CMake 3.x + CUDA - compilation busted - build

I've written the following groundbreaking GPU-powered application:
int main() { return 0; }
and I'm trying to build it using CMake. Here's my CMakeLists.txt file:
cmake_minimum_required(VERSION 2.8)
set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} " -std=c++11" )
find_package(CUDA QUIET REQUIRED)
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} " -std=c++11")
cuda_add_executable(a a.cu)
With this file, and for some reason, the compilation fails; it looks like (although I'm not sure) the reason is that CMake is having NVCC use the CUDA include directory twice. The result:
/home/joeuser/opt/cuda/bin/nvcc -M -D__CUDACC__ /home/joeuser/src/kt3/a.cu -o /home/joeuser/src/kt3/CMakeFiles/a.dir//a_generated_a.cu.o.NVCC-depend -ccbin /usr/bin/ccache -m64 --std c++11 -Xcompiler ,\"-g\" -std=c++11 -DNVCC -I/home/joeuser/opt/cuda/include -I/home/joeuser/opt/cuda/include
nvcc fatal : redefinition of argument 'std'
CMake Error at a_generated_a.cu.o.cmake:207 (message):
Error generating
/home/joeuser/src/kt3/CMakeFiles/a.dir//./a_generated_a.cu.o
You might be asking why my MWE is not more terse. Why do I need those option-setting lines above if I don't use C++11 anyway? Well, if I remove them, I still get the double-include, but have an earlier failure involving ccache about which I will probably ask another question.
So is the problem actually the double-include, or is it something else? And what should I do?
Additional information:
I don't have root on this machine.
CMake version: 3.3.2 .
Distribution: Fedora 22 (sorry, I can't help it; but I also seem to be getting this on Debian Stretch as well).
CUDA install location: $HOME/opt/cuda , and its binary directory is in $PATH.
On another system, with a different configuration and distro (Fedora 20, CUDA 7.5 but in another local dir, possibly other differences) I do not get this behavior.

I think the problem is that the nvcc flags are propagated to your c/c++ compiler, so some compiler arguments are effectively passed twice. Try using SET(CUDA_PROPAGATE_HOST_FLAGS OFF)

Related

Using CMake and Clang++ with C++20 Modules support [duplicate]

Clang and MSVC already supports Modules TS from unfinished C++20 standard.
Can I build my modules based project with CMake or other build system and how?
I tried build2, it supports modules and it works very well, but i have a question about it's dependency management (UPD: question is closed).
CMake currently does not support C++20 modules.
See also the relevant issue in the CMake issue tracker. Note that supporting modules requires far more support from the build system than inserting a new compiler option. It fundamentally changes how dependencies between source files have to be handled during the build: In a pre-modules world all cpp source files can be built independently in any order. With modules that is no longer true, which has implications not only for CMake itself, but also for the downstream build system.
Take a look at the CMake Fortran modules paper for the gory details. From a build system's point of view, Fortran's modules behave very similar to the C++20 modules.
Update: CMake 3.20 introduces experimental support for Modules with the Ninja Generator (and only for Ninja). Details can be found in the respective pull request. At this stage, this feature is still highly experimental and not intended for production use. If you intend to play around with this anyway, you really should be reading both the Fortran modules paper and the dependency format paper to understand what you're getting into.
This works on Linux Manjaro (same as Arch), but should work on any Unix OS. Of course, you need to build with new clang (tested with clang-10).
helloworld.cpp:
export module helloworld;
import <cstdio>;
export void hello() { puts("Hello world!"); }
main.cpp:
import helloworld; // import declaration
int main() {
hello();
}
CMakeLists.txt:
cmake_minimum_required(VERSION 3.16)
project(main)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(PREBUILT_MODULE_PATH ${CMAKE_BINARY_DIR}/modules)
function(add_module name)
file(MAKE_DIRECTORY ${PREBUILT_MODULE_PATH})
add_custom_target(${name}.pcm
COMMAND
${CMAKE_CXX_COMPILER}
-std=c++20
-stdlib=libc++
-fmodules
-c
${CMAKE_CURRENT_SOURCE_DIR}/${ARGN}
-Xclang -emit-module-interface
-o ${PREBUILT_MODULE_PATH}/${name}.pcm
)
endfunction()
add_compile_options(-fmodules)
add_compile_options(-stdlib=libc++)
add_compile_options(-fbuiltin-module-map)
add_compile_options(-fimplicit-module-maps)
add_compile_options(-fprebuilt-module-path=${PREBUILT_MODULE_PATH})
add_module(helloworld helloworld.cpp)
add_executable(main
main.cpp
helloworld.cpp
)
add_dependencies(main helloworld.pcm)
Assuming that you're using gcc 11 with a Makefile generator, the following code should work even without CMake support for C++20:
cmake_minimum_required(VERSION 3.19) # Lower versions should also be supported
project(cpp20-modules)
# Add target to build iostream module
add_custom_target(std_modules ALL
COMMAND ${CMAKE_COMMAND} -E echo "Building standard library modules"
COMMAND g++ -fmodules-ts -std=c++20 -c -x c++-system-header iostream
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
# Function to set up modules in GCC
function (prepare_for_module TGT)
target_compile_options(${TGT} PUBLIC -fmodules-ts)
set_property(TARGET ${TGT} PROPERTY CXX_STANDARD 20)
set_property(TARGET ${TGT} PROPERTY CXX_EXTENSIONS OFF)
add_dependencies(${TGT} std_modules)
endfunction()
# Program name and sources
set (TARGET prog)
set (SOURCES main.cpp)
set (MODULES mymod.cpp)
# Setup program modules object library
set (MODULE_TARGET prog-modules)
add_library(${MODULE_TARGET} OBJECT ${MODULES})
prepare_for_module(${MODULE_TARGET})
# Setup executable
add_executable(${TARGET} ${SOURCES})
prepare_for_module(${TARGET})
# Add modules to application using object library
target_link_libraries(${TARGET} PRIVATE ${MODULE_TARGET})
Some explanation:
A custom target is added to build the standard library modules, in case you want to include standard library header units (search for "Standard Library Header Units" here). For simplicity, I just added iostream here.
