Cpp grid with boolean value - c++

For a project we have an expanding grid which loads random chunks. In this chunk we place random objects. The chuncks are loaded vertical and horizontal. The player starts at 0,0 going up is 0,-1 going left -1,0. I want to see if a chunk is loaded. Because the area is expanding an array is not an option so i lookee at options with vectors. But vectors cant have negative indexes. How can i store a grid (with 2 posible negative) values and a boolean. Should i just cretate a class with 3 variables (2 ints and a boolean) or are there other options, where i can use some kind of multidimensional vector with negative values.?

You could use a map, for example:
typedef std::pair<int, int> coord;
typedef std::map<coord, bool> coord_bool_map;
usage:
coord_bool_map m;
m[coord(-1, -3)] = true;

But vectors cant have negative indexes
No, but you can translate the indices with an offset. Say, you have a vector of size 5, which should represent a one dimensional grid of idices from -2...2:
std::vector<T> grid = std::vector<T>(5);
int offset = 2; // the offset, also index of origin
int start = -offset; // first index
int end = grid.size() - offset // one past last index
// example use
int index = -1;
T element_at_index = grid[index + offset];
A std::deque might be more efficient for expanding the container from the front side.
When you do expand the front side, remember to update the offset.
If you use a vector of vectors (or deques), then you need an offset for both dimensions.

Related

iterating over a sub array which is not aligned with the array axes

I have a 2D image which is represented as a linear array and if I know the numbers of rows and columns, I can access the pixel values.
So, assuming I have a column major array, I can get the pixel value as:
// image is an unsigned char array
unsigned char getValue(int row, int col)
{
// Skipping the checks
return image[row * NumCols + col];
}
Now, I would like to iterate over a sub-array of this array and this is also simple to do as long as I know the row and column offset.
unsigned char getValue(int row, int col, int offsetRow, int offsetCol)
{
int index = (row + rowOffset) * NumCols + offsetCol + col;
return image[index];
}
Now, I want to iterate over a sub array which is not aligned with the array axes i.e. think of it as a rotated subarray within the original array. So, I have access to the positions of the 4 corners of this array. What would be an efficient way to create an iterator for this rotated array?
I am guessing I will need to compute the slope of the four boundaries and based on that I need to check if a pixel is within this boundary or not. Another way I can think of is to compute a bounding box mask which can tell whether a pixel is within the sub array or not and iterate over that.
I wonder if there is more efficient way to do something like this especially using some STL magic.

Use map instead of array in C++ to protect searching outside of array bounds?

