Optimizer: replace const reference with const object - c++

Chandler Carruth in his talk on compiler optimization said that compilers are terrible at optimizing functions with parameters passed by reference. I can understand that it is difficult when parameter is a non-const reference, since the compiler has to deal with memory, or when type of the parameter is complex (some weird structure or class). But if the parameter is const reference and a builtin type are there really any problems? Can optimizer replace const float& with const float? It can be even more helpful when use of SSE instructions is enabled since compiler will be able properly align data for them.

Can optimizer replace const float& with const float?
No, they cannot do that, because it may change the semantic of the program. A const reference is still a reference. It cannot be replaced by value. Consider this example:
void foo(const float& x, float a[]) {
cout << x << endl;
a[0] += 10.5;
cout << x << endl;
}
int main() {
float a[1] = { 3.25 };
foo(a[0], a);
return 0;
}
This prints
3.25
13.75
Demo 1
If you change const float& with const float, the result would be
3.25
3.25
Demo 2
The issue here is that a[0] is the same as x, but the connection is established by the caller, which is outside of optimizer's control.

I listened to (whatched) that talk on Youtube a while back.
The optimiser can not replace references if it doesn't know what the function actually does. E.g.
func.c:
float func(const float& f)
{
return f * 2;
}
main.c:
float complicated()
{
float f = 3.0;
float f2 = func(f);
f2 += 42 + f;
return f2 / 17.0;
}
int main()
{
std::cout << complicated() << std::endl;
}
So even tho' f in complicated isn't being modified in func, the compiler doesn't KNOW this. So it has to pass f as a reference, and func.
If the function is inlineable (because it's in the same source and short enough), then it can indeed inline the function and remove the reference use. But if the source of the function is in a different function, you can't know what that function does.
If the source is not available, the compiler has to pass by reference, because it's the contract of the function - the arguments are passed differently for one thing, but even if that wasn't the case [as dasblinkenlight shows in that answer] the meaning of the code can change if the argument is a reference or not.

Yet another reason why this substitution cannot be made is that the function can actually const cast away the constness, and then mutate the variable, which would be reflected in the calling scope. This is only UB if the variable passed in is const. That is:
void f(const int & x) {
const_cast<int &>(x) = 0;
}
int x = 1;
f(x);
Is legal and does what you'd expect. Of course, this code is hideous etc, but still legal. Change the const reference to a by-value pass and you would change the program, making the compiler non-conformant. Because of const_cast and how broadly it can be used, compilers don't really make any use of const (except to some degree in local variables); Chandler mentions this as well in one of his talks.

But if the parameter is const reference and a builtin type are there
really any problems?
It's not really for being to a "complex" or to a built-in type that references are "hard" to optimize. The problem is aliasing, which is a much worse beast to deal with that affects pointers and references due to their intrinsic nature.
Can optimizer replace const float& with const float?
#dasblinkenlight makes a very good example were that optimization would not be possible as it affects the visible behavior of the code, which optimizers cannot alter. The realistic regression is that usually sizeof (float&) > sizeof(float), so you're technically consuming more bytes for that parameter; while true, it's effectively irrelevant, especially if passed in a register.
For those limited memory accesses, in both count and side-effect possibilities, aliasing is unlikely to be a problem, or still not worth employing techniques to try to optimize it.

Related

Are const arguments "real" constants?