Next, a function is added to conveniently enable C++20 and Modules TS for targets
We first create an object library to build the user modules
Finally, we create our executable and link it to the object library created in the previous step.
Not consider the following main.cpp:
import mymod;
int main() {
helloModule();
}
and mymod.cpp:
module;
export module mymod;
import <iostream>;
export void helloModule() {
std::cout << "Hello module!\n";
}
Using the above CMakeLists.txt, your example should compile fine (successfully tested in Ubuntu WSL with gcc 1.11.0).
Update:
Sometimes when changing the CMakeLists.txt and recompiling, you may encounter an error
error: import "/usr/include/c++/11/iostream" has CRC mismatch
Probably the reason is that every new module will attempt to build the standard library modules, but I'm not sure. Unfortunately I didn't find a proper solution to this (avoiding rebuild if the gcm.cache directory already exists is bad if you want to add new standard modules, and doing it per-module is a maintenance nightmare). My Q&D solution is to delete ${CMAKE_BINARY_DIR}/gcm.cache and rebuild the modules. I'm happy for better suggestions though.
CMake ships with experimental support for C++20 modules:
https://gitlab.kitware.com/cmake/cmake/-/blob/master/Help/dev/experimental.rst
This is tracked in this issue:
https://gitlab.kitware.com/cmake/cmake/-/issues/18355
There is also a CMakeCXXModules repository that adds support for modules to CMake.
https://github.com/NTSFka/CMakeCxxModules
While waiting for proper C++20 modules support in CMake, I've found that if using MSVC Windows, for right now you can make-believe it's there by hacking around the build instead of around CMakeLists.txt: continously generate with latest VS generator, and open/build the .sln with VS2020. The IFC dependency chain gets taken care of automatically (import <iostream>; just works). Haven't tried Windows clang or cross-compiling. It's not ideal but for now at least another decently workable alternative today, so far.
Important afterthought: use .cppm and .ixx extensions.
CMake does not currently support C++20 modules like the others have stated. However, module support for Fortran is very similar, and perhaps this could be easily changed to support modules in C++20.
http://fortranwiki.org/fortran/show/Build+tools
Now, perhaps there i an easy way to modify this to support C++20 directly. Not sure. It is worth exploring and doing a pull request should you resolve it.
Add MSVC version (revised from #warchantua 's answer):
cmake_minimum_required(VERSION 3.16)
project(Cpp20)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(PREBUILT_MODULE_DIR ${CMAKE_BINARY_DIR}/modules)
set(STD_MODULES_DIR "D:/MSVC/VC/Tools/MSVC/14.29.30133/ifc/x64") # macro "$(VC_IFCPath)" in MSVC
function(add_module name)
file(MAKE_DIRECTORY ${PREBUILT_MODULE_DIR})
add_custom_target(${name}.ifc
COMMAND
${CMAKE_CXX_COMPILER}
/std:c++latest
/stdIfcDir ${STD_MODULES_DIR}
/experimental:module
/c
/EHsc
/MD
${CMAKE_CURRENT_SOURCE_DIR}/${ARGN}
/module:export
/ifcOutput
${PREBUILT_MODULE_DIR}/${name}.ifc
/Fo${PREBUILT_MODULE_DIR}/${name}.obj
)
endfunction()
set(CUSTOM_MODULES_DIR ${CMAKE_CURRENT_SOURCE_DIR}/modules)
add_module(my_module ${CUSTOM_MODULES_DIR}/my_module.ixx)
add_executable(test
test.cpp
)
target_compile_options(test
BEFORE
PRIVATE
/std:c++latest
/experimental:module
/stdIfcDir ${STD_MODULES_DIR}
/ifcSearchDir ${PREBUILT_MODULE_DIR}
/reference my_module=${PREBUILT_MODULE_DIR}/my_module.ifc
/EHsc
/MD
)
target_link_libraries(test ${PREBUILT_MODULE_DIR}/my_module.obj)
add_dependencies(test my_module.ifc)
With C++20 Modules the file compilation order matters, which is totally new. That's why the implementation is complicated and still experimental in 2023. Please read the authors blogpost
I was not able to find Cmake support for modules. Here is an example how to use modules using clang. I am using Mac and this example works ok on my system. It took me quite a while to figure this out so unsure how general this is across linux or Windows.
Source code in file driver.cxx
import hello;
int main() { say_hello("Modules"); }
Source code in file hello.cxx
#include <iostream>
module hello;
void say_hello(const char *n) {
std::cout << "Hello, " << n << "!" << std::endl;
}
Source code in file hello.mxx
export module hello;
export void say_hello (const char* name);
And to compile the code with above source files, here are command lines on terminal
clang++ \
-std=c++2a \
-fmodules-ts \
--precompile \
-x c++-module \
-Xclang -fmodules-embed-all-files \
-Xclang -fmodules-codegen \
-Xclang -fmodules-debuginfo \
-o hello.pcm hello.mxx
clang++ -std=c++2a -fmodules-ts -o hello.pcm.o -c hello.pcm
clang++ -std=c++2a -fmodules-ts -x c++ -o hello.o \
-fmodule-file=hello.pcm -c hello.cxx
clang++ -std=c++2a -fmodules-ts -x c++ -o driver.o \
-fmodule-file=hello=hello.pcm -c driver.cxx
clang++ -o hello hello.pcm.o driver.o hello.o
and to get clean start on next compile
rm -f *.o
rm -f hello
rm -f hello.pcm
expected output
./hello
Hello, Modules!
Hope this helps, all the best.

How to use c++20 modules with CMake?

Clang and MSVC already supports Modules TS from unfinished C++20 standard.
Can I build my modules based project with CMake or other build system and how?
I tried build2, it supports modules and it works very well, but i have a question about it's dependency management (UPD: question is closed).
CMake currently does not support C++20 modules.
See also the relevant issue in the CMake issue tracker. Note that supporting modules requires far more support from the build system than inserting a new compiler option. It fundamentally changes how dependencies between source files have to be handled during the build: In a pre-modules world all cpp source files can be built independently in any order. With modules that is no longer true, which has implications not only for CMake itself, but also for the downstream build system.
Take a look at the CMake Fortran modules paper for the gory details. From a build system's point of view, Fortran's modules behave very similar to the C++20 modules.
