Segmentation fault when creating a thread - c++

I'm trying to implement a class that creates a thread, increments a value and sends it to another thread, which number is defined as (value * value) % number of threads
#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdlib>
#include <vector>
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;
volatile int counter = 0;
volatile int maxval = 0;
volatile int next = 0;
extern "C" void *func(void *p);
class Worker {
private:
pthread_t thread = 0;
int nth = 0;
int nproc = 0;
public:
Worker () {};
Worker(int _nproc, int _nth) {
nth = _nth;
nproc = _nproc;
};
void start() {
pthread_create(&thread, NULL, func, NULL); // Line 27
};
void wait() {
while (nth != next) {
pthread_cond_wait(&cv, &m);
}
};
void notify() {
pthread_cond_broadcast(&cv);
};
void run() {
while (counter != maxval) {
pthread_mutex_lock(&m);
Worker::wait();
if (counter != maxval) {
printf("%d %d\n", nth, counter);
++counter;
}
next = (counter * counter) % nproc;
Worker::notify();
pthread_mutex_unlock(&m);
}
};
void join() {
pthread_join(thread, NULL);
}
};
extern "C" void *func(void *p) {
Worker *w = reinterpret_cast<Worker*>(p);
w->run();
return NULL;
}
int main(int argc, char *argv[]) {
int nthreads = atoi(argv[1]);
maxval = atoi(argv[2]);
std::vector<Worker> workers;
for (int i = 0; i != nthreads; ++i) {
workers.push_back(Worker(nthreads, i));
}
for (int i = 0; i != workers.size(); ++i) {
workers[i].start();
}
for (int i = 0; i != workers.size(); ++i) {
workers[i].join();
}
return 0;
}
Can't check if the algorithm is correct since I get a Segmentation Error when I call pthread_create (line 27)
This is what gdb said:
#0 0x0000000000400f5a in Worker::wait (this=0x0) at ht19-4.cpp:30
#1 0x0000000000400fd5 in Worker::run (this=0x0) at ht19-4.cpp:40
#2 0x0000000000400d26 in func (p=0x0) at ht19-4.cpp:57
#3 0x00007ffff76296aa in start_thread (arg=0x7ffff6f4f700)
at pthread_create.c:333
#4 0x00007ffff735eeed in clone ()
at ../sysdeps/unix/sysv/linux/x86_64/clone.S:109
Could anyone explain what exactly happens in this function please? How do I implement this correctly?
Thanks a lot.

You're func doesn't handle NULL being passed in and the 4th argument of pthread_create is what gets sent the function in the third argument.
Change func to properly handle NULL and you should be good:
extern "C" void *func(void *p) {
if (NULL == p)
return NULL;
Worker *w = reinterpret_cast<Worker*>(p);
w->run();
return NULL;
}
Also, +1 for posting gdb output so here's some more information:
If we follow your stack trace upwards (I'm typing them in the order they happen) we see that func does its job of casting and calling run on the Worker it casted from NULL. Notice the (p=0x0) and (this=0x0):
#2 0x0000000000400d26 in func (p=0x0) at ht19-4.cpp:57
#1 0x0000000000400fd5 in Worker::run (this=0x0) at ht19-4.cpp:40
Worker::run works fine because it only accesses counter, maxval, and m before getting to Worker::wait()
#0 0x0000000000400f5a in Worker::wait (this=0x0) at ht19-4.cpp:30
In Worker::wait() you are accessing nth which is a member of the null Worker instance and you finally get your segfault.

The problem is while creating thread you are passing NULL for last argument.
pthread_create(&thread, NULL, func, NULL);
While the thread is started it calls func() with NULL value passed to it.
So inside func() p is NULL and you are trying to cast and then access that memory location. That's why you're getting segmentation fault.

