and initialize as follows:
for(int i=10; i < 100; i++)
std::vector.push_back(new T(i));
On exiting, one deletes the element's of the vector. Is there a risk of memory loss if the data contained in T is also a pointer, even if there are good destructors? Eg
template<class M> class T{
M * Array;
public:
T(int i) : Array(new M[i]){ }
~T(){ delete Array;}
};
There are two major problems with your class T:
You use delete rather than delete [] to delete the array, giving undefined behaviour
You don't implement (or delete) the copy constructor and copy-assignment operator (per the Rule of Three), so there's a danger of two objects both trying to delete the same array.
Both of these can be solved easily by using std::vector rather than writing your own version of it.
Finally, unless you have a good reason (such as polymorphism) to store pointers, use std::vector<T> so that you don't need to manually delete the elements. It's easy to forget to do this when removing an element or leaving the vector's scope, especially when an exception is thrown. (If you do need pointers, consider unique_ptr to delete the objects automatically).
The answer is: don't.
Either use
std::vector<std::vector<M>> v;
v.emplace_back(std::vector<M>(42)); // vector of 42 elements
or (yuck)
std::vector<std::unique_ptr<M[]>> v;
// C++11
std::unique_ptr<M[]> temp = new M[42]; // array of 42 elements
v.emplace_back(temp);
// C++14 or with handrolled make_unique
v.emplace_back(std::make_unique<M[]>(42);
which both do everything for you with minimal overhead (especially the last one).
Note that calling emplace_back with a new argument is not quite as exception-safe as you would want, even when the resulting element will be a smart pointer. To make it so, you need to use std::make_unique, which is in C++14. Various implementations exist, and it needs nothing special. It was just omitted from C++11, and will be added to C++14.

Freeing up memory by deleting a vector in a vector in C++

I have a vector of vectors and I wish to delete myvec[i] from memory entirely, free up the room, and so on. Will .erase or .clear do the job for me? If not, what should I do?
Completely Removing The Vector
If you want to completely remove the vector at index i in your myvec, so that myvec[i] will no longer exist and myvec.size() will be one less that it was before, you should do this:
myvec.erase (myvec.begin() + i); // Note that this only works on vectors
This will completely deallocate all memories owned by myvec[i] and will move all the elements after it (myvec[i + 1], myvec[i + 2], etc.) one place back so that myvec will have one less vector in it.
Emptying But Keeping The Vector
However, if you don't want to remove the ith vector from myvec, and you just want to completely empty it while keeping the empty vector in place, there are several methods you can use.
Basic Method
One technique that is commonly used is to swap the vector you want to empty out with a new and completely empty vector, like this:
// suppose the type of your vectors is vector<int>
vector<int>().swap (myvec[i]);
This is guaranteed to free up all the memory in myvec[i], it's fast and it doesn't allocate any new heap memory or anything.
This is used because the method clear does not offer such a guarantee. If you clear the vector, it always does set its size to zero and destruct all the elements, but it might not (depending on the implementation) actually free the memory.
In C++11, you can do what you want with two function calls: (thanks for the helpful comment)
myvec[i].clear();
myvec[i].shrink_to_fit();
Generalization
You can write a small function that would work for most (probably all) STL containers and more:
template <typename T>
void Eviscerate (T & x)
{
T().swap (x);
}
which you use like this:
Eviscerate (myvec[i]);
This is obviously cleaner and more readable, not to mention more general.
In C++11, you can also use decltype to write a generic solution (independent of the type of your container and elements,) but it's very ugly and I only put it here for completeness:
// You should include <utility> for std::remove_reference
typename std::remove_reference<decltype(myvec[i])>::type().swap(myvec[i]);
My recommended method is the Eviscerate function above.
myvec.erase( myvec.begin() + i ) will remove myvec[i]
completely, calling its destructor, and freeing all of its
dynamically allocated memory. It will not reduce the memory
used directly by myvec: myvec.size() will be reduced by one,
but myvec.capacity() will be unchanged. To remove this last
residue, C++11 has myvec.shrink_to_fit(), which might remove
it; otherwise, you'll have to make a complete copy of myvec,
then swap it in:
void
shrink_to_fit( MyVecType& target )
{
MyVecType tmp( target.begin(), target.end() );
target.swap( tmp );
}
(This is basically what shring_to_fit will do under the hood.)