I have a gridded rectangular file that I have read into an array. This gridded file contains data values and NODATA values; the data values make up a continuous odd shape inside of the array, with NODATA values filling in the rest to keep the gridded file rectangular. I perform operations on the data values and skip the NODATA values.
The operations I perform on the data values consist of examining the 8 surrounding neighbors (the current cell is the center of a 3x3 grid). I can handle when any of the eight neighbors are NODATA values, but when actual data values fall in the first or last row/column, I trigger an error by trying to access an array value that doesn't exist.
To get around this I have considered three options:
Add a new first and last row/column with NODATA values, and adjust my code accordingly - I can cycle through the internal 'original' array and handle the new NODATA values like the edges I'm already handling that don't fall in the first and last row/column.
I can create specific processes for handling the cells in first and last row/column that have data - modified for loops (a for loop that steps through a specific sequence/range) that only examine the surrounding cells that exist, though since I still need 8 neighboring values (NODATA/non-existent cells are given the same value as the central cell) I would have to copy blank/NODATA values to a secondary 3x3 grid. Though there maybe a way to avoid the secondary grid. This solution is annoying as I have to code up specialized routines to all corner cells (4 different for loops) and any cell in the 1st or last row/column (another 4 different for loops). With a single for loop for any non-edge cell.
Use a map, which based on my reading, appears capable of storing the original array while letting me search for locations outside the array without triggering an error. In this case, I still have to give these non-existent cells a value (equal to the center of the array) and so may or may not have to set up a secondary 3x3 grid as well; once again there maybe a way to avoid the secondary grid.
Solution 1 seems the simplest, solution 3 the most clever, and 2 the most annoying. Are there any solutions I'm missing? Or does one of these solutions deserve to be the clear winner?
My advice is to replace all read accesses to the array by a function. For example, arr[i][j] by getarr(i,j). That way, all your algorithmic code stays more or less unchanged and you can easily return NODATA for indices outside bounds.
But I must admit that it is only my opinion.
I've had to do this before and the fastest solution was to expand the region with NODATA values and iterate over the interior. This way the core loop is simple for the compiler to optimize.
If this is not a computational hot-spot in the code, I'd go with Serge's approach instead though.
To minimize rippling effects I used an array structure with explicit row/column strides, something like this:
class Grid {
private:
shared_ptr<vector<double>> data;
int origin;
int xStride;
int yStride;
public:
Grid(int nx, int ny) :
data( new vector<double>(nx*ny) ),
origin(0),
xStride(1),
yStride(nx) {
}
Grid(int nx, int ny, int padx, int pady) :
data( new vector<double>((nx+2*padx)*(ny+2*pady));
xStride(1),
yStride(nx+2*padx),
origin(nx+3*padx) {
}
double& operator()(int x, int y) {
return (*data)[origin + x*xStride + y*yStride];
}
}
Now you can do
Grid g(5,5,1,1);
Grid g2(5,5);
//Initialise
for(int i=0; i<5; ++i) {
for(int j=0; j<5; ++j) {
g(i,j)=i+j;
}
}
// Convolve (note we don't care about going outside the
// range, and our indices are unchanged between the two
// grids.
for(int i=0; i<5; ++i) {
for(int j=0; j<5; ++j) {
g2(i,j)=0;
g2(i,j)+=g(i-1,j);
g2(i,j)+=g(i+1,j);
g2(i,j)+=g(i,j-1);
g2(i,j)+=g(i,j+1);
}
}
Aside: This data structure is awesome for working with transposes, and sub-matrices. Each of those is just an adjustment of the offset and stride values.
Solution 1 is the standard solution. It takes maximum advantage of modern computer architectures, where a few bytes of memory are no big deal, and correct instruction prediction accelerates performance. As you keep accessing memory in a predictable pattern (with fixed strides), the CPU prefetcher will successfully read ahead.
Solution 2 saves a small amount of memory, but the special handling of the edges incurs a real slowdown. Still, the large chunk in the middle benefits from the prefetcher.
Solution 3 is horrible. Map access is O(log N) instead of O(1), and in practice it can be 10-20 times slower. Maps have poor locality of reference; the CPU prefetcher will not kick in.
If simple means "easy to read" I'd recommend you declare a class with an overloaded [] operator. Use it like a regular array but it'll have bounds checking to handle NODATA.
If simple means "high performance" and you have sparse grid with isolated DATA consider implementing linked lists to the DATA values and implement optimal operators that go directly to tge DATA values.
1 wastes memory proportional to your overall rectangle size, 3/maps are clumsy here, 2 is actually very easy to do:
T d[X][Y] = ...;
for (int x = 0; x < X; ++x)
for (int y = 0; y < Y; ++y) // move over d[x][y] centres
{
T r[3][3] = { { d[i,j], d[i,j], d[i,j] },
d[i,j], d[i,j], d[i,j] },
d[i,j], d[i,j], d[i,j] } };
for (int i = std::min(0, x-1); i < std::max(X-1, x+1); ++i)
for (int j = std::min(0, y-1); j < std::max(Y-1, y+1); ++j)
if (d[i][j] != NoData)
r[i-x][j-y] = d[i][j];
// use r for whatever...
}
Note that I'm using signed int very deliberately so x-1 and y-1 don't become huge positive numbers (as they would with say size_t) and break the std::min logic... but you could express it differently if you had some reason to prefer size_t (e.g. x == 0 ? 0 : x - 1).

