How to implement opIndex for compile time indices? - d

ref auto opIndex(size_t i){
return t[i];
}
Here t is a tuple and i needs to be read at compile time. How would I express this in D?

There isn't any clean way to do this with opIndex currently, for two reasons. First is simple - it isn't implemented. That would be relatively easy to fix on its own but there is a second reason - it adds serious context sensitivity to language grammar.
Consider this struct definition:
struct S
{
// imagine this works, syntax is not important
static int opIndex (size_t i) { return 42; }
}
Now what does the code S[10] mean? Is it a static array type of ten S elements? Or static opIndex call which returns 42? It is impossible to tell without knowing quite a lot of context and in certain cases impossible to tell at all (like typeof(S[10])).
Somewhat relevant (unapproved!) idea: http://wiki.dlang.org/DIP63

Related

I can't get the right output that I want and the answer changes every time

So I am trying to code for this question:
Yes, I have to use arrays since it is a requirement.
Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B. The sum of the two integers should be stored in binary form in an (n+1) element array C . State the problem formally and write pseudocode for adding the two integers.
I know that the ans array contains the correct output at the end of the addd function. However, I am not able to output that answer.
Below is my code. Please help me figure where in the code I'm going wrong, and what I can do to change it so it works. I will be very grateful.
#include <iostream>
using namespace std;
int * addd(int a[], int n1, int b[], int n2)
{
int s;
if(n1<n2) {s=n2+1;}
else {s=n1+1;}
int ans[s];
int i=n1-1, j=n2-1, k=s-1;
int carry=0;
while(i>=0 && j>=0 && k>0)
{
ans[k]=(a[i]+b[j]+carry)%2;
//cout<<k<<" "<<ans[k]<<endl;
carry=(a[i]+b[j]+carry)/2;
i--; j--; k--;
}
//cout<<"Carry "<<carry<<endl;
ans[0]=carry;
return ans;
}
int main(int argc, const char * argv[]) {
// insert code here...
int a[]={0,0,0,1,1,1};
int n1=sizeof(a)/sizeof(a[0]);
int b[]={1,0,1,1,0,1};
int n2=sizeof(b)/sizeof(b[0]);
int *p=addd(a,6,b,6);
// cout<<p[1]<<endl;
// cout<<p[0]<<" "<<p[1]<<" "<<p[2]<<" "<<p[3]<<" "<<p[4]<<" "<<p[5]<<" "<<p[6]<<endl;
return 0;
}
using namespace std;
Don't write using namespace std;. I have a summary I paste in from a file of common issues when I'm active in the Code Review Stack Exchange, but I don't have that here. Instead, you should just declare the symbols you need, like using std::cout;
int * addd(int a[], int n1, int b[], int n2)
The parameters of the form int a[] are very odd. This comes from C and is actually transformed into int* a and is not passing the array per-se.
The inputs should be const.
The names are not clear, but I'm guessing that n1 is the size of the array? In the Standard Guidelines, you'll see that passing a pointer plus length is strongly discouraged. The Standard Guidelines Library supplies a simple span type to use for this instead.
And the length should be size_t not int.
Based on the description, I think each element is only one bit, right? So why are the arrays of type int? I'd use bool or perhaps int8_t as being easier to work with.
What are you returning? If a and b and their lengths are the input, where is the output that you are returning a pointer to the beginning of? This is not giving value semantics, as you are returning a pointer to something that must exist elsewhere so what is its lifetime?
int s;
int ans[s];
return ans;
Well, there's your problem. First of all, declaring an array of a size that's not a constant is not even legal. (This is a gnu extension that implements C's VLA feature but not without issues as it breaks the C++ type system)
Regardless of that, you are returning a pointer to the first element of the local array, so what happens to the memory when the function returns? Boom.
int s;
No. Initialize values when they are created.
if(n1<n2) {s=n2+1;}
else {s=n1+1;}
Learn the library.
How about:
const size_t s = 1+std::max(n1,n2);
and then the portable way to get your memory is:
std::vector<int> ans(s);
Your main logic will not work if one array is shorter than the other. The shorter input should behave as if it had leading zeros to match. Consider abstracting the problem of "getting the next bit" so you don't duplicate the code for handling each input and make an unreadable mess. You really should have learned to use collections and iterators first.
now:
return ans;
would work as intended since it is a value. You just need to declare the function to be the right type. So just use auto for the return type and it knows.
int n1=sizeof(a)/sizeof(a[0]);
Noooooooo.
There is a standard function to give the size of a built-in primitive array. But really, this should be done automatically as part of the passing, not as a separate thing, as noted earlier.
int *p=addd(a,6,b,6);
You wrote 6 instead of n1 etc.