AFAIK removing constness from const variables is undefined behavior:
const int i = 13;
const_cast<int&>(i) = 42; //UB
std::cout << i << std::endl; //out: 13
But are const function arguments "real" constants? Let's consider following example:
void foo(const int k){
const_cast<int&>(k) = 42; //UB?
std::cout << k << std::endl;
}
int main(){
foo(13); //out: 42
}
Seems like compiler doesn't apply the same optimizations to const int k as to const int i.
Is there UB in the second example? Does const int k help compiler to optimize code or compiler just checks const correctness and nothing more?
Example
The i in const int i = 13; can be used as constant expression (as template argument or case label) and attempts to modify it are undefined behavior. It is so for backwards compatibility with pre-C++11 code that did not have constexpr.
The declarations void foo(const int k); and void foo(int k); are declaring same function; the top level const of parameters does not participate in function's signature. Parameter k must be passed by value and so can't be "real" constant. Casting its constness away is not undefined behavior. Edit: But any attempt to modify it is still undefined because it is const object [basic.type.qualifier] (1.1):
A const object is an object of type const T or a non-mutable subobject of such an object.
By [dcl.type.cv] 4 const object can't be modified:
Except that any class member declared mutable (10.1.1) can be modified, any attempt to modify a const object during its lifetime (6.8) results in undefined behavior.
And since function parameters are with automatic storage duration a new object within its storage can't be also created by [basic.life] 10:
Creating a new object within the storage that a const complete object with static, thread, or automatic storage duration occupies, or within the storage that such a const object used to occupy before its lifetime ended, results in undefined behavior.
It is unclear why k was declared const at the first place if there is plan to cast its constness away? The only purpose of it feels to be to confuse and to obfuscate.
Generally we should favor immutability everywhere since it helps people to reason. Also it may help compilers to optimize. However where we only declare immutability, but do not honor it, there it works opposite and confuses.
Other thing that we should favor are pure functions. These do not depend on or modify any external state and have no side-effects. These also are easier to reason about and to optimize both for people and for compilers. Currently such functions can be declared constexpr. However declaring the by-value parameters as const does not help any optimizations to my knowledge, even in context of constexpr functions.
But are const function arguments "real" constants?
I think the answer is yes.
They won't be stored in ROM (for example), so casting away const will at least appear to work OK. But my reading of the standard is that the the parameter's type is const int and therefore it is a const object ([basic.type.qualifier]), and so modifying it is undefined ([dcl.type.cv]).
You can confirm the parameter's type fairly easily:
static_assert( std::is_same_v<const int, decltype(k)> );
Is there UB in the second example?
Yes, I think there is.
Does const int k help compiler to optimize code or compiler just checks const correctness and nothing more?
In theory the compiler could assume that in the following example k is not changed by the call to g(const int&), because modifying k would be UB:
extern void g(const int&);
void f(const int k)
{
g(k);
return k;
}
But in practice I don't think compilers take advantage of that, instead they assume that k might be modified (compiler explorer demo).
I'm not sure what you mean by a "real" const, but here goes.
Your const int i is a variable declaration outside of any function. Since modifying that variable would cause Undefined Behaviour, the compiler gets to assume that its value will never change. One easy optimization would be that anywhere you read from i, the compiler doesn't have to go and read the value from main memory, it can emit the assembly to use the value directly.
Your const int k (or the more interesting const int & k) is a function parameter. All it promises is that this function won't be changing the value of k. That doesn't mean that it cannot be changed somewhere else. Each invocation of the function could have a different value for k.

What kind of optimization does const offer in C/C++?

