DataConverstionWarning with GridsearchCV in Sklearn - python-2.7

I'm getting the following warning repeatedly when using GridsearchCV in Sklearn
"DataConversionWarning: Copying input dataframe for slicing."
I tried running some of the models separately outside of Gridsearch and didn't get any warnings. It also didn't prevent Gridsearch from finding a model.
I have 2 Questions:
1) What does this error mean?
2) What are the implications for my output, if any?
The relevant parts of the code are below:
df = pd.read_csv(os.path.join(filepath, "Modeling_Set.csv")) #loads main data
keep_vars = pd.read_csv(os.path.join(filepath, "keep_vars.csv")) #loads a list of variables to keep from a CSV list
model_vars = keep_vars[keep_vars['keep']==1]['name'] #creates a list of vars to keep
modeling_df = df[model_vars] #creates the df with only keep vars
model_feature_vars = model_vars[:-1]
#Splits test and train data
X_train, X_test, y_train, y_test = train_test_split(modeling_df[model_feature_vars], modeling_df['Segment'], test_size=0.30, random_state=42)
#sets up models
#Range of parameters for gridsearch with decision trees
max_depth = range(2,20,2)
min_samples_split = range(2,10,2)
features = range(2, len(X_train.columns))
#set up for decision trees with gridsearch
parametersDT ={'feature_selection__k':features,
'feature_selection__score_func':(chi2, f_classif),
'classification__criterion':('gini','entropy'),
'classification__max_depth':max_depth,
'classification__min_samples_split':min_samples_split}
DT_with_K_Best = Pipeline([
('feature_selection', SelectKBest()),
('classification', DecisionTreeClassifier())
])
clf_DT = GridSearchCV(DT_with_K_Best, parametersDT, cv=10, verbose=2, scoring='f1_weighted', n_jobs = -2)
clf_DT.fit(X_train,y_train)

As far as I can tell it only means that the DataFrame you're using is copied before being fed to the model.
This shouldn't affect the training results. It's only an efficiency problem, unrelated to the performance of the classifier.

Related

Input 0 of layer "sequential" is incompatible with the layer: expected shape....... found shape=(None, 143)

I am a beginner in machine learning and I am trying to train a model with nltk and tensorflow. But I get the following error when I run my program. I understand the problem. it seems that the shape of my list does not pass but I do not know why and I do not find any relief. I specify that I use a list of lists with different sizes. Need help please I need to understand, solve and move forward
code and error:
I am trying to train a model with nltk and tensorflow. But it seems that the shape of my list does not pass but I do not know why and I do not find any relief. I specify that I use a list of lists with different sizes.
github code:
https://github.com/maeltoukap/whatsapp-chat-bot
First of all, you are missing two reshape steps. You need to add the lines
train_x = np.expand_dims(train_x, axis=1)
train_y = np.expand_dims(train_y, axis=1)
after you define train_x and train_y (so after line 67 in your picture). Your input shape is then the shape of your first training example, so change input_shape: train_x[0] to input_shape: train_x[0].shape. Also change the number of neurons in your last dense layer. Currently you have in your last layer Dense(len(train_y[0]).... You need to change that to Dense(30, ...). Then you should be good.
The complete code would look like this:
random.shuffle(training)
training = np.array(training, dtype=object)
train_x = list(training[:, 0])
train_y = list(training[:, 1])
train_x = np.expand_dims(train_x, axis=1)
train_y = np.expand_dims(train_y, axis=1)
print(len(train_x))
model = Sequential()
# model.add(Dense(128, input_shape=113, activation='relu'))
model.add(Dense(128, input_shape=train_x[0].shape, activation='relu'))
# model.add(Dense(128, input_shape=(len(train_x[0])), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(54, activation='relu'))
model.add(Dropout(0.5))
# model.add(Dense(113, activation='softmax'))
model.add(Dense(30, activation='softmax'))
sgd = SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
hist = model.fit(train_x, train_y, epochs=200, batch_size=5, verbose=1)