Update: CMake 3.20 introduces experimental support for Modules with the Ninja Generator (and only for Ninja). Details can be found in the respective pull request. At this stage, this feature is still highly experimental and not intended for production use. If you intend to play around with this anyway, you really should be reading both the Fortran modules paper and the dependency format paper to understand what you're getting into.
This works on Linux Manjaro (same as Arch), but should work on any Unix OS. Of course, you need to build with new clang (tested with clang-10).
helloworld.cpp:
export module helloworld;
import <cstdio>;
export void hello() { puts("Hello world!"); }
main.cpp:
import helloworld; // import declaration
int main() {
hello();
}
CMakeLists.txt:
cmake_minimum_required(VERSION 3.16)
project(main)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(PREBUILT_MODULE_PATH ${CMAKE_BINARY_DIR}/modules)
function(add_module name)
file(MAKE_DIRECTORY ${PREBUILT_MODULE_PATH})
add_custom_target(${name}.pcm
COMMAND
${CMAKE_CXX_COMPILER}
-std=c++20
-stdlib=libc++
-fmodules
-c
${CMAKE_CURRENT_SOURCE_DIR}/${ARGN}
-Xclang -emit-module-interface
-o ${PREBUILT_MODULE_PATH}/${name}.pcm
)
endfunction()
add_compile_options(-fmodules)
add_compile_options(-stdlib=libc++)
add_compile_options(-fbuiltin-module-map)
add_compile_options(-fimplicit-module-maps)
add_compile_options(-fprebuilt-module-path=${PREBUILT_MODULE_PATH})
add_module(helloworld helloworld.cpp)
add_executable(main
main.cpp
helloworld.cpp
)
add_dependencies(main helloworld.pcm)
Assuming that you're using gcc 11 with a Makefile generator, the following code should work even without CMake support for C++20:
cmake_minimum_required(VERSION 3.19) # Lower versions should also be supported
project(cpp20-modules)
# Add target to build iostream module
add_custom_target(std_modules ALL
COMMAND ${CMAKE_COMMAND} -E echo "Building standard library modules"
COMMAND g++ -fmodules-ts -std=c++20 -c -x c++-system-header iostream
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
# Function to set up modules in GCC
function (prepare_for_module TGT)
target_compile_options(${TGT} PUBLIC -fmodules-ts)
set_property(TARGET ${TGT} PROPERTY CXX_STANDARD 20)
set_property(TARGET ${TGT} PROPERTY CXX_EXTENSIONS OFF)
add_dependencies(${TGT} std_modules)
endfunction()
# Program name and sources
set (TARGET prog)
set (SOURCES main.cpp)
set (MODULES mymod.cpp)
# Setup program modules object library
set (MODULE_TARGET prog-modules)
add_library(${MODULE_TARGET} OBJECT ${MODULES})
prepare_for_module(${MODULE_TARGET})
# Setup executable
add_executable(${TARGET} ${SOURCES})
prepare_for_module(${TARGET})
# Add modules to application using object library
target_link_libraries(${TARGET} PRIVATE ${MODULE_TARGET})
Some explanation:
A custom target is added to build the standard library modules, in case you want to include standard library header units (search for "Standard Library Header Units" here). For simplicity, I just added iostream here.
Next, a function is added to conveniently enable C++20 and Modules TS for targets
We first create an object library to build the user modules
Finally, we create our executable and link it to the object library created in the previous step.
Not consider the following main.cpp:
import mymod;
int main() {
helloModule();
}
and mymod.cpp:
module;
export module mymod;
import <iostream>;
export void helloModule() {
std::cout << "Hello module!\n";
}
Using the above CMakeLists.txt, your example should compile fine (successfully tested in Ubuntu WSL with gcc 1.11.0).
Update:
Sometimes when changing the CMakeLists.txt and recompiling, you may encounter an error
error: import "/usr/include/c++/11/iostream" has CRC mismatch
Probably the reason is that every new module will attempt to build the standard library modules, but I'm not sure. Unfortunately I didn't find a proper solution to this (avoiding rebuild if the gcm.cache directory already exists is bad if you want to add new standard modules, and doing it per-module is a maintenance nightmare). My Q&D solution is to delete ${CMAKE_BINARY_DIR}/gcm.cache and rebuild the modules. I'm happy for better suggestions though.
CMake ships with experimental support for C++20 modules:
https://gitlab.kitware.com/cmake/cmake/-/blob/master/Help/dev/experimental.rst
This is tracked in this issue:
https://gitlab.kitware.com/cmake/cmake/-/issues/18355
There is also a CMakeCXXModules repository that adds support for modules to CMake.
https://github.com/NTSFka/CMakeCxxModules
While waiting for proper C++20 modules support in CMake, I've found that if using MSVC Windows, for right now you can make-believe it's there by hacking around the build instead of around CMakeLists.txt: continously generate with latest VS generator, and open/build the .sln with VS2020. The IFC dependency chain gets taken care of automatically (import <iostream>; just works). Haven't tried Windows clang or cross-compiling. It's not ideal but for now at least another decently workable alternative today, so far.
Important afterthought: use .cppm and .ixx extensions.
CMake does not currently support C++20 modules like the others have stated. However, module support for Fortran is very similar, and perhaps this could be easily changed to support modules in C++20.
http://fortranwiki.org/fortran/show/Build+tools
Now, perhaps there i an easy way to modify this to support C++20 directly. Not sure. It is worth exploring and doing a pull request should you resolve it.