Related

error: cast from ‘void*’ to ‘int’ loses precision [duplicate]

While working with Threads in C, I'm facing the warning
"warning: cast to pointer from integer of different size"
The code is as follows
#include<stdio.h>
#include<sys/types.h>
#include<stdlib.h>
#include<pthread.h>
void *print(void *id)
{
int a=10;
printf("My thread id is %ld\n",pthread_self());
printf("Thread %d is executing\n",id);
return (void *) 42;
}
int main()
{
pthread_t th[5];
int t;
int i;
int status;
void *ret;
for(i=0;i<5;i++)
{
status=pthread_create(&th[i],NULL,print,(void *)i); //Getting warning at this line
if(status)
{
printf("Error creating threads\n");
exit(0);
}
pthread_join(th[i],&ret);
printf("--->%d\n",(int *)ret);
}
pthread_exit(NULL);
}
Can anybody explain how to pass an integer to a function which receives (void * ) as a parameter?
This is a fine way to pass integers to new pthreads, if that is what you need. You just need to suppress the warning, and this will do it:
#include <stdint.h>
void *threadfunc(void *param)
{
int id = (intptr_t) param;
...
}
int i, r;
r = pthread_create(&thread, NULL, threadfunc, (void *) (intptr_t) i);
Discussion
This may offend your sensibilities, but it's very short and has no race conditions (as you'd have if you used &i). No sense in writing a few dozen lines of extra code just to get a bunch of numbered threads.
Data races
Here is a bad version with a data race:
#include <pthread.h>
#include <stdio.h>
#define N 10
void *thread_func(void *arg)
{
int *ptr = arg;
// Has *ptr changed by the time we get here? Maybe!
printf("Arg = %d\n", *ptr);
return NULL;
}
int main()
{
int i;
pthread_t threads[N];
for (i = 0; i < N; i++) {
// NO NO NO NO this is bad!
pthread_create(&threads[i], NULL, thread_func, &i);
}
for (i = 0; i < N; i++) {
pthread_join(threads[i], NULL);
}
return 0;
}
Now, what happens when I run it with the thread sanitizer?
(Also, check out how it prints "5" twice...)
==================
WARNING: ThreadSanitizer: data race (pid=20494)
Read of size 4 at 0x7ffc95a834ec by thread T1:
#0 thread_func /home/depp/test.c:9 (a.out+0x000000000a8c)
#1 <null> <null> (libtsan.so.0+0x000000023519)
Previous write of size 4 at 0x7ffc95a834ec by main thread:
#0 main /home/depp/test.c:17 (a.out+0x000000000b3a)
Location is stack of main thread.
Thread T1 (tid=20496, running) created by main thread at:
#0 pthread_create <null> (libtsan.so.0+0x0000000273d4)
#1 main /home/depp/test.c:18 (a.out+0x000000000b1c)
SUMMARY: ThreadSanitizer: data race /home/depp/test.c:9 thread_func
==================
Arg = 1
Arg = 2
Arg = 3
Arg = 4
Arg = 5
Arg = 6
Arg = 7
Arg = 8
Arg = 9
Arg = 5
ThreadSanitizer: reported 1 warnings
you can do something like this:
#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <pthread.h>
struct th {
pthread_t thread;
int id;
int ret;
};
void *print(void *id) {
int a=10;
struct th *self = (struct th *) id;
printf("My thread id is %ld\n",pthread_self());
printf("Thread %d is executing\n",self->id);
self->ret = random();
return;
}
int main(void) {
struct th th[5];
int t;
int i;
int status;
void *ret;
for(i=0;i<5;i++) {
th[i].id = i;
status=pthread_create(&th[i].thread,NULL,print,&th[i]); //Getting warning at this line
if(status) {
printf("Error creating threads\n");
exit(0);
}
}
for (i=0;i<5;i++) {
pthread_join(th[i].thread,&ret);
printf("%d--->%d\n",th[i].id,th[i].ret);
}
pthread_exit(NULL);
}
will output:
My thread id is 4496162816
My thread id is 4497870848
My thread id is 4498944000
My thread id is 4498407424
Thread 0 is executing
Thread 1 is executing
My thread id is 4499480576
Thread 3 is executing
Thread 2 is executing
0--->1804289383
Thread 4 is executing
1--->846930886
2--->1714636915
3--->1681692777
4--->1957747793
passing a unique pointer to each thread wont race, and you can get/save any kind of information in the th struct
you can pass the int value as void pointer like (void *)&n where n is integer, and in the function accept void pointer as parameter like void foo(void *n);and finally inside the function convert void pointer to int like, int num = *(int *)n;. this way you won't get any warning.
change:
status=pthread_create(&th[i],NULL,print,(void *)i);
to:
status=pthread_create(&th[i],NULL,print,(reinterpret_cast<void*>(i));
The reinterpret_cast makes the int the size of a pointer and the warning will stop. Basically its a better version of (void *)i.