This is a very expensive operation, for very little real gain,
at least with regards to the removal of single elements; if you
are erasing a large number of elements, it might be worth
considering it after all of the erasures.
Finally, if you want to erase all of the elements,
myvec.clear() is exactly the same as myvec.erase() on each
element, with the same considerations described above. In this
case, creating an empty vector and swapping is a better
solution.

C++ New vs Malloc for dynamic memory array of Objects

I have a class Bullet that takes several arguments for its construction. However, I am using a dynamic memory array to store them. I am using C++ so i want to conform to it's standard by using the new operator to allocate the memory. The problem is that the new operator is asking for the constructor arguments when I'm allocating the array, which I don't have at that time. I can accomplish this using malloc to get the right size then fill in form there, but that's not what i want to use :) any ideas?
pBulletArray = (Bullet*) malloc(iBulletArraySize * sizeof(Bullet)); // Works
pBulletArray = new Bullet[iBulletArraySize]; // Requires constructor arguments
Thanks.
You can't.
And if you truly want to conform to C++ standards, you should use std::vector.
FYI, it would probably be even more expensive than what you're trying to achieve. If you could do this, new would call a constructor. But since you'll modify the object later on anyway, the initial construction is useless.
1) std::vector
A std::vector really is the proper C++ way to do this.
std::vector<Bullet> bullets;
bullets.reserve(10); // allocate memory for bullets without constructing any
bullets.push_back(Bullet(10.2,"Bang")); // put a Bullet in the vector.
bullets.emplace_back(10.2,"Bang"); // (C++11 only) construct a Bullet in the vector without copying.
2) new [] operator
It is also possible to do this with new, but you really shouldn't. Manually managing resources with new/delete is an advanced task, similar to template meta-programming in that it's best left to library builders, who'll use these features to build efficient, high level libraries for you. In fact to do this correctly you'll basically be implementing the internals of std::vector.
When you use the new operator to allocate an array, every element in the array is default initialized. Your code could work if you added a default constructor to Bullet:
class Bullet {
public:
Bullet() {} // default constructor
Bullet(double,std::string const &) {}
};
std::unique_ptr<Bullet[]> b = new Bullet[10]; // default construct 10 bullets
Then, when you have the real data for a Bullet you can assign it to one of the elements of the array:
b[3] = Bullet(20.3,"Bang");
Note the use of unique_ptr to ensure that proper clean-up occurs, and that it's exception safe. Doing these things manually is difficult and error prone.
3) operator new
The new operator initializes its objects in addition to allocating space for them. If you want to simply allocate space, you can use operator new.
std::unique_ptr<Bullet,void(*)(Bullet*)> bullets(
static_cast<Bullet*>(::operator new(10 * sizeof(Bullet))),
[](Bullet *b){::operator delete(b);});
(Note that the unique_ptr ensures that the storage will be deallocated but no more. Specifically, if we construct any objects in this storage we have to manually destruct them and do so in an exception safe way.)
bullets now points to storage sufficient for an array of Bullets. You can construct an array in this storage:
new (bullets.get()) Bullet[10];
However the array construction again uses default initialization for each element, which we're trying to avoid.
AFAIK C++ doesn't specify any well defined method of constructing an array without constructing the elements. I imagine this is largely because doing so would be a no-op for most (all?) C++ implementations. So while the following is technically undefined, in practice it's pretty well defined.
bool constructed[10] = {}; // a place to mark which elements are constructed
// construct some elements of the array
for(int i=0;i<10;i+=2) {
try {
// pretend bullets points to the first element of a valid array. Otherwise 'bullets.get()+i' is undefined
new (bullets.get()+i) Bullet(10.2,"Bang");
constructed = true;
} catch(...) {}
}
That will construct elements of the array without using the default constructor. You don't have to construct every element, just the ones you want to use. However when destroying the elements you have to remember to destroy only the elements that were constructed.
// destruct the elements of the array that we constructed before
for(int i=0;i<10;++i) {
if(constructed[i]) {
bullets[i].~Bullet();
}
}
// unique_ptr destructor will take care of deallocating the storage
The above is a pretty simple case. Making non-trivial uses of this method exception safe without wrapping it all up in a class is more difficult. Wrapping it up in a class basically amounts to implementing std::vector.
4) std::vector
So just use std::vector.
It's possible to do what you want -- search for "operator new" if you really want to know how. But it's almost certainly a bad idea. Instead, use std::vector, which will take care of all the annoying details for you. You can use std::vector::reserve to allocate all the memory you'll use ahead of time.