Add MSVC version (revised from #warchantua 's answer):
cmake_minimum_required(VERSION 3.16)
project(Cpp20)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(PREBUILT_MODULE_DIR ${CMAKE_BINARY_DIR}/modules)
set(STD_MODULES_DIR "D:/MSVC/VC/Tools/MSVC/14.29.30133/ifc/x64") # macro "$(VC_IFCPath)" in MSVC
function(add_module name)
file(MAKE_DIRECTORY ${PREBUILT_MODULE_DIR})
add_custom_target(${name}.ifc
COMMAND
${CMAKE_CXX_COMPILER}
/std:c++latest
/stdIfcDir ${STD_MODULES_DIR}
/experimental:module
/c
/EHsc
/MD
${CMAKE_CURRENT_SOURCE_DIR}/${ARGN}
/module:export
/ifcOutput
${PREBUILT_MODULE_DIR}/${name}.ifc
/Fo${PREBUILT_MODULE_DIR}/${name}.obj
)
endfunction()
set(CUSTOM_MODULES_DIR ${CMAKE_CURRENT_SOURCE_DIR}/modules)
add_module(my_module ${CUSTOM_MODULES_DIR}/my_module.ixx)
add_executable(test
test.cpp
)
target_compile_options(test
BEFORE
PRIVATE
/std:c++latest
/experimental:module
/stdIfcDir ${STD_MODULES_DIR}
/ifcSearchDir ${PREBUILT_MODULE_DIR}
/reference my_module=${PREBUILT_MODULE_DIR}/my_module.ifc
/EHsc
/MD
)
target_link_libraries(test ${PREBUILT_MODULE_DIR}/my_module.obj)
add_dependencies(test my_module.ifc)
With C++20 Modules the file compilation order matters, which is totally new. That's why the implementation is complicated and still experimental in 2023. Please read the authors blogpost
I was not able to find Cmake support for modules. Here is an example how to use modules using clang. I am using Mac and this example works ok on my system. It took me quite a while to figure this out so unsure how general this is across linux or Windows.
Source code in file driver.cxx
import hello;
int main() { say_hello("Modules"); }
Source code in file hello.cxx
#include <iostream>
module hello;
void say_hello(const char *n) {
std::cout << "Hello, " << n << "!" << std::endl;
}
Source code in file hello.mxx
export module hello;
export void say_hello (const char* name);
And to compile the code with above source files, here are command lines on terminal
clang++ \
-std=c++2a \
-fmodules-ts \
--precompile \
-x c++-module \
-Xclang -fmodules-embed-all-files \
-Xclang -fmodules-codegen \
-Xclang -fmodules-debuginfo \
-o hello.pcm hello.mxx
clang++ -std=c++2a -fmodules-ts -o hello.pcm.o -c hello.pcm
clang++ -std=c++2a -fmodules-ts -x c++ -o hello.o \
-fmodule-file=hello.pcm -c hello.cxx
clang++ -std=c++2a -fmodules-ts -x c++ -o driver.o \
-fmodule-file=hello=hello.pcm -c driver.cxx
clang++ -o hello hello.pcm.o driver.o hello.o
and to get clean start on next compile
rm -f *.o
rm -f hello
rm -f hello.pcm
expected output
./hello
Hello, Modules!
Hope this helps, all the best.

How to integrate clang-tidy to CMake and GCC?

I want to integrate clang-tidy to our C and C++, CMake based project which is compiled using a custom GCC toolchain.
I've tried following this tutorial, setting CMAKE_CXX_CLANG_TIDY. I've also tried generating a compilation database by setting CMAKE_EXPORT_COMPILE_COMMANDS to ON and pointing run-clang-tidy.py to its directory.
In both cases, I've encountered (the same) few errors that are probably related to differences between Clang and GCC:
Some warning flags that are enabled in the CMake files are not supported in Clang but are supported in GCC (like -Wlogical-op). As the compiler is GCC, the file builds correctly, and the flag is written to the compilation database, but clang-tidy complains about it.
clang-tidy complains some defines and functions are unavailable, even though the code compiles just fine. As an example, the android-cloexec-open check suggested using O_CLOEXEC to improve security and force the closing of files, but trying to use this define leads to an undefined identifier error (even though our GCC compiles the code).
As an example to a function that is not found, there is clock_gettime.
Our code compiles with the C11 standard and C++14 standard, without GNU extensions:
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_C_EXTENSIONS OFF)
set(CMAKE_CXX_EXTENSIONS OFF)
The custom toolchain is a cross-compilation toolchain which runs on Linux and compiles to FreeBSD.
Is there a way to disable the passing of some flags by CMake to clang-tidy? Am I using clang-tidy wrong?
I suspect this issue is related to disabling GNU extensions, using a cross-compilation toolchain, and some feature-test-macro which is not defined by default in Clang but is defined with GCC (e.g. _GNU_SOURCE/_POSIX_SOURCE). If this is the case, how can I check it? If not, should I use clang-tidy differently?
EDIT
As #pablo285 asked, here are 2 warnings I get for a single file, and then as I added --warnings-as-errors=*, the build stops:
error: unknown warning option '-Wlogical-op' ; did you mean '-Wlong-long'? [clang-diagnostic-error]
<file path>: error: use of undeclared identifier 'O_CLOEXEC' [clang-diagnostic-error]
O_WRONLY | O_CLOEXEC
^
I decided to write a python script that will replace clang-tidy, receive the commandline from CMake and edit it to fix various errors. Here are the modification to the commandline I tried:
Remove none clang compile flags
This helps with things like the first warning, as now I don't pass flags that clang doesn't know. It seems like I can't configure CMake to pass different set of flags to GCC and to clang-tidy, so if anyone is familiar with some solution to this problem, I'll be happy to hear!
I changed the include directories that are passed to clang-tidy
As mentioned in the post, I use a custom toolchain (which cross-compiles). I used this post and Python to extract the list of standard include directories, and added them to the flag list as a list of -isystem <dir>. I also added -nostdinc so that clang-tidy won't try to look on his own headers instead of mine
This helped with the issue above, as now various defines such as O_CLOEXEC is defined in the toolchain's headers, but as my toolchain is based on GCC, clang couldn't parse the <type_traits> header which includes calls to many compiler intrinsics
I'm not sure what's the best approach in this case
#shycha: Thanks for the tip, I'll try disabling this specific check and I'll edit this post again
Ok, I think that I have a solution. After a couple of evenings I was able to make it work.
In general I compile like this
rm -rf build
mkdir build
cd build
cmake -C ../cmake-scripts/clang-tidy-all.cmake .. && make
Where cmake-scripts directory contains:
clang-tidy-all.cmake
toolchain_arm_clang.cmake
The two important files are listed below.
But what is more important, is how you need to compile this.