XGboost Google-AI-Model expecting float values instead of using Categorical values and converting them

I'm trying to run a simple XGBoost Prediction based on Google Cloud using this simple example https://cloud.google.com/ml-engine/docs/scikit/getting-predictions-xgboost#get_online_predictions
The model is building fine, but when I try to run a prediction with a sample input JSON it fails with error "Could not initialize DMatrix from inputs: could not convert string to float:" as shown in the screen below. I understand this is happening because the test-input has strings, I was hoping the Google machine learning model should have information to convert the categorical values to floats. I cannot expect my user to submit-online-prediction-request with float values.
Based on the tutorial it should work without converting the categorical values to floats. Please advise, I have attached the GIF with more details. Thanks
import json
import numpy as np
import os
import pandas as pd
import pickle
import xgboost as xgb
from sklearn.preprocessing import LabelEncoder
# these are the column labels from the census data files
COLUMNS = (
'age',
'workclass',
'fnlwgt',
'education',
'education-num',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'capital-gain',
'capital-loss',
'hours-per-week',
'native-country',
'income-level'
)
# categorical columns contain data that need to be turned into numerical
# values before being used by XGBoost
CATEGORICAL_COLUMNS = (
'workclass',
'education',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'native-country'
)
# load training set
with open('./census_data/adult.data', 'r') as train_data:
raw_training_data = pd.read_csv(train_data, header=None, names=COLUMNS)
# remove column we are trying to predict ('income-level') from features list
train_features = raw_training_data.drop('income-level', axis=1)
# create training labels list
train_labels = (raw_training_data['income-level'] == ' >50K')
# load test set
with open('./census_data/adult.test', 'r') as test_data:
raw_testing_data = pd.read_csv(test_data, names=COLUMNS, skiprows=1)
# remove column we are trying to predict ('income-level') from features list
test_features = raw_testing_data.drop('income-level', axis=1)
# create training labels list
test_labels = (raw_testing_data['income-level'] == ' >50K.')
# convert data in categorical columns to numerical values
encoders = {col:LabelEncoder() for col in CATEGORICAL_COLUMNS}
for col in CATEGORICAL_COLUMNS:
train_features[col] = encoders[col].fit_transform(train_features[col])
for col in CATEGORICAL_COLUMNS:
test_features[col] = encoders[col].fit_transform(test_features[col])
# load data into DMatrix object
dtrain = xgb.DMatrix(train_features, train_labels)
dtest = xgb.DMatrix(test_features)
# train XGBoost model
bst = xgb.train({}, dtrain, 20)
bst.save_model('./model.bst')
Here is a fix. Put the input shown in the Google documentation in a file input.json, then run this. The output is input_numerical.json and prediction will succeed if you use that in place of input.json.
This code is just preprocessing categorical columns to numerical forms using the same procedure as was done with training and test data.
import json
import pandas as pd
from sklearn.preprocessing import LabelEncoder
COLUMNS = (
"age",
"workclass",
"fnlwgt",
"education",
"education-num",
"marital-status",
"occupation",
"relationship",
"race",
"sex",
"capital-gain",
"capital-loss",
"hours-per-week",
"native-country",
"income-level",
)
# categorical columns contain data that need to be turned into numerical
# values before being used by XGBoost
CATEGORICAL_COLUMNS = (
"workclass",
"education",
"marital-status",
"occupation",
"relationship",
"race",
"sex",
"native-country",
)
with open("./input.json", "r") as json_lines:
rows = [json.loads(line) for line in json_lines]
prediction_features = pd.DataFrame(rows, columns=(COLUMNS[:-1]))
encoders = {col: LabelEncoder() for col in CATEGORICAL_COLUMNS}
for col in CATEGORICAL_COLUMNS:
prediction_features[col] = encoders[col].fit_transform(prediction_features[col])
with open("input_numerical.json", "w") as input_numerical:
for index, row in prediction_features.iterrows():
input_numerical.write(row.to_json(orient="values") + "\n")
I created this Google Issues Tracker ticket as the Google documentation is missing this important step.
You can use pandas to convert categorical strings into codes for model inputs. For prediction input you can define a dictionary for each category with corresponding category values and codes. For example, for workclass:
df['workclass_cat'] = df['workclass'].astype('category')
df['workclass_cat'] = df['workclass_cat'].cat.codes
workclass_dict = dict(zip(list(df['workclass'].values), list(df['workclass_cat'].values)))
If a prediction input is 'somestring' you can access its code as follows:
category_input = workclass_dict['somestring']
XGBoost models take floats as input. In your training script you converted the categorical variables into numbers. The same transformation needs to be done when submitting a prediction.