Anyway, with the previous edits, it becomes:
using std::size;
const auto p = addd (a, size(a), b, size(b));
Finally, concerning:
cout<<p[0]<<" "<<p[1]<<" "<<p[2]<<" "<<p[3]<<" "<<p[4]<<" "<<p[5]<<" "<<p[6]<<endl;
How about using loops?
for (auto val : p) cout << val;
cout << '\n';
oh, don't use endl. It's not needed for cout which auto-flushes anyway, and it's slow. Modern best practice is to use '\n' and then flush explicitly if/when needed (like, never).
Let's look at:
int ans[s];
Apart that this is not even part of the standard and probably the compiler is giving you some warnings (see link), that command allocate temporary memory in the stack which gets deallocated on function exit: that's why you are getting every time different results, you are reading garbage, i.e. memory that in the meantime might have been overwritten.
You can replace it for example with
int* ans = new int[s];
Don't forget though to deallocate the memory when you have finished using the buffer (outside the function), to avoid memory leakage.
Some other notes:
int s;
if(n1<n2) {s=n2+1;}
else {s=n1+1;}
This can be more elegantly written as:
const int s = (n1 < n2) ? n2 + 1 : n1 + 1;
Also, the actual computation code is imprecise as it leads to wrong results if n1 is not equal to n2: You need further code to finish processing the remaining bits of the longest array. By the way you don't need to check on k > 0 because of the way you have defined s.
The following should work:
int i=n1-1, j=n2-1, k=s-1;
int carry=0;
while(i>=0 && j>=0)
{
ans[k]=(a[i]+b[j]+carry)%2;
carry=(a[i]+b[j]+carry)/2;
i--; j--; k--;
}
while(i>=0) {
ans[k]=(a[i]+carry)%2;
carry=(a[i]+carry)/2;
i--; k--;
}
while(j>=0) {
ans[k]=(b[j]+carry)%2;
carry=(b[j]+carry)/2;
j--; k--;
}
ans[0]=carry;
return ans;
}
If You Must Only Use C Arrays
Returning ans is returning the pointer to a local variable. The object the pointer refers to is no longer valid after then function has returned, so trying to read it would lead to undefined behavior.
One way to fix this is to pass in the address to an array to hold your answer, and populate that, instead of using a VLA (which is a non-standard C++ extension).
A VLA (variable length array) is an array which takes its size from a run-time computed value. In your case:
int s;
//... code that initializes s
int ans[s];
ans is a VLA because you are not using a constant to determine the array size. However, that is not a standard feature of the C++ language (it is an optional one in the C language).
You can modify your function so that ans is actually provided by the caller.
int * addd(int a[], int n1, int b[], int n2, int ans[])
{
//...
And then the caller would be responsible for passing in a large enough array to hold the answer.
Your function also appears to be incomplete.
while(i>=0 && j>=0 && k>0)
{
ans[k]=(a[i]+b[j]+carry)%2;
//cout<<k<<" "<<ans[k]<<endl;
carry=(a[i]+b[j]+carry)/2;
i--; j--; k--;
}
If one array is shorter than the other, then the index for the shorter array will reach 0 first. Then, when that corresponding index goes negative, the loop will stop, without handling the remaining terms in the longer array. This essentially makes the corresponding entries in ans be uninitialized. Reading those values results in undefined behavior.
To address this, you should populate the remaining entries in ans with the correct calculation based on carry and the remaining entries in the longer array.
A More C++ Approach
The original answer above was provided assuming you were constrained to only using C style arrays for both input and output, and that you wanted an answer that would allow you to stay close to your original implementation.
Below is a more C++ oriented solution, assuming you still need to provide C arrays as input, but otherwise no other constraint.
C Array Wrapper
A C array does not provide the amenities that you may be accustomed to have when using C++ containers. To gain some of these nice to have features, you can write an adapter that allows a C array to behave like a C++ container.
template <typename T, std::size_t N>
struct c_array_ref {
typedef T ARR_TYPE[N];
ARR_TYPE &arr_;
typedef T * iterator;
typedef std::reverse_iterator<T *> reverse_iterator;
c_array_ref (T (&arr)[N]) : arr_(arr) {}
std::size_t size () { return N; }
T & operator [] (int i) { return arr_[i]; }
operator ARR_TYPE & () { return arr_; }
iterator begin () { return &arr_[0]; }
iterator end () { return begin() + N; }
reverse_iterator rbegin () { return reverse_iterator(end()); }
reverse_iterator rend () { return reverse_iterator(begin()); }
};
Use C Array References
Instead of passing in two arguments as information about the array, you can pass in the array by reference, and use template argument deduction to deduce the array size.