I don't understand how to create and use dynamic arrays in C++

Okay so I have;
int grid_x = 5
int * grid;
grid = new int[grid_x];
*grid = 34;
cout << grid[0];
Should line 3 create an array with 5 elements? Or fill the first element with the number 5?
Line 4 fills the first element, how do I fill the rest?
Without line 4, line 5 reads "-842150451".
I don't understand what is going on, I'm trying to create a 2 dimensional array using x and y values specified by the user, and then fill each element one by one with numeric values also specified by the user. My above code was an attempt to try it out with a 1 dimensional array first.
The default C++ way of creating a dynamic(ally resizable) array of int is:
std::vector<int> grid;
Don't play around with unsafe pointers and manual dynamic allocation when the standard library already encapsulates this for you.
To create a vector of 5 elements, do this:
std::vector<int> grid(5);
You can then access its individual elements using []:
grid[0] = 34;
grid[1] = 42;
You can add new elements to the back:
// grid.size() is 5
grid.push_back(-42);
// grid.size() now returns 6
Consult reference docs to see all operations available on std::vector.
Should line 3 create an array with 5 elements?
Yes. It won't initialise them though, which is why you see a weird value.
Or fill the first element with the number 5?
new int(grid_x), with round brackets, would create a single object, not an array, and specify the initial value.
There's no way to allocate an array with new and initialise them with a (non-zero) value. You'll have to assign the values after allocation.
Line 4 fills the first element, how do I fill the rest?
You can use the subscript operator [] to access elements:
grid[0] = 34; // Equivalent to: *(grid) = 34
grid[1] = 42; // Equivalent to: *(grid+1) = 42
// ...
grid[4] = 77; // That's the last one: 5 elements from 0 to 4.
However, you usually don't want to juggle raw pointers like this; the burden of having to delete[] the array when you've finished with it can be difficult to fulfill. Instead, use the standard library. Here's one way to make a two-dimensional grid:
#include <vector>
std::vector<std::vector<int>> grid(grid_x, std::vector<int>(grid_y));
grid[x][y] = 42; // for any x is between 0 and grid_x-1, y between 0 and grid_y-1
Or might be more efficient to use a single contiguous array; you'll need your own little functions to access that as a two-dimenionsal grid. Something like this might be a good starting point:
template <typename T>
class Grid {
public:
Grid(size_t x, size_t y) : size_x(x), size_y(y), v(x*y) {}
T & operator()(size_t x, size_t y) {return v[y*size_x + x];}
T const & operator()(size_t x, size_t y) const {return v[y*size_x + x];}
private:
size_t size_x, size_y;
std::vector<T> v;
};
Grid grid(grid_x,grid_y);
grid(x,y) = 42;
Should line 3 create an array with 5 elements? Or fill the first element with the number 5?
Create an array with 5 elements.
Line 4 fills the first element, how do I fill the rest?
grid[n] = x;
Where n is the index of the element you want to set and x is the value.
Line 3 allocates memory for 5 integers side by side in memory so that they can be accessed and modified by...
The bracket operator, x[y] is exactly equivalent to *(x+y), so you could change Line 4 to grid[0] = 34; to make it more readable (this is why grid[2] will do the same thing as 2[grid]!)
An array is simply a contiguous block of memory. Therefore it has a starting address.
int * grid;
Is the C representation of the address of an integer, you can read the * as 'pointer'. Since your array is an array of integers, the address of the first element in the array is effectively the same as the address of the array. Hence line 3
grid = new int[grid_x];
allocates enough memory (on the heap) to hold the array and places its address in the grid variable. At this point the content of that memory is whatever it was when the physical silicon was last used. Reading from uninitialised memory will result in unpredictable values, hence your observation that leaving out line 4 results in strange output.
Remember that * pointer? On line four you can read it as 'the content of the pointer' and therefore
*grid = 34;
means set the content of the memory pointed to by grid to the value 34. But line 3 gave grid the address of the first element of the array. So line 4 sets the first element of the array to be 34.
In C, arrays use a zero-based index, which means that the first element of the array is number 0 and the last is number-of-elements-in-the-array - 1. So one way of filling the array is to index each element in turn to set a value to it.
for(int index = 0; index < grid_x; index++)
{
grid[index] = 34;
}
Alternatively, you could continue to use a pointer to do the same job.
for(int* pointerToElement = grid; 0 < grid_x; grid_x-- )
{
// save 34 to the address held by the pointer
/// and post-increment the pointer to the next element.
*pointerToElement++ = 34;
}
Have fun with arrays and pointers, they consistently provide a huge range of opportunities to spend sleepless hours wondering why your code doesn't work, PC reboots, router catches fire, etc, etc.
int grid_x = 5
int * grid;
grid = new int[grid_x];
*grid = 34;
cout << grid[0];
Should line 3 create an array with 5 elements? Or fill the first
element with the number 5?
Definitely the former. With the operator "new" you are allocating memory
Line 4 fills the first element, how do I fill the rest?
Use operator [], e.g.:
for int (i=0; i < grid_x; i++) { //Reset the buffer
grid[i] = 0;
}
Without line 4, line 5 reads "-842150451".
You are just reading uninitialized memory, it could be any value.
I don't understand what is going on, I'm trying to create a 2
dimensional array using x and y values specified by the user, and then
fill each element one by one with numeric values also specified by the
user. My above code was an attempt to try it out with a 1 dimensional
array first.
Other users explained how to use vectors. If you have to set only once the size of your array, I usually prefer boost::scoped_array which takes care of deleting when the variable goes out of scope.
For a two dimensional array of size not known at compile time, you need something a little bit trickier, like a scoped_array of scoped_arrays. Creating it will require necessarily a for loop, though.
using boost::scoped_array;
int grid_x;
int grid_y;
///Reading values from user...
scoped_array<scoped_array<int> > grid(new scoped_array<int> [grid_x]);
for (int i = 0; i < grid_x; i++)
grid[i] = scoped_array<int>(new int[grid_y] );
You will be able then to access your grid elements as
grid[x][y];
Note:
It would work also taking scoped_array out of the game,
typedef int* p_int_t;
p_int_t* grid = new p_int_t [grid_x];
for (int i = 0; i < grid_x; i++)
grid[i] = new int[grid_y];
but then you would have to take care of deletion at the end of the array's life, of ALL sub arrays.