How to transform new data using sklearn.pipeline

I have created a pipeline with TfIdfVectorizer transformer and OnevsRestClassifier estimator and trained it on training data as follows
# Split data using train_test_split
print "Split data into train and test sets"
x_train, x_test, y_train, y_test = train_test_split(
data_x, data_y, test_size=0.33)
# transform matrix of plots into lists to pass to a TfidfVectorizer
train_x = [x[0].strip() for x in x_train.tolist()]
test_x = [x[0].strip() for x in x_test.tolist()]
# Pipeline fit and transform
print "Learn the model using train data"
model = text_clf.fit(train_x, y_train)
# Predict the test data
print "Predict the recipients on test data"
predictions = model.predict(test_x)
Now, I want to use the trained model to predict classes for new unlabeled data.
I tried this and got an error
# Read text from input
text = raw_input()
print "Input : ", text
new_data = text_clf.transform([text])
predict = model.predict(new_data)
This is the error. What Am I doing wrong?
AttributeError: 'OneVsRestClassifier' object has no attribute 'transform'
If text_clf and model are a pipeline as you have suggested, then no need to call transform and then predict. Only call
predictions = model.predict([text])
The pipeline will internally automatically transform the data into usable format (using transform() on intermediate transformers).
When you explicitly call model.transform(), the pipeline assumes that all the estimators inside the pipeline are having a transform() which is not the case here.

Loading lightgbm model and using predict with parallel for loop freezes (Python)

I have the need to use my model to do predictions in batches and in parallel in python. If I load the model and create the data frames in a regular for loop and use the predict function it works with no issues. If I create disjoint data frames in parallel using multiprocessing in python and then use the predict function the for loop freezes indefinitely. Why does the behavior occur?
Here is a snippet of my code:
with open('models/model_test.pkl', 'rb') as fin:
pkl_bst = pickle.load(fin)
def predict_generator(X):
df = X
print(df.head())
df = (df.groupby(['user_id']).recommender_items.apply(flat_map)
.reset_index().drop('level_1', axis=1))
df.columns = ['user_id', 'product_id']
print('Merge Data')
user_lookup = pd.read_csv('data/user_lookup.csv')
product_lookup = pd.read_csv('data/product_lookup.csv')
product_map = dict(zip(product_lookup.product_id, product_lookup.name))
print(user_lookup.head())
df = pd.merge(df, user_lookup, on=['user_id'])
df = pd.merge(df, product_lookup, on=['product_id'])
df = df.sort_values(['user_id', 'product_id'])
users = df.user_id.values
items = df.product_id.values
df.drop(['user_id', 'product_id'], axis=1, inplace=True)
print('Prediction Step')
prediction = pkl_bst.predict(df, num_iteration=pkl_bst.best_iteration)
print('Prediction Complete')
validation = pd.DataFrame(zip(users, items, prediction),
columns=['user', 'item', 'prediction'])
validation['name'] = (validation.item
.apply(lambda x: get_mapping(x, product_map)))
validation = pd.DataFrame(zip(validation.user,
zip(validation.name,
validation.prediction)),
columns=['user', 'prediction'])
print(validation.head())
def get_items(x):
sorted_list = sorted(list(x), key=lambda i: i[1], reverse=True)[:20]
sorted_list = random.sample(sorted_list, 10)
return [k for k, _ in sorted_list]
relevance = validation.groupby('user').prediction.apply(get_items)
return relevance.reset_index()
This works but is very slow:
results = []
for d in df_list_sub:
r = predict_generator(d)
results.append(r)
This breaks:
from multiprocessing import Pool
import tqdm
pool = Pool(processes=8)
results = []
for x in tqdm.tqdm(pool.imap_unordered(predict_generator, df_list_sub), total=len(df_list_sub)):
results.append(x)
pass
pool.close()
pool.join()
I would be very thankful if someone could help me.
Stumbled onto this myself as well. This is because LightGBM only allows to access the predict function from a single process. The developers explicitly added this logic because it doesn't make sense to call the predict function from multiple processes, as the prediction function already makes use of all CPU's available. Next to that, allowing for multiprocess predicting would probably result in a worse performance. More information about this can be found in this GitHub issue.