Bullet** pBulletArray = new Bullet*[iBulletArraySize];
Then populate pBulletArray:
for(int i = 0; i < iBulletArraySize; i++)
{
pBulletArray[i] = new Bullet(arg0, arg1);
}
Just don't forget to free the memory using delete afterwards.
The way C++ new normally works is allocating the memory for the class instance and then calling the constructor for that instance. You basically have already allocated the memory for your instances.
You can call only the constructor for the first instance like this:
new((void*)pBulletArray) Bullet(int foo);
Calling the constructor of the second one would look like this (and so on)
new((void*)pBulletArray+1) Bullet(int bar);
if the Bullet constructor takes an int.
If what you're really after here is just fast allocation/deallocation, then you should look into "memory pools." I'd recommend using boost's implementation, rather than trying to roll your own. In particular, you would probably want to use an "object_pool".

C++ best practice: Returning reference vs. object

I'm trying to learn C++, and trying to understand returning objects. I seem to see 2 ways of doing this, and need to understand what is the best practice.
Option 1:
QList<Weight *> ret;
Weight *weight = new Weight(cname, "Weight");
ret.append(weight);
ret.append(c);
return &ret;
Option 2:
QList<Weight *> *ret = new QList();
Weight *weight = new Weight(cname, "Weight");
ret->append(weight);
ret->append(c);
return ret;
(of course, I may not understand this yet either).
Which way is considered best-practice, and should be followed?
Option 1 is defective. When you declare an object
QList<Weight *> ret;
it only lives in the local scope. It is destroyed when the function exits. However, you can make this work with
return ret; // no "&"
Now, although ret is destroyed, a copy is made first and passed back to the caller.
This is the generally preferred methodology. In fact, the copy-and-destroy operation (which accomplishes nothing, really) is usually elided, or optimized out and you get a fast, elegant program.
Option 2 works, but then you have a pointer to the heap. One way of looking at C++ is that the purpose of the language is to avoid manual memory management such as that. Sometimes you do want to manage objects on the heap, but option 1 still allows that:
QList<Weight *> *myList = new QList<Weight *>( getWeights() );
where getWeights is your example function. (In this case, you may have to define a copy constructor QList::QList( QList const & ), but like the previous example, it will probably not get called.)
Likewise, you probably should avoid having a list of pointers. The list should store the objects directly. Try using std::list… practice with the language features is more important than practice implementing data structures.
Use the option #1 with a slight change; instead of returning a reference to the locally created object, return its copy.
i.e. return ret;
Most C++ compilers perform Return value optimization (RVO) to optimize away the temporary object created to hold a function's return value.
In general, you should never return a reference or a pointer. Instead, return a copy of the object or return a smart pointer class which owns the object. In general, use static storage allocation unless the size varies at runtime or the lifetime of the object requires that it be allocated using dynamic storage allocation.
As has been pointed out, your example of returning by reference returns a reference to an object that no longer exists (since it has gone out of scope) and hence are invoking undefined behavior. This is the reason you should never return a reference. You should never return a raw pointer, because ownership is unclear.
It should also be noted that returning by value is incredibly cheap due to return-value optimization (RVO), and will soon be even cheaper due to the introduction of rvalue references.
passing & returning references invites responsibilty.! u need to take care that when you modify some values there are no side effects. same in the case of pointers. I reccomend you to retun objects. (BUT IT VERY-MUCH DEPENDS ON WHAT EXACTLY YOU WANT TO DO)
In ur Option 1, you return the address and Thats VERY bad as this could lead to undefined behaviour. (ret will be deallocated, but y'll access ret's address in the called function)
so use return ret;
It's generally bad practice to allocate memory that has to be freed elsewhere. That's one of the reasons we have C++ rather than just C. (But savvy programmers were writing object-oriented code in C long before the Age of Stroustrup.) Well-constructed objects have quick copy and assignment operators (sometimes using reference-counting), and they automatically free up the memory that they "own" when they are freed and their DTOR automatically is called. So you can toss them around cheerfully, rather than using pointers to them.
Therefore, depending on what you want to do, the best practice is very likely "none of the above." Whenever you are tempted to use "new" anywhere other than in a CTOR, think about it. Probably you don't want to use "new" at all. If you do, the resulting pointer should probably be wrapped in some kind of smart pointer. You can go for weeks and months without ever calling "new", because the "new" and "delete" are taken care of in standard classes or class templates like std::list and std::vector.