Return a std::array
Although you cannot return a local C array like you attempted in your question, you can return an array that is wrapped inside a struct or class. That is precisely what the convenience container std::array provides. When you use C array references and template argument deduction to obtain the array size, you can now compute at compile time the proper array size that std::array should have for the return value.
template <std::size_t N1, std::size_t N2>
std::array<int, ((N1 < N2) ? N2 : N1) + 1>
addd(int (&a)[N1], int (&b)[N2])
{
Normalize the Input
It is much easier to solve the problem if you assume the arguments have been arranged in a particular order. If you always want the second argument to be the larger array, you can do that with a simple recursive call. This is perfectly safe, since we know the recursion will happen at most once.
if (N2 < N1) return addd(b, a);
Use C++ Containers (or Look-Alike Adapters)
We can now convert our arguments to the adapter shown earlier, and also create a std::array to hold the output.
c_array_ref<int, N1> aa(a);
c_array_ref<int, N2> bb(b);
std::array<int, std::max(N1, N2)+1> ans;
Leverage Existing Algorithms if Possible
In order to deal with the short comings of your original program, you can adjust your implementation a bit in an attempt to remove special cases. One way to do that is to store the result of adding the longer array to 0 and storing it into the output. However, this can mostly be accomplished with a simple call to std::copy.
ans[0] = 0;
std::copy(bb.begin(), bb.end(), ans.begin() + 1);
Since we know the input consists of only 1s and 0s, we can compute straight addition from the shorter array into the longer array, without concern for carry (that will be addressed in the next step). To compute this addition, we apply std::transform with a lambda expression.
std::transform(aa.rbegin(), aa.rend(), ans.rbegin(),
ans.rbegin(),
[](int a, int b) -> int { return a + b; });
Lastly, we can make a pass over the output array to fix up the carry computation. After doing so, we are ready to return the result. The return is possible because we are using std::array to represent the answer.
for (auto i = ans.rbegin(); i != ans.rend()-1; ++i) {
*(i+1) += *i / 2;
*i %= 2;
}
return ans;
}
A Simpler main Function
We now only need to pass in the two arrays to the addd function, since template type deduction will discover the sizes of the arrays. In addition, the output generator can be handled more easily with an ostream_iterator.
int main(int, const char * []) {
int a[]={1,0,0,0,1,1,1};
int b[]={1,0,1,1,0,1};
auto p=addd(a,b);
std::copy(p.begin(), p.end(),
std::ostream_iterator<int>(std::cout, " "));
return 0;
}
Try it online!
If I may editorialize a bit... I think this is a deceptively difficult question for beginners, and as-stated should flag problems in the design review long before any attempt at coding. It's telling you to do things that are not good/typical/idiomatic/proper in C++, and distracting you with issues that get in the way of the actual logic to be developed.
Consider the core algorithm you wrote (and Antonio corrected): that can be understood and discussed without worrying about just how A and B are actually passed in for this code to use, or exactly what kind of collection it is. If they were std::vector, std::array, or primitive C array, the usage would be identical. Likewise, how does one return the result out of the code? You populate ans here, and how it is gotten into and/or out of the code and back to main is not relevant.
Primitive C arrays are not first-class objects in C++ and there are special rules (inherited from C) on how they are passed as arguments.
Returning is even worse, and returning dynamic-sized things was a major headache in C and memory management like this is a major source of bugs and security flaws. What we want is value semantics.
Second, using arrays and subscripts is not idiomatic in C++. You use iterators and abstract over the exact nature of the collection. If you were interested in writing super-efficent back-end code that doesn't itself deal with memory management (it's called by other code that deals with the actual collections involved) it would look like std::merge which is a venerable function that dates back to the early 90's.
template< class InputIt1, class InputIt2, class OutputIt >
OutputIt merge( InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
OutputIt d_first );
You can find others with similar signatures, that take two different ranges for input and outputs to a third area. If you write addp exactly like this, you could call it with primitive C arrays of hardcoded size:
int8_t A[] {0,0,0,1,1,1};
int8_t B[] {1,0,1,1,0,1};
int8_t C[ ??? ];
using std::begin; std::end;
addp (begin(A),end(A), begin(B), end(B), begin(C));
Note that it's up to the caller to have prepared an output area large enough, and there's no error checking.
However, the same code can be used with vectors, or even any combination of different container types. This could populate a std::vector as the result by passing an insertion iterator. But in this particular algorithm that's difficult since you're computing it in reverse order.
std::array
Improving upon the situation with primitive C arrays, you could use the std::array class which is exactly the same array but without the strange passing/returning rules. It's actually just a primitive C array inside a wrapping struct. See this documentation: https://en.cppreference.com/w/cpp/container/array
So you could write it as:
using BBBNum1 = std::array<int8_t, 6>
BBBNum1 addp (const BBBNum1& A, const BBBNum1& B) { ... }
The code inside can use A[i] etc. in the same way you are, but it also can get the size via A.size(). The issue here is that the inputs are the same length, and the output is the same as well (not 1 larger). Using templates, it could be written to make the lengths flexible but still only specified at compile time.
std::vector
The vector is like an array but with a run-time length. It's dynamic, and the go-to collection you should reach for in C++.
using BBBNum2 = std::vector<int8_t>
BBBNum2 addp (const BBBNum2& A, const BBBNum2& B) { ... }
Again, the code inside this function can refer to B[j] etc. and use B.size() exactly the same as with the array collection. But now, the size is a run-time property, and can be different for each one.