I know that where possible you should use the const keyword when passing parameters around by reference or by pointer for readability reasons. Is there any optimizations that the compiler can do if I specify that an argument is constant?
There could be a few cases:
Function parameters:
Constant reference:
void foo(const SomeClass& obj)
Constant SomeClass object:
void foo(const SomeClass* pObj)
And constant pointer to SomeClass:
void foo(SomeClass* const pObj)
Variable declarations:
const int i = 1234
Function declarations:
const char* foo()
What kind of compiler optimizations each one offers (if any)?
Source
Case 1:
When you declare a const in your program,
int const x = 2;
Compiler can optimize away this const by not providing storage for this variable; instead it can be added to the symbol table. So a subsequent read just needs indirection into the symbol table rather than instructions to fetch value from memory.
Note: If you do something like:
const int x = 1;
const int* y = &x;
Then this would force compiler to allocate space for x. So, that degree of optimization is not possible for this case.
In terms of function parameters const means that parameter is not modified in the function. As far as I know, there's no substantial performance gain for using const; rather it's a means to ensure correctness.
Case 2:
"Does declaring the parameter and/or the return value as const help the compiler to generate more optimal code?"
const Y& f( const X& x )
{
// ... do something with x and find a Y object ...
return someY;
}
What could the compiler do better? Could it avoid a copy of the parameter or the return value?
No, as argument is already passed by reference.
Could it put a copy of x or someY into read-only memory?
No, as both x and someY live outside its scope and come from and/or are given to the outside world. Even if someY is dynamically allocated on the fly within f() itself, it and its ownership are given up to the caller.
What about possible optimizations of code that appears inside the body of f()? Because of the const, could the compiler somehow improve the code it generates for the body of f()?
Even when you call a const member function, the compiler can't assume that the bits of object x or object someY won't be changed. Further, there are additional problems (unless the compiler performs global optimization): The compiler also may not know for sure that no other code might have a non-const reference that aliases the same object as x and/or someY, and whether any such non-const references to the same object might get used incidentally during the execution of f(); and the compiler may not even know whether the real objects, to which x and someY are merely references, were actually declared const in the first place.
Case 3:
void f( const Z z )
{
// ...
}
Will there be any optimization in this?
Yes because the compiler knows that z truly is a const object, it could perform some useful optimizations even without global analysis. For example, if the body of f() contains a call like g( &z ), the compiler can be sure that the non-mutable parts of z do not change during the call to g().
Before giving any answer, I want to emphasize that the reason to use or not use const really ought to be for program correctness and for clarity for other developers more so than for compiler optimizations; that is, making a parameter const documents that the method will not modify that parameter, and making a member function const documents that that member will not modify the object of which it is a member (at least not in a way that logically changes the output from any other const member function). Doing this, for example, allows developers to avoid making unnecessary copies of objects (because they don't have to worry that the original will be destroyed or modified) or to avoid unnecessary thread synchronization (e.g. by knowing that all threads merely read and do not mutate the object in question).
In terms of optimizations a compiler could make, at least in theory, albeit in an optimization mode that allows it to make certain non-standard assumptions that could break standard C++ code, consider:
for (int i = 0; i < obj.length(); ++i) {
f(obj);
}
Suppose the length function is marked as const but is actually an expensive operation (let's say it actually operates in O(n) time instead of O(1) time). If the function f takes its parameter by const reference, then the compiler could potentially optimize this loop to:
int cached_length = obj.length();
for (int i = 0; i < cached_length; ++i) {
f(obj);
}
... because the fact that the function f does not modify the parameter guarantees that the length function should return the same values each time given that the object has not changed. However, if f is declared to take the parameter by a mutable reference, then length would need to be recomputed on each iteration of the loop, as f could have modified the object in a way to produce a change in the value.
As pointed out in the comments, this is assuming a number of additional caveats and would only be possible when invoking the compiler in a non-standard mode that allows it to make additional assumptions (such as that const methods are strictly a function of their inputs and that optimizations can assume that code will never use const_cast to convert a const reference parameter to a mutable reference).
Function parameters:
const is not significant for referenced memory. It's like tying a hand behind the optimizer's back.
Suppose you call another function (e.g. void bar()) in foo which has no visible definition. The optimizer will have a restriction because it has no way of knowing whether or not bar has modified the function parameter passed to foo (e.g. via access to global memory). Potential to modify memory externally and aliasing introduce significant restrictions for optimizers in this area.
Although you did not ask, const values for function parameters does allow optimizations because the optimizer is guaranteed a const object. Of course, the cost to copy that parameter may be much higher than the optimizer's benefits.
See: http://www.gotw.ca/gotw/081.htm
Variable declarations: const int i = 1234
This depends on where it is declared, when it is created, and the type. This category is largely where const optimizations exist. It is undefined to modify a const object or known constant, so the compiler is allowed to make some optimizations; it assumes you do not invoke undefined behavior and that introduces some guarantees.
const int A(10);
foo(A);
// compiler can assume A's not been modified by foo
Obviously, an optimizer can also identify variables which do not change:
for (int i(0), n(10); i < n; ++i) { // << n is not const
std::cout << i << ' ';
}
Function declarations: const char* foo()
Not significant. The referenced memory may be modified externally. If the referenced variable returned by foo is visible, then an optimizer could make an optimization, but that has nothing to do with the presence/absence of const on the function's return type.
Again, a const value or object is different:
extern const char foo[];
The exact effects of const differ for each context where it is used. If const is used while declaring an variable, it is physically const and potently resides in read-only memory.
const int x = 123;
Trying to cast the const-ness away is undefined behavour:
Even though const_cast may remove constness or volatility from any pointer or reference, using the resulting pointer or reference to write to an object that was declared const or to access an object that was declared volatile invokes undefined behavior. cppreference/const_cast
So in this case, the compiler may assume that the value of x is always 123. This opens some optimization potential (constants propagation)
For functions it's a different matter. Suppose:
void doFancyStuff(const MyObject& o);
our function doFancyStuff may do any of the following things with o.
not modify the object.
cast the constness away, then modify the object
modify an mutable data member of MyObject
Note that if you call our function with an instance of MyObject that was declared as const, you'll invoke undefined behavior with #2.
Guru question: will the following invoke undefined behavior?
const int x = 1;
auto lam = [x]() mutable {const_cast<int&>(x) = 2;};
lam();
SomeClass* const pObj creates a constant object of pointer type. There exists no safe method of changing such an object, so the compiler can, for example, cache it into a register with only one memory read, even if its address is taken.
The others don't enable any optimizations specifically, although the const qualifier on the type will affect overload resolution and possibly result in different and faster functions being selected.

Any efficiency benefit to passing primitive types by reference instead of returning by value?