One exception is when you are using an old fashion library like OpenCV that sometimes requires that you create a new object, and hand off a pointer to it to the system, which takes ownership.
If QList and Weight are properly written to clean up after themselves in their DTORS, what you want is,
QList<Weight> ret();
Weight weight(cname, "Weight");
ret.append(weight);
ret.append(c);
return ret;
As already mentioned, it's better to avoid allocating memory which must be deallocated elsewhere. This is what I prefer doing (...these days):
void someFunc(QList<Weight *>& list){
// ... other code
Weight *weight = new Weight(cname, "Weight");
list.append(weight);
list.append(c);
}
// ... later ...
QList<Weight *> list;
someFunc(list)
Even better -- avoid new completely and using std::vector:
void someFunc(std::vector<Weight>& list){
// ... other code
Weight weight(cname, "Weight");
list.push_back(weight);
list.push_back(c);
}
// ... later ...
std::vector<Weight> list;
someFunc(list);
You can always use a bool or enum if you want to return a status flag.
Based on experience, do not use plain pointers because you can easily forget to add proper destruction mechanisms.
If you want to avoid copying, you can go for implementing the Weight class with copy constructor and copy operator disabled:
class Weight {
protected:
std::string name;
std::string desc;
public:
Weight (std::string n, std::string d)
: name(n), desc(d) {
std::cout << "W c-tor\n";
}
~Weight (void) {
std::cout << "W d-tor\n";
}
// disable them to prevent copying
// and generate error when compiling
Weight(const Weight&);
void operator=(const Weight&);
};
Then, for the class implementing the container, use shared_ptr or unique_ptr to implement the data member:
template <typename T>
class QList {
protected:
std::vector<std::shared_ptr<T>> v;
public:
QList (void) {
std::cout << "Q c-tor\n";
}
~QList (void) {
std::cout << "Q d-tor\n";
}
// disable them to prevent copying
QList(const QList&);
void operator=(const QList&);
void append(T& t) {
v.push_back(std::shared_ptr<T>(&t));
}
};
Your function for adding an element would make use or Return Value Optimization and would not call the copy constructor (which is not defined):
QList<Weight> create (void) {
QList<Weight> ret;
Weight& weight = *(new Weight("cname", "Weight"));
ret.append(weight);
return ret;
}
On adding an element, the let the container take the ownership of the object, so do not deallocate it:
QList<Weight> ql = create();
ql.append(*(new Weight("aname", "Height")));
// this generates segmentation fault because
// the object would be deallocated twice
Weight w("aname", "Height");
ql.append(w);
Or, better, force the user to pass your QList implementation only smart pointers:
void append(std::shared_ptr<T> t) {
v.push_back(t);
}
And outside class QList you'll use it like:
Weight * pw = new Weight("aname", "Height");
ql.append(std::shared_ptr<Weight>(pw));
Using shared_ptr you could also 'take' objects from collection, make copies, remove from collection but use locally - behind the scenes it would be only the same only object.
All of these are valid answers, avoid Pointers, use copy constructors, etc. Unless you need to create a program that needs good performance, in my experience most of the performance related problems are with the copy constructors, and the overhead caused by them. (And smart pointers are not any better on this field, I'd to remove all my boost code and do the manual delete because it was taking too much milliseconds to do its job).
If you're creating a "simple" program (although "simple" means you should go with java or C#) then use copy constructors, avoid pointers and use smart pointers to deallocate the used memory, if you're creating a complex programs or you need a good performance, use pointers all over the place, and avoid copy constructors (if possible), just create your set of rules to delete pointers and use valgrind to detect memory leaks,
Maybe I will get some negative points, but I think you'll need to get the full picture to take your design choices.
I think that saying "if you're returning pointers your design is wrong" is little misleading. The output parameters tends to be confusing because it's not a natural choice for "returning" results.
I know this question is old, but I don't see any other argument pointing out the performance overhead of that design choices.