First, toolchain_arm_clang.cmake is referenced directly from clang-tidy-all.cmake via set(CMAKE_TOOLCHAIN_FILE ...). It must be, however, referenced from the point of view of the building directory, so if you use multiple levels of build-dirs, e.g.: build/x86, build/arm, build/darwin, etc., then you must modify that path accordingly.
Second, the purpose of set(CONFIG_SCRIPT_PRELOADED ...) is to be sure that the config script was pre-loaded, i.e., cmake -C ../cmake-scripts/clang-tidy-all.cmake ..
Typically, you would want to have something like this somewhere in your CMakeLists.txt file:
message(STATUS "CONFIG_SCRIPT_PRELOADED: ${CONFIG_SCRIPT_PRELOADED}")
if(NOT CONFIG_SCRIPT_PRELOADED)
message(FATAL_ERROR "Run cmake -C /path/to/cmake.script to preload a config script!")
endif()
Third, there is /lib/ld-musl-armhf.so.1 hard-coded in set(CMAKE_LINKER_ARM_COMPAT_STATIC ...); on the development box that I use, it points to /lib/libc.so, so it might by OK to use /lib/libc.sh instead. I've never tried.
Fourth, using set(CMAKE_C_LINK_EXECUTABLE ...) and set(CMAKE_LINKER_ARM_COMPAT_STATIC ...) was because CMake was complaining about some linking problems during checking the compiler, i.e., before even running make.
Fifth, I was only compiling C++ code, so if you need to compile some C, then it might be required to also properly configure set(CMAKE_C_CREATE_SHARED_LIBRARY ...), but I have no idea whether there is such a config option.
General Advice
Do not integrate it immediately. First test some simple CMake project with one library (preferably a C++ one) and make it work, then add the second library, but in C, tweak it again. And only after that incorporate it into the code base.
Toolchain
I used a custom toolchain with GCC 8.3.0 and musl C library, so locations of some files might be different for other toolchains.
Custom CMake
Some variables, like (already mentioned) CONFIG_SCRIPT_PRELOADED, EXPORT_PACKAGE_TO_GLOBAL_REGISTRY, DO_NOT_BUILD_TESTS, or DO_NOT_BUILD_BENCHMARKS are not generic CMake options, i.e., I use them only in my CMakeLists.txt, so you can safely ignore them.
Variables that are unset at the end of each *.cmake file, e.g., build_test, extra_clang_tidy_unchecks_for_tests_only, don't need to be present in the project's main CMakeLists.txt.
Clang
$ clang --version
clang version 10.0.0 (https://github.com/llvm/llvm-project.git 4650b2f36949407ef25686440e3d65ac47709deb)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/local/bin
Files
clang-tidy-all.cmake:
set(ALL_CXX_WARNING_FLAGS --all-warnings -Weverything -Wno-c++98-compat -Wno-c++98-c++11-compat -Wno-c++98-c++11-c++14-compat -Wno-padded -Wno-c++98-compat-pedantic)
set(CXX_COMPILE_OPTIONS "-std=c++17;-O3;${ALL_CXX_WARNING_FLAGS}" CACHE INTERNAL "description")
set(CMAKE_CROSSCOMPILING True)
set(CMAKE_TOOLCHAIN_FILE "../cmake-scripts/toolchain_arm_clang.cmake" CACHE FILEPATH "CMake toolchain file")
set(CONFIG_SCRIPT_PRELOADED true CACHE BOOL "Ensures that config script was preloaded")
set(build_test False)
if(build_test)
message(STATUS "Using test mode clang-tidy checks!")
set(extra_clang_tidy_unchecks_for_tests_only ",-google-readability-avoid-underscore-in-googletest-name,-cppcoreguidelines-avoid-magic-numbers,-cppcoreguidelines-special-member-functions")
endif()
set(CMAKE_CXX_CLANG_TIDY "clang-tidy;--enable-check-profile;--checks=-*,abseil-string-find-startswith,bugprone-*,cert-*,clang-analyzer-*,cppcoreguidelines-*,google-*,hicpp-*,llvm-*,misc-*,modernize-*,-modernize-use-trailing-return-type,performance-*,readability-*,-readability-static-definition-in-anonymous-namespace,-readability-simplify-boolean-expr,portability-*${extra_clang_tidy_unchecks_for_tests_only}" CACHE INTERNAL "clang-tidy")
message(STATUS "build_test: ${build_test}")
message(STATUS "extra_clang_tidy_unchecks_for_tests_only: ${extra_clang_tidy_unchecks_for_tests_only}")
message(STATUS "CMAKE_CXX_CLANG_TIDY: ${CMAKE_CXX_CLANG_TIDY}")
# We want to skip building tests when clang-tidy is run (it takes too much time and serves nothing)
if(DEFINED CMAKE_CXX_CLANG_TIDY AND NOT build_test)
set(DO_NOT_BUILD_TESTS true CACHE BOOL "Turns OFF building tests")
set(DO_NOT_BUILD_BENCHMARKS true CACHE BOOL "Turns OFF building benchmarks")
endif()
unset(build_test)
unset(extra_clang_tidy_unchecks_for_tests_only)
set(EXPORT_PACKAGE_TO_GLOBAL_REGISTRY "OFF" CACHE INTERNAL "We don't export clang-tidy-all version to global register")
toolchain_arm_clang.cmake:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_VERSION 4.14.0)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(gcc_version 8.3.0)
set(x_tools "/opt/zynq/xtl")
set(CMAKE_C_COMPILER "clang" CACHE INTERNAL STRING)
set(CMAKE_CXX_COMPILER "clang++" CACHE INTERNAL STRING)
set(CMAKE_RANLIB "llvm-ranlib" CACHE INTERNAL STRING)
set(CMAKE_AR "llvm-ar" CACHE INTERNAL STRING)
set(CMAKE_AS "llvm-as" CACHE INTERNAL STRING)
set(CMAKE_LINKER "ld.lld" CACHE INTERNAL STRING)
execute_process(
COMMAND bash -c "dirname `whereis ${CMAKE_LINKER} | tr -s ' ' '\n' | grep ${CMAKE_LINKER}`"
OUTPUT_VARIABLE cmake_linker_dir
)
string(REGEX REPLACE "\n$" "" cmake_linker_dir "${cmake_linker_dir}")
set(cmake_linker_with_dir "${cmake_linker_dir}/${CMAKE_LINKER}" CACHE INTERNAL STRING)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -iwithsysroot /include/c++/${gcc_version} -iwithsysroot /include/c++/${gcc_version}/arm-linux-musleabihf" CACHE INTERNAL STRING)
set(CMAKE_SYSROOT ${x_tools}/arm-linux-musleabihf)
set(CMAKE_FIND_ROOT_PATH ${x_tools}/arm-linux-musleabihf)
set(CMAKE_INSTALL_PREFIX ${x_tools}/arm-linux-musleabihf)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE NEVER)
set(triple arm-linux-musleabihf)
set(CMAKE_LIBRARY_ARCHITECTURE ${triple})
set(CMAKE_C_COMPILER_TARGET ${triple})
set(CMAKE_CXX_COMPILER_TARGET ${triple})
set(lib_path_arm ${x_tools}/arm-linux-musleabihf/lib)
## Bootstrap library stuff:
set(Scrt1_o ${lib_path_arm}/Scrt1.o)
set(crti_o ${lib_path_arm}/crti.o)
set(crtn_o ${lib_path_arm}/crtn.o)
set(lib_path_gcc ${x_tools}/lib/gcc/${triple}/${gcc_version})
set(crtbeginS_o ${lib_path_gcc}/crtbeginS.o)
set(crtendS_o ${lib_path_gcc}/crtendS.o)