Call join child pthread in main function

I have the test code:
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
pthread_t th_worker, th_worker2;
void * worker2(void *data) {
for(int i = 0; i< 1000000; i++){
printf("thread for worker2----%d\n", i);
usleep(500);
}
}
void * worker(void *data){
pthread_create(&th_worker2, NULL, worker2, data);
for(int i = 0; i< 100; i++){
printf("thread for worker-----%d\n", i);
usleep(500);
}
}
void join(pthread_t _th){
pthread_join(_th, NULL);
}
In main() function, If I call join(the_worker2):
int main() {
char* str = "hello thread";
pthread_create(&th_worker, NULL, worker, (void*) str);
/* problem in here */
join(th_worker2);
return 1;
}
--> Segment Fault error
Else, i call:
join(the_worker);
join(th_worker2);
---> OK
Why have segment fault error in above case?
Thanks for help !!!
If you posted all your code, you have a race condition.
main is synchronized with the start of worker but not worker2.
That is, main is trying to join th_worker2 before worker has had a chance to invoke pthread_create and set up th_worker2 with a valid [non-null] value.
So, th_worker2 will be invalid until the second pthread_create completes, but that's already too late for main. It has already fetched th_worker2, which has a NULL value and main will segfault.
When you add the join for th_worker, it works because it guarantees synchronization and no race condition.
To achieve this guarantee without the join, have main do:
int
main()
{
char *str = "hello thread";
pthread_create(&th_worker, NULL, worker, (void *) str);
// give worker enough time to properly start worker2
while (! th_worker2)
usleep(100);
/* problem in here */
join(th_worker2);
return 1;
}
An even better way to do this is to add an extra variable. With this, the first loop is not needed [but I've left it in]:
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
int worker_running;
pthread_t th_worker;
int worker2_running;
pthread_t th_worker2;
void *
worker2(void *data)
{
// tell main we're fully functional
worker2_running = 1;
for (int i = 0; i < 1000000; i++) {
printf("thread for worker2----%d\n", i);
usleep(500);
}
return NULL;
}
void *
worker(void *data)
{
// tell main we're fully functional
worker_running = 1;
pthread_create(&th_worker2, NULL, worker2, data);
for (int i = 0; i < 100; i++) {
printf("thread for worker-----%d\n", i);
usleep(500);
}
return NULL;
}
void
join(pthread_t _th)
{
pthread_join(_th, NULL);
}
int
main()
{
char *str = "hello thread";
pthread_create(&th_worker, NULL, worker, (void *) str);
// give worker enough time to properly start worker2
// NOTE: this not necessarily needed as loop below is better
while (! th_worker2)
usleep(100);
// give worker2 enough time to completely start
while (! worker2_running)
usleep(100);
/* problem in here (not anymore!) */
join(th_worker2);
return 1;
}