C++ - read 1000 floats and insert them into a vector of size 10 by keeping the lowest 10 numbers only

So I am pretty new to c++ and I am not sure if there is a data structure already created to facilitate what I am trying to do (so I do not reinvent the wheel):
What I am trying to do
I am reading a file where I need to parse the file, do some calculations on every floating value on every row of the file, and return the top 10 results from the file in ascending order.
What am I trying to optimize
I am dealing with a 1k file and a 1.9 million row file so for each row, I will get a result that is of size 72 so in 1k row, I will need to allocate a vector of 72000 elements and for the 1.9 million rows ... well you get the idea.
What I have so far
I am currently working with a vector for the results which then I sort and resize it to 10.
const unsigned int vector_space = circularVector.size()*72;
//vector for the results
std::vector<ResultType> results;
results.reserve(vector_space);
but this is extremely inefficient.
*What I want to accomplish *
I want to only keep a vector of size 10, and whenever I perform a calculation, I will simply insert the value into the vector and remove the largest floating point that was in the vector, thus maintaining the top 10 results in ascending order.
Is there a structure already in c++ that will have such behavior?
Thanks!
EDIT: Changed to use the 10 lowest elements rather than the highest elements as the question now makes clear which is required
You can use a std::vector of 10 elements as a max heap, in which the elements are partially sorted such that the first element always contains the maximum value. Note that the following is all untested, but hopefully it should get you started.
// Create an empty vector to hold the highest values
std::vector<ResultType> results;
// Iterate over the first 10 entries in the file and put the results in the vector
for (... ; i < 10; i++) {
// Calculate the value of this row
ResultType r = ....
// Add it to the vector
results.push_back(r);
}
// Now that the vector is "full", turn it into a heap
std::make_heap(results.begin(), results.end());
// Iterate over all the remaining rows, adding values which are lower than the
// current maximum
for (i = 10; .....) {
// Calculate the value for this row
ResultType r = ....
// Compare it to the max element in the heap
if (r < results.front()) {
// Add the new element to the vector
results.push_back(r);
// Move the existing minimum to the back and "re-heapify" the rest
std::pop_heap(results.begin(), results.end());
// Remove the last element from the vector
results.pop_back();
}
}
// Finally, sort the results to put them all in order
// (using sort_heap just because we can)
std::sort_heap(results.begin(), results.end());
Yes. What you want is a priority queue or heap, defined so as to remove the lowest value. You just need to do such a remove if the size after the insertion is greater than 10. You should be able to do this with STL classes.
Just use std::set to do that, since in std::set all values are sorted from min to max.
void insert_value(std::set<ResultType>& myset, const ResultType& value){
myset.insert(value);
int limit = 10;
if(myset.size() > limit){
myset.erase(myset.begin());
}
}
I think MaxHeap will work for this problem.
1- Create a max heap of size 10.
2- Fill the heap with 10 elements for the first time.
3- For 11th element check it with the largest element i.e root/element at 0th index.
4- If 11th element is smaller; replace the root node with 11th element and heapify again.
Repeat the same steps until the whole file is parsed.