# Clang as linker
# --no-pie disable position independent executable, which is required when building
# statically linked executables.
set(CMAKE_CXX_LINK_EXECUTABLE "clang++ --target=${triple} -Wl,--no-pie --sysroot=${CMAKE_SYSROOT} ${CMAKE_CXX_FLAGS} -fuse-ld=${cmake_linker_with_dir} <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET> ")
set(CMAKE_CXX_CREATE_SHARED_LIBRARY "clang++ -Wl, --target=${triple} --sysroot=${CMAKE_SYSROOT} ${CMAKE_CXX_FLAGS} -fuse-ld=${cmake_linker_with_dir} -shared <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET> ")
#
# Do not use CMAKE_CXX_CREATE_STATIC_LIBRARY -- it is created automatically
# by cmake using ar and ranlib
#
#set(CMAKE_CXX_CREATE_STATIC_LIBRARY "clang++ -Wl,--no-pie,--no-export-dynamic,-v -v --target=${triple} --sysroot=${CMAKE_SYSROOT} ${CMAKE_CXX_FLAGS} -fuse-ld=ld.lld <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET> ")
## Linker as linker
set(CMAKE_LINKER_ARM_COMPAT_STATIC "-pie -EL -z relro -X --hash-style=gnu --eh-frame-hdr -m armelf_linux_eabi -dynamic-linker /lib/ld-musl-armhf.so.1 ${Scrt1_o} ${crti_o} ${crtbeginS_o} -lstdc++ -lm -lgcc_s -lgcc -lc ${crtendS_o} ${crtn_o}")
set(CMAKE_C_LINK_EXECUTABLE "${CMAKE_LINKER} ${CMAKE_LINKER_ARM_COMPAT_STATIC} <CMAKE_C_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET>")
# Debian bug 708744(?)
#include_directories("${CMAKE_SYSROOT}/usr/include/")
#include_directories("${CMAKE_SYSROOT}/usr/include/c++/${gcc_version}")
#include_directories("${CMAKE_SYSROOT}/usr/include/c++/${gcc_version}/${triple}")
## Clang workarounds:
set(toolchain_lib_dir_0 "${CMAKE_SYSROOT}/lib")
set(toolchain_lib_dir_1 "${CMAKE_SYSROOT}/../lib")
set(toolchain_lib_dir_2 "${CMAKE_SYSROOT}/../lib/gcc/${triple}/${gcc_version}")
set(CMAKE_TOOLCHAIN_LINK_FLAGS "-L${toolchain_lib_dir_0} -L${toolchain_lib_dir_1} -L${toolchain_lib_dir_2}")
## CMake workarounds
set(CMAKE_EXE_LINKER_FLAGS ${CMAKE_TOOLCHAIN_LINK_FLAGS} CACHE INTERNAL "exe link flags")
set(CMAKE_MODULE_LINKER_FLAGS ${CMAKE_TOOLCHAIN_LINK_FLAGS} CACHE INTERNAL "module link flags")
set(CMAKE_SHARED_LINKER_FLAGS ${CMAKE_TOOLCHAIN_LINK_FLAGS} CACHE INTERNAL "shared link flags")
unset(cmake_linker_with_dir)
unset(cmake_linker_dir)
Maybe not exactly what you're looking for but I'm using this in CMakeLists.txt:
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
add_custom_target(lint
COMMAND sh -c "run-clang-tidy -header-filter=.* -checks=`tr '\\n' , <${CMAKE_SOURCE_DIR}/checks.txt` >lint.out 2>lint.err"
COMMAND sh -c "grep warning: lint.out || true"
COMMAND ls -lh ${CMAKE_BINARY_DIR}/lint.out
VERBATIM
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
This creates a separate build target (make lint) for the clang-tidy check. clang-tidy takes a long time for my project so I don't want to run it during every build; make lint can be run manually if required, and it's also executed in a CI job after every push to the repo (in a way that makes the CI pipeline fail, blocking the merge, if there are any findings).
The output of make lint is the list of clang-tidy findings with as little context as possible. The full output, including context for findings, is in lint.out, and error messages are in lint.err, both of which I'm saving as CI artefacts.
checks.txt is a text file in the project root that defines which clang-tidy checks to activate, like so:
*
-altera-id-dependent-backward-branch
-altera-struct-pack-align
-altera-unroll-loops
-android-*
The first line enables all available checks, the other lines disable checks that I don't want.
Will only work in a Unix-like system of course.

wxWidgets runtime error (Mismatch version)

I have a problem at start the program:
Fatal Error: Mismatch between the program and library build versions detected.
The library used 3.0 (wchar_t,compiler with C++ ABI 1010,wx containers,compatible with 2.8),
and your program used 3.0 (wchar_t,compiler with C++ ABI 1009,wx containers,compatible with 2.8).