Idea Behind Recursive Mutex Lock

I'm working on a school lab and we are instructed to create a recursive mutex lock for a counting program. I've written some code (which doesn't work), but I think that this is mostly because I do not understand the real idea behind using a recursive mutex lock. Could anyone elaborate what a recursive mutex lock should do/look like?
General Note: I'm not asking for an answer, just some clarification as to what recursive mutex lock should do.
Also, if anyone is curious, here is the code required for this. The code that I am editing/implementing is the recmutex.c.
recmutex.h
#include <pthread.h>
/*
* The recursive_mutex structure.
*/
struct recursive_mutex {
pthread_cond_t cond;
pthread_mutex_t mutex; //a non-recursive pthread mutex
pthread_t owner;
unsigned int count;
unsigned int wait_count;
};
typedef struct recursive_mutex recursive_mutex_t;
/* Initialize the recursive mutex object.
*Return a non-zero integer if errors occur.
*/
int recursive_mutex_init (recursive_mutex_t *mu);
/* Destroy the recursive mutex object.
*Return a non-zero integer if errors occur.
*/
int recursive_mutex_destroy (recursive_mutex_t *mu);
/* The recursive mutex object referenced by mu shall be
locked by calling pthread_mutex_lock(). When a thread
successfully acquires a mutex for the first time,
the lock count shall be set to one and successfully return.
Every time a thread relocks this mutex, the lock count
shall be incremented by one and return success immediately.
And any other calling thread can only wait on the conditional
variable until being waked up. Return a non-zero integer if errors occur.
*/
int recursive_mutex_lock (recursive_mutex_t *mu);
/* The recursive_mutex_unlock() function shall release the
recursive mutex object referenced by mu. Each time the owner
thread unlocks the mutex, the lock count shall be decremented by one.
When the lock count reaches zero, the mutex shall become available
for other threads to acquire. If a thread attempts to unlock a
mutex that it has not locked or a mutex which is unlocked,
an error shall be returned. Return a non-zero integer if errors occur.
*/
int recursive_mutex_unlock (recursive_mutex_t *mu);
recmutex.c: contains the functions for the recursive mutex
#include <stdio.h>
#include <pthread.h>
#include <errno.h>
#include "recmutex.h"
int recursive_mutex_init (recursive_mutex_t *mu){
int err;
err = pthread_mutex_init(&mu->mutex, NULL);
if(err != 0){
perror("pthread_mutex_init");
return -1;
}else{
return 0;
}
return 0;
}
int recursive_mutex_destroy (recursive_mutex_t *mu){
int err;
err = pthread_mutex_destroy(&mu->mutex);
if(err != 0){
perror("pthread_mutex_destroy");
return -1;
}else{
return 1;
}
return 0;
}
int recursive_mutex_lock (recursive_mutex_t *mu){
if(mutex_lock_count == 0){
pthread_mutex_lock(&mu->mutex);
mu->count++;
mu->owner = pthread_self();
printf("%s", mu->owner);
return 0;
}else if(mutex_lock_count > 0){
pthread_mutex_lock(&mu->mutex);
mu->count++;
mu->owner = pthread_self();
return 0;
}else{
perror("Counter decremented incorrectly");
return -1;
}
}
int recursive_mutex_unlock (recursive_mutex_t *mu){
if(mutex_lock_count <= 0){
printf("Nothing to unlock");
return -1;
}else{
mutex_lock_count--;
pthread_mutex_unlock(&mu->mutex);
return 0;
}
}
count_recursive.cc: The counting program mentioned above. Uses the recmutex functions.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <assert.h>
#include <string.h>
#include "recmutex.h"
//argument structure for the thread
typedef struct _arg_{
int n1;
int n2;
int ntimes;
}Arg;
int count; //global counter
recursive_mutex_t mutex; //the recursive mutex
void do_inc(int n){
int ret;
if(n == 0){
return;
}else{
int c;
ret = recursive_mutex_lock(&mutex);
assert(ret == 0);
c = count;
c = c + 1;
count = c;
do_inc(n - 1);
ret = recursive_mutex_unlock(&mutex);
assert(ret == 0);
}
}
/* Counter increment function. It will increase the counter by n1 * n2 * ntimes. */
void inc(void *arg){
Arg * a = (Arg *)arg;
for(int i = 0; i < a->n1; i++){
for(int j = 0; j < a->n2; j++){
do_inc(a->ntimes);
}
}
}
int isPositiveInteger (const char * s)
{
if (s == NULL || *s == '\0' || isspace(*s))
return 0;
char * p;
int ret = strtol (s, &p, 10);
if(*p == '\0' && ret > 0)
return 1;
else
return 0;