You would create your result, as in my first post, by giving the size as a constructor argument, and then you can return the vector by-value. Note that the compiler will do this efficiently and not actually have to copy anything if you write:
auto C = addp (A, B);
now for the real work
OK, now that this distraction is at least out of the way, you can worry about actually writing the implementation. I hope you are convinced that using vector instead of a C primitive array does not affect your problem logic or even the (available) syntax of using subscripts. Especially since the problem referred to psudocode, I interpret its use of "array" as "suitable indexable collection" and not specifically the primitive C array type.
The issue of going through 2 sequences together and dealing with differing lengths is actually a general purpose idea. In C++20, the Range library has things that make quick work of this. Older 3rd party libraries exist as well, and you might find it called zip or something like that.
But, let's look at writing it from scratch.
You want to read an item at a time from two inputs, but neatly make it look like they're the same length. You don't want to write the same code three times, or elaborate on the cases where A is shorter or where B may be shorter... just abstract out the idea that they are read together, and if one runs out it provides zeros.
This is its own piece of code that can be applied twice, to A and to B.
class backwards_bit_reader {
const BBBnum2& x;
size_t index;
public:
backwards_bit_reader(const BBBnum2& x) : x{x}, index{x.size()} {}
bool done() const { return index == 0; }
int8_t next()
{
if (done()) return 0; // keep reading infinite leading zeros
--index;
return x[index];
}
};
Now you can write something like:
backwards_bit_reader A_in { A };
backwards_bit_reader B_in { B };
while (!A_in.done() && !B_in.done()) {
const a = A_in.next();
const b = B_in.next();
const c = a+b+carry;
carry = c/2; // update
C[--k]= c%2;
}
C[0]= carry; // the final bit, one longer than the input
It can be written far more compactly, but this is clear.
another approach
The problem is, is writing backwards_bit_reader beyond what you've learned thus far? How else might you apply the same logic to both A and B without duplicating the statements?
You should be learning to recognize what's sometimes called "code smell". Repeating the same block of code multiple times, and repeating the same steps with nothing changed but which variable it's applying to, should be seen as ugly and unacceptable.
You can at least cut back the cases by ensuring that B is always the longer one, if they are of different length. Do this by swapping A and B if that's not the case, as a preliminary step. (Actually implementing that well is another digression)
But the logic is still nearly duplicated, since you have to deal with the possibility of the carry propagating all the way to the end. Just now you have 2 copies instead of 3.
Extending the shorter one, at least in façade, is the only way to write one loop.
how realistic is this problem?
It's simplified to the point of being silly, but if it's not done in base 2 but with larger values, this is actually implementing multi-precision arithmetic, which is a real thing people want to do. That's why I named the type above BBBNum for "Bad Binary Bignum".
Getting down to an actual range of memory and wanting the code to be fast and optimized is also something you want to do sometimes. The BigNum is one example; you often see this with string processing. But we'll want to make an efficient back-end that operates on memory without knowing how it was allocated, and higher-level wrappers that call it.
For example:
void addp (const int8_t* a_begin, const int8_t* a_end,
const int8_t* b_begin, const int8_t* b_end,
int8_t* result_begin, int8_t* result_end);
will use the provided range for output, not knowing or caring how it was allocated, and taking input that's any contiguous range without caring what type of container is used to manage it as long as it's contiguous. Note that as you saw with the std::merge example, it's more idiomatic to pass begin and end rather than begin and size.
But then you have helper functions like:
BBBNum2 addp (const BBBNum2& A, const BBBNum2& B)
{
BBBNum result (1+std::max(A.size(),B.size());
addp (A.data(), A.data()+A.size(), B.data(), B.data()+B.size(), C.data(), C.data()+C.size());
}
Now the casual user can call it using vectors and a dynamically-created result, but it's still available to call for arrays, pre-allocated result buffers, etc.

Why C++ has no concise syntax that allow executing an operation multiple times without defining a counter? [duplicate]

This question already has answers here:
Modern C++ way to repeat code for set number of times
(3 answers)
Closed 2 years ago.
I want to execute a single operation multiple times, without defining a counter. For example, like this:
do(10)
{
//do something
}
I think this would be useful in several different scenarios. For example:
Deleting several consecutive items from std::list by a beginning index.
Emitting some signal several times, either over time or at some specific time.
Adding the same data to the list for custom initialization
Many scenes are not limited to those listed above.
Other languages have syntax similar to this that allows repeatedly executing the same command, without having to explicitly define a counter variable.In my opinion,defining a counter is completely inconsistent with human thinking.