Understanding Deep Learning model accuracy

I need help in understanding the accuracy and dataset output format for Deep Learning model.
I did some training for deep learning based on this site : https://machinelearningmastery.com/deep-learning-with-python2/
I did the example for pima-indian-diabetes dataset, and iris flower dataset. I train my computer for pima-indian-diabetes dataset using script from this : http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
Then I train my computer for iris-flower dataset using below script.
# import package
import numpy
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score, KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from keras.callbacks import ModelCheckpoint
# fix random seed for reproductibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataframe = read_csv("iris_2.csv", header=None)
dataset = dataframe.values
X = dataset[:,0:4].astype(float)
Y = dataset[:,4]
# encode class value as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
### one-hot encoder ###
dummy_y = np_utils.to_categorical(encoded_Y)
# define base model
def baseline_model():
# create model
model = Sequential()
model.add(Dense(4, input_dim=4, init='normal', activation='relu'))
model.add(Dense(3, init='normal', activation='sigmoid'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model_json = model.to_json()
with open("iris.json", "w") as json_file:
json_file.write(model_json)
model.save_weights('iris.h5')
return model
estimator = KerasClassifier(build_fn=baseline_model, nb_epoch=1000, batch_size=6, verbose=0)
kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
Everything works fine until I decided to try on other dataset from this link : https://archive.ics.uci.edu/ml/datasets/Glass+Identification
At first I train this new dataset using the pime-indian-diabetes dataset script's example and change the value for X and Y variable to this
dataset = numpy.loadtxt("glass.csv", delimiter=",")
X = dataset[:,0:10]
Y = dataset[:,10]
and also the value for the neuron layer to this
model = Sequential()
model.add(Dense(10, input_dim=10, init='uniform', activation='relu'))
model.add(Dense(10, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
the result produce accuracy = 32.71%
Then I changed the output column of this dataset which is originally in integer (1~7) to string (a~g) and use the example's script for the iris-flower dataset by doing some modification to it
import numpy
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
seed = 7
numpy.random.seed(seed)
dataframe = read_csv("glass.csv", header=None)
dataset = dataframe.values
X = dataset[:,0:10].astype(float)
Y = dataset[:,10]
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
def create_baseline():
model = Sequential()
model.add(Dense(10, input_dim=10, init='normal', activation='relu'))
model.add(Dense(1, init='normal', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model_json = model.to_json()
with open("glass.json", "w") as json_file:
json_file.write(model_json)
model.save_weights('glass.h5')
return model
estimator = KerasClassifier(build_fn=create_baseline, nb_epoch=1000, batch_size=10, verbose=0)
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, encoded_Y, cv=kfold)
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
I did not use 'dummy_y' variable as refer to this tutorial : http://machinelearningmastery.com/binary-classification-tutorial-with-the-keras-deep-learning-library/
I check that the dataset using alphabet as the output and thinking that maybe I can reuse that script to train the new glass dataset that I modified.
This time the results become like this
Baseline : 68.42% (3.03%)
From the article, that 68% and 3% means the mean and standard deviation of model accuracy.
My 1st question is when do I use integer or alphabet as the output column? and is this kind of accuracy result common when we tempered with the dataset like changing the output from integer to string/alphabet?
My 2nd question is how do I know how many neuron I have to put for each layer? Is it related to what backend I use when compiling the model(Tensorflow or Theano)?
Thank you in advance.
First question
It doesn't matter, as you can see here:
Y = range(10)
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
print encoded_Y
Y = ['a', 'b', 'c', 'd', 'e', 'f','g','h','i','j']