My cmake settings:
cmake_minimum_required(VERSION 3.0)
project(simple)
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${wxWidgets_CXX_FLAGS} -Wall -std=c++14")
find_package(wxWidgets COMPONENTS net gl core base)
include("${wxWidgets_USE_FILE}")
add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} ${wxWidgets_LIBRARIES})
Version of wxWidgets 3.0.3.
If your desire is to have __GXX_ABI_VERSION=1002, specify -fabi-version=2 to GCC. To do this in your CMakeLists.txt, add:
add_definitions(-fabi-version=2)
This is a preferred approach compared to manually redefining __GXX_ABI_VERSION, which would violate C++ standards and potentially cause undefined behavior.
Note: -fabi-version=2 may not always correspond to __GXX_ABI_VERSION=1002 in future releases of GCC. Compile and run this quick C++ program to check it:
#include <iostream>
int main(void) {
std::cout << "__GXX_ABI_VERSION=" << __GXX_ABI_VERSION << std::endl;
return 0;
}
Compile this way:
g++ -fabi-version=2 -o check_fabi_version check_fabi_version.cpp
Run this way:
./check_fabi_version
Example output as of GCC 8.2.0:
__GXX_ABI_VERSION=1002
You can try to add to your program
#define __GXX_ABI_VERSION 1010
or just
sudo apt-get purge wx2.8-headers wx2.9-headers
I had two version of wxWidgets instaled. I deleted one of them and it works great.

Building error using cmake: cannot find -lpthreads

I have c++ project that was smoothly running on a given machine, and now I am trying to compile it on another one with the same operating system (Xubuntu 14.04).
I've installed all the dependencies and I'am using cmake to build the project, although it stops with the following error:
Determining if the function pthread_create exists in the pthreads failed with the following output:
...
/usr/bin/ld: cannot find -lpthreads
The cmakelists.txt lines that include the compiler flags are as follows:
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O3 -lpthread -DNDEBUG -DEIGEN_MPL2_ONLY")
set(CMAKE_C_FLAGS_DEBUG "-g -O0 -Wall -lpthread -DEIGEN_MPL2_ONLY")
set(CMAKE_CXX_FLAGS "${CMAKE_C_FLAGS} -O3 -lpthread -I/usr/include/freetype2 -DNDEBUG -DEIGEN_MPL2_ONLY")
set(CMAKE_CXX_FLAGS_DEBUG "-g -O0 -Wall -lpthread -I/usr/include/freetype2 -DEIGEN_MPL2_ONLY")
I have done some research and have already tried the following:
-used -pthread/-threads/-thread/-lpthreads instead of -lpthread, which does not solve the issue and makes the build stop without finding the following package:
find_package (Threads)
changed the order of -lpthread in the cmakelists line above, which gives the same error
used different versions o gcc/g++: tried 4.4, 4.6 and 4.8, without any change
created a symbolic link to libpthread.so in /usr/lib/, without any change
I would appreciate some help, since I am already short on ideas on what to try next.
Edit 1
The library is where it should:
$ find /lib -name "*pthread*"
/lib/x86_64-linux-gnu/libpthread-2.19.so
/lib/x86_64-linux-gnu/libpthread.so.0
The pthread_create is also found:
$ nm /lib/x86_64-linux-gnu/libpthread.so.0 | grep "pthread_create"
0000000000008430 t __pthread_create_2_1
00000000000081430 T pthread_create##GLIBC_2.2.5
I have also verified that both libpthread-stubs0 and libc6-dev are present.
Edit 2
This is part of the FindThreads.cmake file content, located in /usr/share/cmake-2.8/Modules/:
if(CMAKE_HAVE_SPROC_H AND NOT CMAKE_THREAD_PREFER_PTHREAD)
# We have sproc
set(CMAKE_USE_SPROC_INIT 1)
else()
# Do we have pthreads?
CHECK_INCLUDE_FILES("pthread.h" CMAKE_HAVE_PTHREAD_H)
if(CMAKE_HAVE_PTHREAD_H)
#
# We have pthread.h
# Let's check for the library now.
#
set(CMAKE_HAVE_THREADS_LIBRARY)
if(NOT THREADS_HAVE_PTHREAD_ARG)
# Check if pthread functions are in normal C library
CHECK_SYMBOL_EXISTS(pthread_create pthread.h CMAKE_HAVE_LIBC_CREATE)
if(CMAKE_HAVE_LIBC_CREATE)
set(CMAKE_THREAD_LIBS_INIT "")
set(CMAKE_HAVE_THREADS_LIBRARY 1)
set(Threads_FOUND TRUE)
endif()
if(NOT CMAKE_HAVE_THREADS_LIBRARY)
# Do we have -lpthreads
CHECK_LIBRARY_EXISTS(pthreads pthread_create "" CMAKE_HAVE_PTHREADS_CREATE)
if(CMAKE_HAVE_PTHREADS_CREATE)
set(CMAKE_THREAD_LIBS_INIT "-lpthreads")
set(CMAKE_HAVE_THREADS_LIBRARY 1)
set(Threads_FOUND TRUE)
endif()
# Ok, how about -lpthread
CHECK_LIBRARY_EXISTS(pthread pthread_create "" CMAKE_HAVE_PTHREAD_CREATE)
if(CMAKE_HAVE_PTHREAD_CREATE)
set(CMAKE_THREAD_LIBS_INIT "-lpthread")
set(CMAKE_HAVE_THREADS_LIBRARY 1)
set(Threads_FOUND TRUE)
endif()
if(CMAKE_SYSTEM MATCHES "SunOS.*")
# On sun also check for -lthread
CHECK_LIBRARY_EXISTS(thread thr_create "" CMAKE_HAVE_THR_CREATE)
if(CMAKE_HAVE_THR_CREATE)
set(CMAKE_THREAD_LIBS_INIT "-lthread")
set(CMAKE_HAVE_THREADS_LIBRARY 1)
set(Threads_FOUND TRUE)
endif()
endif()
endif()
endif()
if(NOT CMAKE_HAVE_THREADS_LIBRARY)
# If we did not found -lpthread, -lpthread, or -lthread, look for -pthread
if("THREADS_HAVE_PTHREAD_ARG" MATCHES "^THREADS_HAVE_PTHREAD_ARG")
message(STATUS "Check if compiler accepts -pthread")
try_run(THREADS_PTHREAD_ARG THREADS_HAVE_PTHREAD_ARG
${CMAKE_BINARY_DIR}
${CMAKE_ROOT}/Modules/CheckForPthreads.c
CMAKE_FLAGS -DLINK_LIBRARIES:STRING=-pthread
COMPILE_OUTPUT_VARIABLE OUTPUT)
if(THREADS_HAVE_PTHREAD_ARG)
if(THREADS_PTHREAD_ARG STREQUAL "2")
set(Threads_FOUND TRUE)
message(STATUS "Check if compiler accepts -pthread - yes")
else()
message(STATUS "Check if compiler accepts -pthread - no")
file(APPEND
${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeError.log
"Determining if compiler accepts -pthread returned ${THREADS_PTHREAD_ARG} instead of 2. The compiler had the following output:\n${OUTPUT}\n\n")
endif()
else()
message(STATUS "Check if compiler accepts -pthread - no")
file(APPEND
${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeError.log
"Determining if compiler accepts -pthread failed with the following output:\n${OUTPUT}\n\n")
endif()
endif()
if(THREADS_HAVE_PTHREAD_ARG)
set(Threads_FOUND TRUE)
set(CMAKE_THREAD_LIBS_INIT "-pthread")
endif()
endif()
endif()
endif()
Edit 3
Used a minimal Cmakelists.txt as follows:
cmake_minimum_required (VERSION 2.4)
find_package(Threads)
Which produced the following output:
-- Looking for include file pthread.h
-- Looking for include file pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found.