Simulate how we think:
In reality, we always do sth. a few times directly.
But now the syntax looks like this:
Uh...I am going to do sth. three times.
Okay,ready,I started.
Soul torture: Why doesn't C++ provide a concise syntax? Although I am a fan of C++, I can’t help but wonder why some people don’t like C++ because C++ rarely considers how people think.I hope C++ can advance with the times and become the programming language of the future.
Different from Modern C++ way to repeat code for set number of times.I gave my plan, application scenarios, and even emotional appeals.
The evolution of C++ is by committee. In the simplest terms folk propose stuff and the committee accepts or rejects it.
Interestingly your suggestion
do (integral_expression)
{
}
would not be a breaking change. Note there's no while after the loop body or while adjacent to do. integral_expression is almost a production rule in C++ in case labels of switch blocks, although it could be run-time evaluable in this case. It could even lend itself to clean code in the sense that the equivalent
for (int i = 0; i < integral_expression; ++i)
{
}
introduces i into the loop body which can be inconvenient as it can shadow an existing i.
That said, thought is needed for the case where integral_expression is negative. Perhaps introduce unsigned_integral_expression not unlike what needs to be written as the size expression when declaring a variable length array in a reasonably common extension to standard C++?
If you want this feature in C++, then why not propose it?
Here is an example of C++ code that will do something a given number of times. Could also be done in C, but the functor would have to be a function pointer.
There may be a use case for this, but I'd think that for C++ programs the standard loop syntax would be preferable.
#include <iostream>
#include <functional>
static void Do(int count, std::function<void(int)> fn)
{
while(count)
{
if (count > 0) --count;
else if (count < 0) ++count;
fn(count);
}
}
int main()
{
Do(10, [](int count) { std::cout << "Loop is at " << count << "\n"; });
}
lambdas make a clean pure library implementation possible if needed:
template<typename F>
constexpr void repeat(std::size_t const n,F const& f){
for (std::size_t i=0;i<n;++i)
f();
};
int x{};
repeat(5,[&]{
std::cout << ++x << std::endl;
});
such a proposal is likely to get discarded by the committee, unless greater reasons support it.

Helper functions: lambdas vs normal functions

I have a function which internally uses some helper functions to keep its body organized and clean. They're very simple (but not always short) (they're more than just 2), and could be easily inlined inside the function's body, but I don't want to do so myself because, as I said, I want to keep that function's body organized.
All those functions need to be passed some arguments by reference and modify them, and I can write them in two ways (just a silly example):
With normal functions:
void helperf1(int &count, int &count2) {
count += 1;
count2 += 2;
}
int helperf2 (int &count, int &count2) {
return (count++) * (count2--);
}
//actual, important function
void myfunc(...) {
int count = count2 = 0;
while (...) {
helperf1(count, count2);
printf("%d\n", helperf2(count, count2));
}
}
Or with lambda functions that capture those arguments I explicitly pass in the example above:
void myfunc(...) {
int count = count2 = 0;
auto helperf1 = [&count, &count2] () -> void {
count += 1;
count2 += 2;
};
auto helperf2 = [&count, &count2] () -> int {
return (count++) * (count2--);
};
while (...) {
helperf1();
printf("%d\n", helperf2());
}
}
However, I am not sure on what method I should use. With the first, one, there is the "overhead" of passing the arguments (I think), while with the second those arguments could be (are them?) already included in there so that that "overhead" is removed. But they're still lambda functions which should (I think, again) not be as fast as normal functions.
So what should I do? Use the first method? Use the second one? Or sacrifice readability and just inline them in the main function's body?
Your first and foremost concern should be readability (and maintainability)!
Which of regular or lambda functions is more readable strongly depends on the given problem (and a bit on the taste of the reader/maintainer).
Don't be concerned about performance until you find that performance actually is an issue! If performance is an issue, start by benchmarking, not by guessing which implementation you think is faster (in many situations compilers are pretty good at optimizing).
Performance wise, there is no real issue here. Nothing to decide, choose whatever.
But, Lambda expressions won't do you any good for the purpose you want them.
They won't make the code any cleaner.
As a matter of fact I believe they will make the code a bit harder to read compared to a nice calculator object having these helper functions as member functions properly named with clean semantics and interface.