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
print encoded_Y
results:
[0 1 2 3 4 5 6 7 8 9]
[0 1 2 3 4 5 6 7 8 9]
Which means that your classifier sees exactly the same labels.
Second question
There is no absolutely correct answer for this question, but for sure it does not depend on your backend.
You should try and experiment with different number of neurons, number of layers, types of layers and all other network parameters in order to understand what is the best architecture to your problem.
With experience you will develop both a good intuition as for what parameters will be better for which type of problems as well as a good method for the experimentation.
The best rule of thumb (assuming you have the dataset required to sustain such a strategy) I've heard is "Make your network as large as you can until it overfit, add regularization until it does not overfit - repeat".
Per parts. First, if your output includes values ​​of [0, 5] it is
impossible that using the sigmoid activation you can obtain that.
The sigmoid function has a range of [0, 1]. You could use an
activation = linear (without activation). But I think it's a bad approach because your problem is not to estimate a continuous value.
Second, the question you should ask yourself is not so much the type
of data you are using (in the sense of how you store the
information). Is it a string? Is it an int? Is it a float? It does
not matter, but you have to ask what kind of problem you are trying
to solve.
In this case, the problem should not be treated as a regression
(estimate a continuous value). Because your output are categorical,
numbers but categorical. Really you want to classifying between:
Type of glass: (class attribute).
When do a classification problem the following configuration is
"normally" used:
The class is encoded by one-hot encoding. It is nothing more than a vector of 0's and a single one in the corresponding class.
For instance: class 3 (0 count) and have 6 classes -> [0, 0, 0, 1, 0, 0] (as many zeros as classes you have).
As you see now, we dont have a single output, your model must be as outputs as your Y (6 classes). That way the last layer should
have as many neurons as classes. Dense (classes, ...).
You are also interested in the fact that the output is the probability of belonging to each class, that is: p (y = class_0),
... p (y_class_n). For this, the softmax activation layer is used,
which is to ensure that the sum of all the probabilities is 1.
You have to change the loss for the categorical_crossentropy so that it is able to work together with the softmax. And use the metric categorical_accuracy.
seed = 7
numpy.random.seed(seed)
dataframe = read_csv("glass.csv", header=None)
dataset = dataframe.values
X = dataset[:,0:10].astype(float)
Y = dataset[:,10]
encoder = LabelEncoder()
encoder.fit(Y)
from keras.utils import to_categorical
encoded_Y = to_categorical(encoder.transform(Y))
def create_baseline():
model = Sequential()
model.add(Dense(10, input_dim=10, init='normal', activation='relu'))
model.add(Dense(encoded_Y.shape[1], init='normal', activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy'])
model_json = model.to_json()
with open("glass.json", "w") as json_file:
json_file.write(model_json)
model.save_weights('glass.h5')
return model
model = create_baseline()
model.fit(X, encoded_Y, epochs=1000, batch_size=100)
The number of neurons does not depend on the backend you use.
But if it is true that you will never have the same results. That's
because there are enough stochastic processes within a network:
initialization, dropout (if you use), batch order, etc.
What is known is that expanding the number of neurons per dense
makes the model more complex and therefore has more potential to
represent your problem but is more difficult to learn and more
expensive both in time and in calculations. That way you always have
to look for a balance.
At the moment there is no clear evidence that it is better:
expand the number of neurons per layer.
add more layers.
There are models that use one architecture and others the other.
Using this architecture you get the following result:
Epoch 1000/1000
214/214 [==============================] - 0s 17us/step - loss: 0.0777 - categorical_accuracy: 0.9953
Using this architecture you get the following result: