clojure: initialize 2d vector - clojure

in clojure I'm using the following function to initialize a 2d vector:
(defn vec2d [x y init]
(vec (map
#(vec (map init (range x))) (range y))))
usage:
(def grid (vec2d 40 30 (fn [] "x")))
Since I'm new to the language, I ask myself if this is the most straight-forward way to do so. Has anyone an idea to optimize this?

Under the assumption that you'll always want to initialize the entries of the vector to a constant, here's how I'd do this:
(defn vec2d
"Return an x by y vector with all entries equal to val."
[x y val]
(vec (repeat y (vec (repeat x val)))))

if you want to be able to initialize according to the coordinate, you could do this
(defn vec2d [sx sy f]
(mapv (fn[x](mapv (fn[y] (f x y)) (range sx))) (range sy)))
This allows you to have a constant value if you do
(vec2d 4 3 (constantly 2))
;; [[2 2 2 2] [2 2 2 2] [2 2 2 2]]
or initialize according to the coordinates, say:
(vec2d 4 3 (fn[x y] (+ x y)))
(vec2d 4 3 +) ;; or more concisely
;;[[0 1 2 3] [1 2 3 4] [2 3 4 5]]

Use mapv and you're set
(defn vec2d [x y init]
(mapv #(mapv init (range x)) (range y)))
If you want the coordinates for initialization:
(defn vec2d [x y init]
(mapv (fn [y] (mapv #(init % y) (range x))) (range y))
A nested for it's also very readable for boards generation if you just want all cells:
(defn vec2d [cols rows init]
(for [x (range rows) y (range cols)]
(init x y)))
Or if you don't mind seqs:
(defn vec2d [cols rows init]
(for [x (range rows)]
(for [y (range cols)]
(init x y))))

Using a threading macro:
(defn vec-2d [r c v] (->> (repeat c v) vec (repeat r) vec))

Related

How do I create a function that inserts an element between each pair of elements in a vector

I want to write a function that inserts elements between existing elements in a vector. The inserted elements are a function of the elements that precede and succeed it, with the first and last elements remaining unaffected.
E.g. I want inserted elements to be the mean of the elements that precede and succeed it:
Input:
[1 10 15]
Output:
[1 5.5 10 12.5 15]
What is the best way to do this in Clojure?
Here's another way:
(defn insert-mean-between [xs]
(let [f (fn [x y]
[(* (+ x y) 0.5) y])]
(->> xs
(partition 2 1)
(mapcat (partial apply f))
(cons (first xs))
vec)))
(insert-mean-between [1 10 15])
;;=> [1 5.5 10 12.5 15]
The main trick is that f is returning the answer and the RHS input. This way later on they will all compose together without repeats. The only problem you will have is that the first element is missing. So we just cons it onto the front. From the outset we had to know that cons would be a convenient operation when we chose to be returning the RHS rather than the LHS.
As calculating the mean was just an example, an improved solution would be for the inserting to be independent of the mean/whatever function:
(defn calc-mean [x y] (* (+ x y) 0.5)
(insert-between calc-mean [1 10 15])
Then a more general inserting function might be:
(defn insert-between [g xs]
(->> xs
(partition 2 1)
(mapcat (fn [[x y]] [(g x y) y]))
(cons (first xs))))
and the list of variants won't be complete without the recursive lazy sequence generation:
(defn with-avg [[x1 & [x2 :as tail] :as items]]
(when (seq items)
(if (seq tail)
(lazy-cat [x1 (/ (+ x1 x2) 2)] (with-avg tail))
[x1])))
user> (with-avg [1 2 3 4 5])
;;=> (1 3/2 2 5/2 3 7/2 4 9/2 5)
user> (with-avg [1])
;;=> [1]
user> (with-avg [])
;;=> nil
user> (with-avg [1 2])
;;=> (1 3/2 2)
user> (with-avg [1 2 3])
;;=>(1 3/2 2 5/2 3)
One way I could solve it is pattern matching Vector as f s t, I'm assuming it has 3 elements
Then create variable to assign first median first + second / 2 and second median second + third /2.
At the end return a new Vector with a combination you want.
Example, (I'm using lein REPL)
user=> (defn insert_medians[vect]
#_=> (let [[f s t] vect
#_=> m1 (float (/ (+ f s) 2))
#_=> m2 (float (/ (+ s t) 2))]
#_=> [f m1 s m2 t]))
#'user/insert_medians
user=> (insert_medians [1 10 15])
[1 5.5 10 12.5 15]
If a vector is larger than 3 elems, you need to find all the medians first and then insert into the original vector using interleave fn.
(defn insert-between
"Inserts elements between existing elements in a vector v. The inserted
elements are a result of applying the function f to the elements that precede
and succeed it, with the first and last elements of v remaining unaffected."
[f [x & xs :as v]]
(->> (partition 2 1 v)
(mapcat (fn [[a b]] [(f a b) b]))
(cons x)
(into [])))
(defn mean [& numbers]
(float (/ (apply + numbers) (count numbers))))
(insert-between mean [1 10 15]) ; => [1 5.5 10 10 12.5 15]
(insert-between + [1 10 15 20 25]) ; => [1 11 10 25 15 35 20 45 25]
(insert-between mean []) ; => [nil] :(

Clojure : idiomatic weighted mean of vectors

I would like to compute the weighted mean of vectors in an idiomatic way.
To illustrate what I want, imagine I have this data :
data 1 = [2 1] , weight 1 = 1
data 2 = [3 4], weight 2 = 2
Then mean = [(2*1 + 3*2)/(1+2) (1*1 + 2*4)/(1+2)] = [2.67 3.0]
Here is my code :
(defn meanv
"Returns the vector that is the mean of input ones.
You can also pass weights just like apache-maths.stats/mean"
([data]
(let [n (count (first data))]
(->> (for [i (range 0 n)]
(vec (map (i-partial nth i) data)))
(mapv stats/mean))))
([data weights]
(let [n (count (first data))]
(->> (for [i (range 0 n)]
(vec (map (i-partial nth i) data)))
(mapv (i-partial stats/mean weights))))))
Then
(meanv [[2 1] [3 4]] [1 2]) = [2.67 3.0]
Few notes :
stats/means takes 1 or 2 inputs.
One input version has weights = 1 by default.
Two inputs is the weighted version.
i-partial is like partial but the fn has reversed args
Ex : ((partial / 2) 1) = 2
((i-partial / 2) 1 = 1/2
So my function works, no problem.
But in a way I would like to implement it in a more idiomatic Clojure.
I tried many combinations with things like (map (fn [&xs ... but it does not work.
Is it possible to take all nth elements of undefined number of vectors and directly apply stats/mean ? I mean a one-liner
Thanks
EDIT (birdspider answer)
(defn meanv
([data]
(->> (apply mapv vector data)
(mapv stats/mean)))
([data weights]
(->> (apply mapv vector data)
(mapv (i-partial stats/mean weights)))))
And with
(defn transpose [m]
(apply mapv vector m))
(defn meanv
([data]
(->> (transpose data)
(mapv stats/mean)))
([data weights]
(->> (transpose data)
(mapv (i-partial stats/mean weights)))))
(def mult-v (partial mapv *))
(def sum-v (partial reduce +))
(def transpose (partial apply mapv vector))
(defn meanv [data weights]
(->> data
transpose
(map (partial mult-v weights))
(map sum-v)
(map #(/ % (sum-v weights)))))
First thing you want to do is to transpose the matrix (get the firsts, seconds, thirds, etc.)
See this SO page.
; https://stackoverflow.com/a/10347404/2645347
(defn transpose [m]
(apply mapv vector m))
Then I would do it as follows, input checks are utterly absent.
(defn meanv
([data]
; no weigths default to (1 1 1 ...
(meanv data (repeat (count data) 1))))
([data weigths]
(let [wf (mapv #(partial * %) weigths) ; vector of weight mult fns
wsum (reduce + weigths)]
(map-indexed
(fn [i datum]
(/
; map over datum apply corresponding weight-fn - then sum
(apply + (map-indexed #((wf %1) %2) datum))
wsum))
(transpose data)))))
(meanv [[2 1] [3 4]] [1 2]) => (8/3 3) ; (2.6666 3.0)
Profit!