Using Lambda is more readable but they are actually there for more serious reasons , Lambda expressions are also known as "anonymous functions", and are very useful in certain programming paradigms, particularly functional programming, which lambda calculus ( http://en.wikipedia.org/wiki/Lambda_calculus )
Here you can find the goals of using lambdas :
https://dzone.com/articles/why-we-need-lambda-expressions
If you won't need the two helper functions somewhere else in your code, then use your lambda method , but if you will call one of them again somewhere in your project avoid writing them each time as lambdas , you can make a header file called "helpers.(h/hpp)" & a source file called "helper.(c/cpp)" then append all the helper functions there then you gain the readability of both the helper file and the caller file
You can avoid this unskilled habit and challange yourself by writing complex code that you have you read it more than once each time you want to edit it , that increases your programming skills and if you are working in a team , it won't be a problem , use comments , that will let them show more respect to your programming skills (if your complex code is doing the expected behaviour and giving the expected output)
And don't be concerned about performance until you find yourself writing a performance critical algorithm , if not , the difference will be in few milliseconds and the user won't notice it , so you will be loosing you time in an optimization that compiler can do by itself most of the time if you ask him to optimize your code .

Boost::Tuples vs Structs for return values

I'm trying to get my head around tuples (thanks #litb), and the common suggestion for their use is for functions returning > 1 value.
This is something that I'd normally use a struct for , and I can't understand the advantages to tuples in this case - it seems an error-prone approach for the terminally lazy.
Borrowing an example, I'd use this
struct divide_result {
int quotient;
int remainder;
};
Using a tuple, you'd have
typedef boost::tuple<int, int> divide_result;
But without reading the code of the function you're calling (or the comments, if you're dumb enough to trust them) you have no idea which int is quotient and vice-versa. It seems rather like...
struct divide_result {
int results[2]; // 0 is quotient, 1 is remainder, I think
};
...which wouldn't fill me with confidence.
So, what are the advantages of tuples over structs that compensate for the ambiguity?
tuples
I think i agree with you that the issue with what position corresponds to what variable can introduce confusion. But i think there are two sides. One is the call-side and the other is the callee-side:
int remainder;
int quotient;
tie(quotient, remainder) = div(10, 3);
I think it's crystal clear what we got, but it can become confusing if you have to return more values at once. Once the caller's programmer has looked up the documentation of div, he will know what position is what, and can write effective code. As a rule of thumb, i would say not to return more than 4 values at once. For anything beyond, prefer a struct.
output parameters
Output parameters can be used too, of course:
int remainder;
int quotient;
div(10, 3, &quotient, &remainder);
Now i think that illustrates how tuples are better than output parameters. We have mixed the input of div with its output, while not gaining any advantage. Worse, we leave the reader of that code in doubt on what could be the actual return value of div be. There are wonderful examples when output parameters are useful. In my opinion, you should use them only when you've got no other way, because the return value is already taken and can't be changed to either a tuple or struct. operator>> is a good example on where you use output parameters, because the return value is already reserved for the stream, so you can chain operator>> calls. If you've not to do with operators, and the context is not crystal clear, i recommend you to use pointers, to signal at the call side that the object is actually used as an output parameter, in addition to comments where appropriate.
returning a struct
The third option is to use a struct:
div_result d = div(10, 3);
I think that definitely wins the award for clearness. But note you have still to access the result within that struct, and the result is not "laid bare" on the table, as it was the case for the output parameters and the tuple used with tie.
I think a major point these days is to make everything as generic as possible. So, say you have got a function that can print out tuples. You can just do
cout << div(10, 3);
And have your result displayed. I think that tuples, on the other side, clearly win for their versatile nature. Doing that with div_result, you need to overload operator<<, or need to output each member separately.
Another option is to use a Boost Fusion map (code untested):
struct quotient;
struct remainder;
using boost::fusion::map;
using boost::fusion::pair;
typedef map<
pair< quotient, int >,
pair< remainder, int >
> div_result;
You can access the results relatively intuitively:
using boost::fusion::at_key;
res = div(x, y);
int q = at_key<quotient>(res);
int r = at_key<remainder>(res);
There are other advantages too, such as the ability to iterate over the fields of the map, etc etc. See the doco for more information.
With tuples, you can use tie, which is sometimes quite useful: std::tr1::tie (quotient, remainder) = do_division ();. This is not so easy with structs. Second, when using template code, it's sometimes easier to rely on pairs than to add yet another typedef for the struct type.
And if the types are different, then a pair/tuple is really no worse than a struct. Think for example pair<int, bool> readFromFile(), where the int is the number of bytes read and bool is whether the eof has been hit. Adding a struct in this case seems like overkill for me, especially as there is no ambiguity here.
Tuples are very useful in languages such as ML or Haskell.
In C++, their syntax makes them less elegant, but can be useful in the following situations:
you have a function that must return more than one argument, but the result is "local" to the caller and the callee; you don't want to define a structure just for this
you can use the tie function to do a very limited form of pattern matching "a la ML", which is more elegant than using a structure for the same purpose.
they come with predefined < operators, which can be a time saver.
I tend to use tuples in conjunction with typedefs to at least partially alleviate the 'nameless tuple' problem. For instance if I had a grid structure then:
//row is element 0 column is element 1
typedef boost::tuple<int,int> grid_index;
Then I use the named type as :
grid_index find(const grid& g, int value);
This is a somewhat contrived example but I think most of the time it hits a happy medium between readability, explicitness, and ease of use.