}
int test1(char **argv){
printf("==========================Test 1===========================\n");
int ret;
//Get the arguments from the command line.
int num_threads = atoi(argv[1]); //The number of threads to be created.
int n1 = atoi(argv[2]); //The outer loop count of the inc function.
int n2 = atoi(argv[3]); //The inner loop count of the inc function.
int ntimes = atoi(argv[4]); //The number of increments to be performed in the do_inc function.
pthread_t *th_pool = new pthread_t[num_threads];
pthread_attr_t attr;
pthread_attr_init( &attr );
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
ret = recursive_mutex_init(&mutex);
assert(ret == 0);
printf("Start Test. Final count should be %d\n", num_threads * n1 * n2 * ntimes );
// Create threads
for(int i = 0; i < num_threads; i++){
Arg *arg = (Arg *)malloc(sizeof(Arg));
arg->n1 = n1;
arg->n2 = n2;
arg->ntimes = ntimes;
ret = pthread_create(&(th_pool[i]), &attr, (void * (*)(void *)) inc, (void *)arg);
assert(ret == 0);
}
// Wait until threads are done
for(int i = 0; i < num_threads; i++){
ret = pthread_join(th_pool[i], NULL);
assert(ret == 0);
}
if ( count != num_threads * n1 * n2 * ntimes) {
printf("\n****** Error. Final count is %d\n", count );
printf("****** It should be %d\n", num_threads * n1 * n2 * ntimes );
}
else {
printf("\n>>>>>> O.K. Final count is %d\n", count );
}
ret = recursive_mutex_destroy(&mutex);
assert(ret == 0);
delete [] th_pool;
return 0;
}
int foo(){
int ret;
printf("Function foo\n");
ret = recursive_mutex_unlock(&mutex);
assert(ret != 0);
return ret;
}
//test a thread call unlock without actually holding it.
int test2(){
int ret;
printf("\n==========================Test 2==========================\n");
pthread_t th;
pthread_attr_t attr;
pthread_attr_init( &attr );
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
ret = recursive_mutex_init(&mutex);
ret = pthread_create(&th, &attr, (void * (*)(void *))foo, NULL);
printf("Waiting for thread to finish\n");
ret = pthread_join(th, NULL);
assert(ret == 0);
return 0;
}
int main( int argc, char ** argv )
{
int ret;
count = 0;
if( argc != 5 ) {
printf("You must enter 4 arguments. \nUsage: ./count_recursive num_threads n1 n2 ntimes\n");
return -1;
}
if(isPositiveInteger(argv[1]) != 1 || isPositiveInteger(argv[2]) != 1 || isPositiveInteger(argv[3]) != 1 || isPositiveInteger(argv[4]) != 1 ){
printf("All the 4 arguments must be positive integers\n");
return -1;
}
test1(argv);
test2();
return 0;
}
The idea of a recursive mutex is that it can be successfully relocked by the thread that is currently holding the lock. For example:
if I had some mutexes like this (this is pseudocode):
mutex l;
recursive_mutex r;
In a single thread if I did this:
l.lock();
l.lock(); // this would hang the thread.
but
r.lock();
r.lock();
r.lock(); // this would all pass though with no issue.
In implimenting a recursive mutex you need to check what threadId has locked it, if it was locked, and if it matches the current thread id, return success.
The point of a recursive mutex, is to let you write this:
recursive_mutext_t rmutex;
void foo(...) {
recursive_lock_lock(&rmutex);
...
recursive_lock_unlock(&rmutex);
}
void bar(...) {
recursive_lock_lock(&rmutex);
...
foo(...);
...
recursive_lock_unlock(&rmutex);
}
void baz(...) {
...
foo(...);
...
}
The function foo() needs the mutex to be locked, but you want to be able to call it either from bar() where the same mutex is already locked, or from baz() where the mutex is not locked. If you used an ordinary mutex(), the thread would self-deadlock when foo() is called from bar() because the ordinary mutex lock() function will not return until the mutex is unlocked, and there's no other thread that will unlock it.
Your recursive_mutex_lock() needs to distinguish these cases; (1) The mutex is not locked, (2) the mutex is already locked, but the calling thread is the owner, and (3) the mutex is already locked by some other thread.
Case (3) needs to block the calling thread until the owner completely unlocks the mutex. At that point, it then converts to case (1). Here's a hint: Handle case (3) with a condition variable. That is to say, when the calling thread is not the owner, the calling thread should do a pthread_condition_wait(...) call.

C++ Using semaphores instead of busy waiting

I am attempting to learn about semaphores and multi-threading. The example I am working with creates 1 to t threads with each thread pointing to the next and the last thread pointing to the first thread. This program allows each thread to sequentially take a turn until all threads have taken n turns. That is when the program ends. The only problem is in the tFunc function, I am busy waiting until it is a specific thread's turn. I want to know how to use semaphores in order to make all the threads go to sleep and waking up a thread only when it is its turn to execute to improve efficiency.
int turn = 1;
int counter = 0;
int t, n;
struct tData {
int me;
int next;
};
void *tFunc(void *arg) {
struct tData *data;
data = (struct tData *) arg;
for (int i = 0; i < n; i++) {
while (turn != data->me) {
}
counter++;
turn = data->next;
}
}
int main (int argc, char *argv[]) {
t = atoi(argv[1]);
n = atoi(argv[2]);
struct tData td[t];
pthread_t threads[t];
int rc;
for (int i = 1; i <= t; i++) {
if (i == t) {
td[i].me = i;
td[i].next = 1;
}
else {
td[i].me = i;
td[i].next = i + 1;
}
rc = pthread_create(&threads[i], NULL, tFunc, (void *)&td[i]);
if (rc) {
cout << "Error: Unable to create thread, " << rc << endl;
exit(-1);
}
}
for (int i = 1; i <= t; i++) {
pthread_join(threads[i], NULL);
}
pthread_exit(NULL);
}
Uses mutexes and condition variables. Here's a working example:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
int turn = 1;
int counter = 0;
int t, n;
struct tData {
int me;
int next;
};
pthread_mutex_t mutex;
pthread_cond_t cond;
void *tFunc(void *arg)
{
struct tData *data;
data = (struct tData *) arg;
pthread_mutex_lock(&mutex);
for (int i = 0; i < n; i++)
{
while (turn != data->me)
pthread_cond_wait(&cond, &mutex);
counter++;
turn = data->next;
printf("%d goes (turn %d of %d), %d next\n", data->me, i+1, n, turn);
pthread_cond_broadcast(&cond);
}
pthread_mutex_unlock(&mutex);
}
int main (int argc, char *argv[]) {
t = atoi(argv[1]);
n = atoi(argv[2]);
struct tData td[t + 1];
pthread_t threads[t + 1];
int rc;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
for (int i = 1; i <= t; i++)
{
td[i].me = i;
if (i == t)
td[i].next = 1;
else
td[i].next = i + 1;
rc = pthread_create(&threads[i], NULL, tFunc, (void *)&td[i]);
if (rc)
{
printf("Error: Unable to create thread: %d\n", rc);
exit(-1);
}
}
void *ret;
for (int i = 1; i <= t; i++)
pthread_join(threads[i], &ret);
}
Use N+1 semaphores. On startup, thread i waits on semaphore i. When woken up it "takes a turnand signals semaphorei + 1`.
The main thread spawns the N, threads, signals semaphore 0 and waits on semaphore N.
Pseudo code:
sem s[N+1];
thread_proc (i):
repeat N:
wait (s [i])
do_work ()
signal (s [i+1])
main():
for i in 0 .. N:
spawn (thread_proc, i)
repeat N:
signal (s [0]);
wait (s [N]);
Have one semaphore per thread. Have each thread wait on its semaphore, retrying if sem_wait returns EINTR. Once it's done with its work, have it post to the next thread's semaphore. This avoids the "thundering herd" behaviour of David's solution by waking only one thread at a time.
Also notice that, since your semaphores will never have a value larger than one, you can use a pthread_mutex_t for this.

Thread syncronization to print 5 random numbers

I'm asked to write a program that will have 2 threads and print 5 random integers such that the first thread will generate a number, the second will print it. Then the first will generate the 2nd number, the second thread will print it... etc. using a mutex.
My code now execute it for one cycle. How can I extend it to make threads excute the methods 5 times?
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
void* generate (void*);
void* print (void*);
pthread_mutex_t m;
int number = 5;
int genNumber;
int main()
{
int i;
srandom(getpid());
pthread_t th[2];
pthread_mutex_init(&m,NULL);
pthread_create(&th[0],NULL,generate,NULL);
pthread_create(&th[1],NULL,print, NULL);
for (i = 0; i < 2; i++)
pthread_join(th[i], NULL);
pthread_mutex_destroy(&m);
return 0;
}
void* generate(void* arg)
{
pthread_mutex_lock(&m);
genNumber = random() % 9;
printf("Generated #1 \n");
pthread_mutex_unlock(&m);
}
void* print(void* arg)
{
pthread_mutex_lock(&m);
printf("The number is %d " , genNumber);
pthread_mutex_unlock(&m);
pthread_exit(NULL);
}
Use condition variables to synchronize the two threads. When a thread has completed its work, it signals to the other thread to wake up, and then it goes to sleep to wait for more work. So something like this:
// Pseudocode
pthread_cond_t c1, c2;
pthread_mutex_t mutex;
// Thread 1 (producer):
for(int i = 0; i < 5; i++)
{
lock(mutex);
genNumber = random() % 9;
signal(c2);
wait(c1, mutex);
unlock(mutex);
}
// Thread 2 (consumer):
for(int i = 0; i < 5; i++)
{
lock(mutex);
wait(c2, mutex);
print("The number is %d\n", genNumber);
signal(c1);
unlock(mutex);
}
#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>
#include<unistd.h>
static int *generate(void *);
static int *print(void *);
pthread_mutex_t m;
pthread_cond_t con;
int munmber=10;
int gennumber;
int main() {
srandom(getpid());
pthread_t th1,th2;
pthread_mutex_init(&m,NULL);
pthread_create(&th2,NULL,print,NULL);
sleep(1);
pthread_create(&th1,NULL,generate,NULL);
pthread_join(th1,NULL);
pthread_join(th2,NULL);
pthread_mutex_destroy(&m);
}
static int *generate(void *arg) {
int i;
while(i<5) {
pthread_mutex_lock(&m);
gennumber=random()%8;
printf("NUMMBER GENERATED.... \n");
pthread_cond_signal(&cond);
i++;
pthread_mutex_unlock(&m);
sleep(2);
if(i==5)
exit(1);
}
return 0;
}
static int *print(void *arg) {
int i;
while('a') {
pthread_cond_wait(&cond,&m);
printf("GENERATED NUMBER is %d\n",gennumber);
i++;
pthread_mutex_unlock(&m);
}
return 0;
}
A mutex is not sufficient here. You will need a condition variable to make sure that the numbers are printed in the correct order. Some pseudocode:
//producer thread:
for(int i = 0; i < 5; i++)
{
number = random();
signal the other thread with pthread_cond_signal
wait for signal from the consumer
}
// consumer thread
for(int i = 0; i < 5; i++)
{
wait for signal with pthread_cond_wait
print number
signal the producer to produce another number
}
You can do it like this:
int* generated = null;
void generate() {
int i = 0;
while (i<5) {
pthread_mutex_lock(&m);
if (generated == null) {
generated = malloc(int);
*generated = random() % 9;
printf("Generated #1 \n");
++i;
}
pthread_mutex_unlock(&m);
}
pthread_exit(NULL);
}
void print() {
int i = 0;
while (i<5) {
pthread_mutex_lock(&m);
if (generated != null) {
printf("The number is %d " , generated);
free(generated);
generated=null;
}
pthread_mutex_unlock(&m);
}
pthread_exit(NULL);
}
Actually I did write it without a compiler so there can be some errors but the concept should work.