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
The problem was happening when running cmake. Though, in this case cmake was not the problem the error was silent and the -lpthreads related error/warning was the only thing being written to the cmake error log file, although that was not causing any issue.
I've done a minimal version of the cmakelists.txt and started testing it line by line until I found which package was causing it to stop: finally I found it was a version mismatch...
Hint: search for the actual error message
Typically you'd look for the last error message. However, this (often useful) strategy in such cases leads astray.
What you are looking at is the CMakeCache.txt, the CMakeOutput.log or the CMakeError.log. How comes? When some of the macros or tests in the configure phase fails, CMake "helpfully" dumps these files to the output. Unfortunately, these files can be thousands of lines long, and typically contain lots of "*** Error: xyz" entries, for various configure checks. The one for "-lpthreads" just accidentally happened to be the last one in the log...
Solution: go through the log from the top, identify the section with the configure checks, find the last configure check prior to the point, where CMake identifies failure and dumps its logs. You might also try so search for the text "Configuring incomplete, errors occurred!"
Typically you'll either find a very precise actual error message there, or at least you find the name / path of the macro or function called last, and this allows you to pinpoint down what actually went wrong.
at an Ubuntu 18.04.1 LTS this installation gave me all the files needed:
apt -y install libboost-tools-dev libboost-thread1.62-dev magics++
/usr/lib/x86_64-linux-gnu/libpthread.a
/usr/lib/x86_64-linux-gnu/libpthread.so
/usr/lib/x86_64-linux-gnu/libpthread_nonshared.a
no more errors "/usr/bin/ld: cannot find -lpthreads" after
Edit1:
All references below is for Ubuntu.
Package named libpthread-stubs0 is likely only a stub, so won't have the pthread_create function.
Do you have this?
$ find /lib -name "*pthread*"
/lib/x86_64-linux-gnu/libpthread-2.15.so
/lib/x86_64-linux-gnu/libpthread.so.0
Check for the symbol pthread_create which should exist.
$ nm /lib/x86_64-linux-gnu/libpthread.so.0 | grep "pthread_create"
0000000000008140 t __pthread_create_2_1
0000000000008140 T pthread_create##GLIBC_2.2.5
If that doesn't work, you may need the dev version of pthread which is in libc6-dev. You can search for the package contents which has libpthread.so in http://packages.ubuntu.com/.
Note: Also, it's failing on -lpthreads. Should it be -lpthread instead (without the s)?
Edit 2
Create a simple CMakeLists.txt with the following and run cmake.
cmake_minimum_required (VERSION 2.8.7)
find_package(Threads)
What's the output? Does it find pthread?
My output is:
-- Looking for include file pthread.h
-- Looking for include file pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found.
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
This appears to be a long-standing CMake bug. Something else is going wrong, CMake gets confused, and reports this spurious problem instead of the real error.
Look for "thread" in your CMakeLists.txt file and temporarily remove that.
In my case, this immediately pinpointed a library (or rather, its development package) that was missing. Installed it, added it to debian/control's Build-Depends: section, recompiled, everything worked.
on ubuntu 18.04 I solved as below.
$ sudo apt-get install libboost-all-dev
I had the exact same problem, with the minimal Cmakelists.txt giving me the same output.
To solve this, just upgrade cmake to the lastest version (3.15 in my case)
I found out what was causing my issue. I initially did it with cmake2, but the project needed cmake3. I changed it to cmake3, but it didn't do a clean build, so some leftover garbage was messing everything up. When I cleaned everything and used cmake3 it worked.
I also meet this issue. Exactly the same situation: have pthread lib under /lib/x86..., but the find_package() always gives a "can not find lpthread error".
And after some check and consulation to my friend, we find that in my case, I build the cmake from source code and let the cmake link search path be wrong. So we deinstall the self-buid version and reinstall the cmake in a "correct" way by adding the apt source and using apt get install. That solves my issue. Hope this could help guys in the same situation.
Kindly try to install one dependency glibc-static
On Ubuntu you can try apt-get install build-essential
On other linux you may install package similar to glibc-static.
This question has many answers; it seems that many obscure issues can cause this bug. The other answers didn't work for me, and though my Output/Error logs were fairly clean, I couldn't find any additional error messages or failures there. So I'll add what I did in case it helps anyone who is in my situation.
In short, my problem was fixed when I deleted the entire build directory and rebuilt from scratch. Deleting only the CMakeCache wasn't enough. If you have this issue, try doing that and see if it works