Or in your example:
//quotient is element 0 remainder is element 1
typedef boost:tuple<int,int> div_result;
div_result div(int dividend,int divisor);
One feature of tuples that you don't have with structs is in their initialization. Consider something like the following:
struct A
{
int a;
int b;
};
Unless you write a make_tuple equivalent or constructor then to use this structure as an input parameter you first have to create a temporary object:
void foo (A const & a)
{
// ...
}
void bar ()
{
A dummy = { 1, 2 };
foo (dummy);
}
Not too bad, however, take the case where maintenance adds a new member to our struct for whatever reason:
struct A
{
int a;
int b;
int c;
};
The rules of aggregate initialization actually mean that our code will continue to compile without change. We therefore have to search for all usages of this struct and updating them, without any help from the compiler.
Contrast this with a tuple:
typedef boost::tuple<int, int, int> Tuple;
enum {
A
, B
, C
};
void foo (Tuple const & p) {
}
void bar ()
{
foo (boost::make_tuple (1, 2)); // Compile error
}
The compiler cannot initailize "Tuple" with the result of make_tuple, and so generates the error that allows you to specify the correct values for the third parameter.
Finally, the other advantage of tuples is that they allow you to write code which iterates over each value. This is simply not possible using a struct.
void incrementValues (boost::tuples::null_type) {}
template <typename Tuple_>
void incrementValues (Tuple_ & tuple) {
// ...
++tuple.get_head ();
incrementValues (tuple.get_tail ());
}
Prevents your code being littered with many struct definitions. It's easier for the person writing the code, and for other using it when you just document what each element in the tuple is, rather than writing your own struct/making people look up the struct definition.
Tuples will be easier to write - no need to create a new struct for every function that returns something. Documentation about what goes where will go to the function documentation, which will be needed anyway. To use the function one will need to read the function documentation in any case and the tuple will be explained there.
I agree with you 100% Roddy.
To return multiple values from a method, you have several options other than tuples, which one is best depends on your case:
Creating a new struct. This is good when the multiple values you're returning are related, and it's appropriate to create a new abstraction. For example, I think "divide_result" is a good general abstraction, and passing this entity around makes your code much clearer than just passing a nameless tuple around. You could then create methods that operate on the this new type, convert it to other numeric types, etc.
Using "Out" parameters. Pass several parameters by reference, and return multiple values by assigning to the each out parameter. This is appropriate when your method returns several unrelated pieces of information. Creating a new struct in this case would be overkill, and with Out parameters you emphasize this point, plus each item gets the name it deserves.
Tuples are Evil.

Best way to store constant data in C++

I have an array of constant data like following:
enum Language {GERMAN=LANG_DE, ENGLISH=LANG_EN, ...};
struct LanguageName {
ELanguage language;
const char *name;
};
const Language[] languages = {
GERMAN, "German",
ENGLISH, "English",
.
.
.
};
When I have a function which accesses the array and find the entry based on the Language enum parameter. Should I write a loop to find the specific entry in the array or are there better ways to do this.
I know I could add the LanguageName-objects to an std::map but wouldn't this be overkill for such a simple problem? I do not have an object to store the std::map so the map would be constructed for every call of the function.
What way would you recommend?
Is it better to encapsulate this compile time constant array in a class which handles the lookup?
If the enum values are contiguous starting from 0, use an array with the enum as index.
If not, this is what I usually do:
const char* find_language(Language lang)
{
typedef std::map<Language,const char*> lang_map_type;
typedef lang_map_type::value_type lang_map_entry_type;
static const lang_map_entry_type lang_map_entries[] = { /*...*/ }
static const lang_map_type lang_map( lang_map_entries
, lang_map_entries + sizeof(lang_map_entries)
/ sizeof(lang_map_entries[0]) );
lang_map_type::const_iterator it = lang_map.find(lang);
if( it == lang_map.end() ) return NULL;
return it->second;
}
If you consider a map for constants, always also consider using a vector.
Function-local statics are a nice way to get rid of a good part of the dependency problems of globals, but are dangerous in a multi-threaded environment. If you're worried about that, you might rather want to use globals:
typedef std::map<Language,const char*> lang_map_type;
typedef lang_map_type::value_type lang_map_entry_type;
const lang_map_entry_type lang_map_entries[] = { /*...*/ }
const lang_map_type lang_map( lang_map_entries
, lang_map_entries + sizeof(lang_map_entries)
/ sizeof(lang_map_entries[0]) );
const char* find_language(Language lang)
{
lang_map_type::const_iterator it = lang_map.find(lang);
if( it == lang_map.end() ) return NULL;
return it->second;
}
There are three basic approaches that I'd choose from. One is the switch statement, and it is a very good option under certain conditions. Remember - the compiler is probably going to compile that into an efficient table-lookup for you, though it will be looking up pointers to the case code blocks rather than data values.