Fast way to pick randomly from a set, with each entry picked only once?

I'm working on a program to solve the n queens problem (the problem of putting n chess queens on an n x n chessboard such that none of them is able to capture any other using the standard chess queen's moves). I am using a heuristic algorithm, and it starts by placing one queen in each row and picking a column randomly out of the columns that are not already occupied. I feel that this step is an opportunity for optimization. Here is the code (in C++):
vector<int> colsleft;
//fills the vector sequentially with integer values
for (int c=0; c < size; c++)
colsleft.push_back(c);
for (int i=0; i < size; i++)
{
vector<int>::iterator randplace = colsleft.begin() + rand()%colsleft.size();
/* chboard is an integer array, with each entry representing a row
and holding the column position of the queen in that row */
chboard[i] = *randplace;
colsleft.erase(randplace);
}
If it is not clear from the code: I start by building a vector containing an integer for each column. Then, for each row, I pick a random entry in the vector, assign its value to that row's entry in chboard[]. I then remove that entry from the vector so it is not available for any other queens.
I'm curious about methods that could use arrays and pointers instead of a vector. Or <list>s? Is there a better way of filling the vector sequentially, other than the for loop? I would love to hear some suggestions!
The following should fulfill your needs:
#include <algorithm>
...
int randplace[size];
for (int i = 0; i < size; i ++)
randplace[i] = i;
random_shuffle(randplace, randplace + size);
You can do the same stuff with vectors, too, if you wish.
Source: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1299.asp
Couple of random answers to some of your questions :):
As far as I know, there's no way to fill an array with consecutive values without iterating over it first. HOWEVER, if you really just need consecutive values, you do not need to fill the array - just use the cell indices as the values: a[0] is 0 and a[100] is 100 - when you get a random number, treat the number as the value.
You can implement the same with a list<> and remove cells you already hit, or...
For better performance, rather than removing cells, why not put an "already used" value in them (like -1) and check for that. Say you get a random number like 73, and a[73] contains -1, you just get a new random number.
Finally, describing item 3 reminded me of a re-hashing function. Perhaps you can implement your algorithm as a hash-table?
Your colsleft.erase(randplace); line is really inefficient, because erasing an element in the middle of the vector requires shifting all the ones after it. A more efficient approach that will satisfy your needs in this case is to simply swap the element with the one at index (size - i - 1) (the element whose index will be outside the range in the next iteration, so we "bring" that element into the middle, and swap the used one out).
And then we don't even need to bother deleting that element -- the end of the array will accumulate the "chosen" elements. And now we've basically implemented an in-place Knuth shuffle.