Perform multiple reductions in a single pass in Clojure

In Clojure I want to find the result of multiple reductions while only consuming the sequence once. In Java I would do something like the following:
double min = Double.MIN_VALUE;
double max = Double.MAX_VALUE;
for (Item item : items) {
double price = item.getPrice();
if (price > min) {
min = price;
}
if (price < max) {
max = price;
}
}
In Clojure I could do much the same thing by using loop and recur, but it's not very composable - I'd like to do something that lets you add in other aggregation functions as needed.
I've written the following function to do this:
(defn reduce-multi
"Given a sequence of fns and a coll, returns a vector of the result of each fn
when reduced over the coll."
[fns coll]
(let [n (count fns)
r (rest coll)
initial-v (transient (into [] (repeat n (first coll))))
fns (into [] fns)
reduction-fn
(fn [v x]
(loop [v-current v, i 0]
(let [y (nth v-current i)
f (nth fns i)
v-new (assoc! v-current i (f y x))]
(if (= i (- n 1))
v-new
(recur v-new (inc i))))))]
(persistent! (reduce reduction-fn initial-v r))))
This can be used in the following way:
(reduce-multi [max min] [4 3 6 7 0 1 8 2 5 9])
=> [9 0]
I appreciate that it's not implemented in the most idiomatic way, but the main problem is that it's about 10x as slow as doing the reductions one at at time. This might be useful for lots performing lots of reductions where the seq is doing heavy IO, but surely this could be better.
Is there something in an existing Clojure library that would do what I want? If not, where am I going wrong in my function?
that's what i would do: simply delegate this task to a core reduce function, like this:
(defn multi-reduce
([fs accs xs] (reduce (fn [accs x] (doall (map #(%1 %2 x) fs accs)))
accs xs))
([fs xs] (when (seq xs)
(multi-reduce fs (repeat (count fs) (first xs))
(rest xs)))))
in repl:
user> (multi-reduce [+ * min max] (range 1 10))
(45 362880 1 9)
user> (multi-reduce [+ * min max] [10])
(10 10 10 10)
user> (multi-reduce [+ * min max] [])
nil
user> (multi-reduce [+ * min max] [1 1 1000 0] [])
[1 1 1000 0]
user> (multi-reduce [+ * min max] [1 1 1000 0] [1])
(2 1 1 1)
user> (multi-reduce [+ * min max] [1 1 1000 0] (range 1 10))
(46 362880 1 9)
user> (multi-reduce [max min] (range 1000000))
(999999 0)
The code for reduce is fast for reducible collections. So it's worth trying to base multi-reduce on core reduce. To do so, we have to be able to construct reducing functions of the right shape. An ancillary function to do so is ...
(defn juxt-reducer [f g]
(fn [[fa ga] x] [(f fa x) (g ga x)]))
Now we can define the function you want, which combines juxt with reduce as ...
(defn juxt-reduce
([[f g] coll]
(if-let [[x & xs] (seq coll)]
(juxt-reduce (list f g) [x x] xs)
[(f) (g)]))
([[f g] init coll]
(reduce (juxt-reducer f g) init coll)))
For example,
(juxt-reduce [max min] [4 3 6 7 0 1 8 2 5 9]) ;=> [9 0]
The above follows the shape of core reduce. It can clearly be extended to cope with more than two functions. And I'd expect it to be faster than yours for reducible collections.
Here is how I would do it:
(ns clj.core
(:require [clojure.string :as str] )
(:use tupelo.core))
(def data (flatten [ (range 5 10) (range 5) ] ))
(spyx data)
(def result (reduce (fn [cum-result curr-val] ; reducing (accumulator) fn
(it-> cum-result
(update it :min-val min curr-val)
(update it :max-val max curr-val)))
{ :min-val (first data) :max-val (first data) } ; inital value
data)) ; seq to reduce
(spyx result)
(defn -main [] )
;=> data => (5 6 7 8 9 0 1 2 3 4)
;=> result => {:min-val 0, :max-val 9}
So the reducing function (fn ...) carries along a map like {:min-val xxx :max-val yyy} through each element of the sequence, updating the min & max values as required at each step.
While this does make only one pass through the data, it is doing a lot of extra work calling update twice per element. Unless your sequence is very unusual, it is probably more efficient to make two (very efficient) passes through the data like:
(def min-val (apply min data))
(def max-val (apply max data))
(spyx min-val)
(spyx max-val)
;=> min-val => 0
;=> max-val => 9

How to explain the &env example in book <Clojure Programming>

There's an example in the book (P252), it's about the &env in macro, I just don't understand how to get the result{x 1, y 2}
(defmacro spy-env []
(let [ks (keys &env)]
`(prn (zipmap '~ks [~#ks]))))
(let [x 1 y 2]
(spy-env)
(+ x y))
; {x 1, y 2}
;= 3
I tried in the REPL like this:
user=> (defmacro spy-env [] (let [ks (keys &env)] `(prn ~#(keys &env))))
#'user/spy-env
user=> (let [x 1 y 2] (spy-env))
2 1
It's wried.
Expanding the macro would be a great way for you to see how it works, but unfortunately macroexpand-1 doesn't convey the right bindings for &env. This example:
(let [x 1 y 2] (spy-env))
Actually expands out to:
(let [x 1 y 2] (prn (zipmap '(x y) [x y])))
Do you get it? Within the first sequence, x and y are not evaluated, but within the second, they are. So it zips the symbols to whatever they evaluate to. Within that let block, (zipmap '(x y) [x y]) evaluates to {x 1 y 2}.
a) If you try the code of the book it does output the right value
user=> (defmacro spy-env []
#_=> (let [ks (keys &env)]
#_=> `(prn (zipmap '~ks [~#ks]))))
#'user/spy-env
user=> (let [x 1 y 2] (spy-env))
{x 1, y 2}
nil
user=> (let [x 1 y 2]
#_=> (spy-env)
#_=> (+ x y))
{x 1, y 2}
3
b) now your code is different
initial code :
`(prn (zipmap '~ks [~#ks]))
vs
`(prn ~#(keys &env))
with actually #(keys &env) being equal to #ks

How to (elegantly) iterate two lists at once?

I want to find better looking alternative to this code:
(def x (range 1 10))
(def y '(0 4 3 5 1 2 7 3 11))
(for [i (range 0 (count y))] [(nth x i) (nth y i)])
If I already have the result of previous I can simply
(def z (for [i (range 0 (count y))] [(nth x i) (nth y i)]))
(for [[x y] z] [x y])
Can you find some better looking alternative?
Example is made to be short and easilly to read. If you modify it to do something more complicated the first example can stop being readable.
You can use map:
(map vector x y)