Options two and three involve static arrays of the type you are using. Option two is a simple linear search - which you are (I think) already doing - very appropriate if the number of items is small.
Option three is a binary search. Static arrays can be used with standard library algorithms - just use the first and first+count pointers in the same way that you'd use begin and end iterators. You will need to ensure the data is sorted (using std::sort or std::stable_sort), and use std::lower_bound to do the binary search.
The complication in this case is that you'll need a comparison function object which acts like operator< with a stored or referenced value, but which only looks at the key field of your struct. The following is a rough template...
class cMyComparison
{
private:
const fieldtype& m_Value; // Note - only storing a reference
public:
cMyComparison (const fieldtype& p_Value) : m_Value (p_Value) {}
bool operator() (const structtype& p_Struct) const
{
return (p_Struct.field < m_Value);
// Warning : I have a habit of getting this comparison backwards,
// and I haven't double-checked this
}
};
This kind of thing should get simpler in the next C++ standard revision, when IIRC we'll get anonymous functions (lambdas) and closures.
If you can't put the sort in your apps initialisation, you might need an already-sorted boolean static variable to ensure you only sort once.
Note - this is for information only - in your case, I think you should either stick with linear search or use a switch statement. The binary search is probably only a good idea when...
There are a lot of data items to search
Searches are done very frequently (many times per second)
The key enumerate values are sparse (lots of big gaps) - otherwise, switch is better.
If the coding effort were trivial, it wouldn't be a big deal, but C++ currently makes this a bit harder than it should be.
One minor note - it may be a good idea to define an enumerate for the size of your array, and to ensure that your static array declaration uses that enumerate. That way, your compiler should complain if you modify the table (add/remove items) and forget to update the size enum, so your searches should never miss items or go out of bounds.
I think you have two questions here:
What is the best way to store a constant global variable (with possible Multi-Threaded access) ?
How to store your data (which container use) ?
The solution described by sbi is elegant, but you should be aware of 2 potential problems:
In case of Multi-Threaded access, the initialization could be skrewed.
You will potentially attempt to access this variable after its destruction.
Both issues on the lifetime of static objects are being covered in another thread.
Let's begin with the constant global variable storage issue.
The solution proposed by sbi is therefore adequate if you are not concerned by 1. or 2., on any other case I would recommend the use of a Singleton, such as the ones provided by Loki. Read the associated documentation to understand the various policies on lifetime, it is very valuable.
I think that the use of an array + a map seems wasteful and it hurts my eyes to read this. I personally prefer a slightly more elegant (imho) solution.
const char* find_language(Language lang)
{
typedef std::map<Language, const char*> map_type;
typedef lang_map_type::value_type value_type;
// I'll let you work out how 'my_stl_builder' works,
// it makes for an interesting exercise and it's easy enough
// Note that even if this is slightly slower (?), it is only executed ONCE!
static const map_type = my_stl_builder<map_type>()
<< value_type(GERMAN, "German")
<< value_type(ENGLISH, "English")
<< value_type(DUTCH, "Dutch")
....
;
map_type::const_iterator it = lang_map.find(lang);
if( it == lang_map.end() ) return NULL;
return it->second;
}
And now on to the container type issue.
If you are concerned about performance, then you should be aware that for small data collection, a vector of pairs is normally more efficient in look ups than a map. Once again I would turn toward Loki (and its AssocVector), but really I don't think that you should worry about performance.
I tend to choose my container depending on the interface I am likely to need first and here the map interface is really what you want.
Also: why do you use 'const char*' rather than a 'std::string'?
I have seen too many people using a 'const char*' like a std::string (like in forgetting that you have to use strcmp) to be bothered by the alleged loss of memory / performance...
It depends on the purpose of the array. If you plan on showing the values in a list (for a user selection, perhaps) the array would be the most efficient way of storing them. If you plan on frequently looking up values by their enum key, you should look into a more efficient data structure like a map.
There is no need to write a loop. You can use the enum value as index for the array.
I would make an enum with sequential language codes
enum { GERMAN=0, ENGLISH, SWAHILI, ENOUGH };
The put them all into array
const char *langnames[] = {
"German", "English", "Swahili"
};
Then I would check if sizeof(langnames)==sizeof(*langnames)*ENOUGH in debug build.
And pray that I have no duplicates or swapped languages ;-)
If you want fast and simple solution , Can try like this
enum ELanguage {GERMAN=0, ENGLISH=1};
static const string Ger="GERMAN";
static const string Eng="ENGLISH";
bool getLanguage(const ELanguage& aIndex,string & arName)
{
switch(aIndex)
{
case GERMAN:
{
arName=Ger;
return true;
}
case ENGLISH:
{
arName=Eng;
}
default:
{
// Log Error
return false;
}
}
}