Idiomatic use of auto_ptr to transfer ownership to a container

I'm refreshing my C++ knowledge after not having used it in anger for a number of years. In writing some code to implement some data structure for practice, I wanted to make sure that my code was exception safe. So I've tried to use std::auto_ptrs in what I think is an appropriate way. Simplifying somewhat, this is what I have:
class Tree
{
public:
~Tree() { /* delete all Node*s in the tree */ }
void insert(const string& to_insert);
...
private:
struct Node {
...
vector<Node*> m_children;
};
Node* m_root;
};
template<T>
void push_back(vector<T*>& v, auto_ptr<T> x)
{
v.push_back(x.get());
x.release();
}
void Tree::insert(const string& to_insert)
{
Node* n = ...; // find where to insert the new node
...
push_back(n->m_children, auto_ptr<Node>(new Node(to_insert));
...
}
So I'm wrapping the function that would put the pointer into the container, vector::push_back, and relying on the by-value auto_ptr argument to
ensure that the Node* is deleted if the vector resize fails.
Is this an idiomatic use of auto_ptr to save a bit of boilerplate in my
Tree::insert? Any improvements you can suggest? Otherwise I'd have to have
something like:
Node* n = ...; // find where to insert the new node
auto_ptr<Node> new_node(new Node(to_insert));
n->m_children.push_back(new_node.get());
new_node.release();
which kind of clutters up what would have been a single line of code if I wasn't
worrying about exception safety and a memory leak.
(Actually I was wondering if I could post my whole code sample (about 300 lines) and ask people to critique it for idiomatic C++ usage in general, but I'm not sure whether that kind of question is appropriate on stackoverflow.)
It is not idiomatic to write your own container: it is rather exceptional, and for the most part useful only for learning how to write containers. At any rate, it is most certainly not idiomatic to use std::autp_ptr with standard containers. In fact, it's wrong, because copies of std::auto_ptr aren't equivalent: only one auto_ptr owns a pointee at any given time.
As for idiomatic use of std::auto_ptr, you should always name your auto_ptr on construction:
int wtv() { /* ... */ }
void trp(std::auto_ptr<int> p, int i) { /* ... */ }
void safe() {
std::auto_ptr<int> p(new int(12));
trp(p, wtv());
}
void danger() {
trp(std::auto_ptr<int>(new int(12)), wtv());
}
Because the C++ standard allows arguments to evaluate in any arbitrary order, the call to danger() is unsafe. In the call to trp() in danger(), the compiler may allocate the integer, then create the auto_ptr, and finally call wtv(). Or, the compiler may allocate a new integer, call wtv(), and finally create the auto_ptr. If wtv() throws an exception then danger() may or may not leak.
In the case of safe(), however, because the auto_ptr is constructed a-priori, RAII guarantees it will clean up properly whether or not wtv() throws an exception.
Yes it is.
For example, see the interface of the Boost.Pointer Container library. The various pointer containers all feature an insert function taking an auto_ptr which semantically guarantees that they take ownership (they also have the raw pointer version but hey :p).
There are however other ways to achieve what you're doing with regards to exception safety because it's only internal here. To understand it, you need to understand what could go wrong (ie throw) and then reorder your instructions so that the operations that may throw are done with before the side-effects occur.
For example, taking from your post:
auto_ptr<Node> new_node(new Node(to_insert)); // 1
n->m_children.push_back(new_node.get()); // 2
new_node.release(); // 3
Let's check each line,
The constructor may throw (for example if the CopyConstructor of the type throws), in this case however you are guaranteed that new will perform the cleanup for you
The call to push_back may throw a std::bad_alloc if the memory is exhausted. That's the only error possible as copying a pointer is a no-throw operation
This is guaranteed not to throw
If you look closely, you'll remark that you would not have to worry if you could somehow have 2 being executed before 1. It is in fact possible:
n->m_children.reserve(n->m_children.size() + 1);
n->m_children.push_back(new Node(to_insert));
The call to reserve may throw (bad_alloc), but if it completes normally you are then guaranteed that no reallocation will occur until size becomes equal to capacity and you try another insertion.
The call to new may fall if the constructor throw, in which case new will perform the cleanup, if it completes you're left with a pointer that is immediately inserted in the vector... which is guaranteed not to throw because of the line above.
Thus, the use of auto_ptr may be replaced here. It was nonetheless a good idea, though as has been noted you should refrain from executing RAII initialization within a function evaluation.
I like the idea of declaring the ownership of pointer. This is one of the great features in c++0x, std::unique_ptrs. However std::auto_ptr is so hard to understand and lethal is even slightly misued I would suggest avoiding it entirely.
http://www.gotw.ca/publications/using_auto_ptr_effectively.htm