In C++, is there an efficiency benefit in passing primitive types by reference instead of returning by value?
[...] is there an efficiency benefit to passing primitive types by reference instead of returning by value?
Unlikely. First of all, unless you have data from your profiler that give you a reason for doing otherwise, you should not worry about performance issues when designing your program. Choose the simplest design, and the design that best communicates your intent.
Moreover, primitive types are usually cheap to copy, so this is unlikely to be the bottleneck in your application. And since it is the simplest option and the one that makes the interface of the function clearest, you should pass by value.
Just looking at the signature, it is clear that a function such as:
void foo(int);
Will not store a reference to the argument (and consequently, won't run into issues such as dangling references or pointers), will not alter the argument in a way that is visible to the caller, and so on and so on.
None of the above can be deduced from a function signature like:
void f(int&); // May modify the argument! Will it? Who knows...
Or even:
void f(int const&); // May store a reference! Will it? Who knows...
Besides, passing by value may even improve performance by allowing the compiler to perform optimizations that potential aliasing would prevent.
Of course, all of this is under the assumption that you do not actually need to modify the argument inside the function in a way that side-effects on that argument will be visible to the caller after the function returns - or store a reference to that argument.
If that is the case, then you should of course pass by reference and use the appropriate const qualification.
For a broader discussion, also see this Q&A on StackOverflow.
In general there won't be any performance benefit and there may well be a performance cost. Consider this code:
void foo(const int& a, const int& b, int& res) {
res = a + b;
res *= a;
}
int a = 1, b = 2;
foo(a, b, a);
When a compiler encounters a function like add() it must assume that a and res may alias as in the example call so without global optimizations it will have to generate code that loads a, loads b, then stores the result of a + b to res, then loads a again and performs a multiply, before storing the result back to res.
If instead you'd written your function like this:
int foo(int a, int b) {
int res = a + b;
res *= a;
return res;
}
int a = 1, b = 2;
int c = foo(a, b);
Then the compiler can load a and b into registers (or even pass them directly in registers), do the add and multiply in registers and then return the result (which in many calling conventions can be returned directly in the register it was generated in).
In most cases you actually want the semantics in the pass / return by value version of foo and the aliasing semantics possible in the pass / return by reference version do not really need to be supported. You can end up paying a real performance penalty by using the pass / return by reference version.
Chandler Carruth gave a good talk that touched on this at C++ Now.
There may be some obscure architecture where this is the case, but I'm not aware of any where returning builtin types is less performant than passing an out parameter by reference. You can always examine the relevant assembly to compare if you want.

C++ pass by reference for large objects

If I have a C++ function declaration:
int func(const vector<int> a)
Would it always be beneficial to replace it with
int func(const vector<int> &a)
since the latter does not need to make a copy of a to pass into the function?
In general, yes. You should always pass large objects by reference (or pass a pointer to them, especially if you are using C).
In terms of efficiency like you're thinking, almost always yes. There are times where (purportedly) this may be slower, typically with types that are fundamental or small:
// copy x? fits in register: fast
void foo(const int x);
// reference x? requires dereferencing on typical implementations: slow
void foo(const int& x);
But with inlining this doesn't matter anyway, plus you can just type it by-value yourself; this only matters with generic template functions.
However it's important to note that your transformation may not always be valid, namely because your function gets its own copy of the data. Consider this simpler example:
void foo(const int x, int& y)
{
y += x;
y += x;
}
int v = 1;
foo(v, v); // results in v == 3
Make your transformation and you get:
void foo(const int& x, int& y)
{
y += x;
y += x;
}
int v = 1;
foo(v, v); // results in v == 4
Because even though you cannot write to x, it can be written to through other means. This is called aliasing. While probably not a concern with the example you've given (though global variables could still alias!), just be wary of the difference in principle.
Lastly, if you're going to make your own copy anyway, just do it in the parameter list; the compiler can optimize that for you, especially with C++11's rvalue references/move semantics.
Mostly it would be more efficient -- but if it happens that func needs to make its own copy of the vector and modify it destructively while it does whatever it does anyway, then you might as well save a few lines and let the language make the copy for you implicitly as a pass-by-value parameter. It is conceivable that the compiler might then be able to figure out that the copying can be omitted if the caller is not actually using its copy of the vector afterwards.
In short, yes. Since you can't modify a anyway, all your function body could do is make another copy, which you can just as well make from a const-reference.
Some reasons I can imagine the pass by value could be more efficient:
It can be better paralellized. Because there's no aliasing. The original can change without affecting the value inside the function.
Better cache locality
Correct. Passing a reference will avoid a copy. You should make use of references when there's a copy involved and you don't actually need one. (Either because you don't intent to modify the value, in which case operating on the original is fine and you'd use a const reference, or because you do want to modify the original rather than a copy of it, in which case you'd use a non-const reference.)
This isn't limited to function arguments of course. For example, look at this function:
std::string foo();
Most people would use that function in this way:
std::string result = foo();
However, if you're not modifying result, this is way better:
const std::string& result = foo();
No copy is being made. Also, contrary to pointers, a reference guarantees that the temporary returned by foo() stays valid and will not go out of scope (a pointer to a temporary is dangerous, while a reference to a temporary is perfectly safe.)
The C++-11 standard solves this problem by using move semantics, but most existing code doesn't make use of this new feature yet, so using references wherever possible is a good habit to get into.
Also, note that you have to be careful about temporary lifetimes when binding temporaries to references, e.g.:
const int& f(const int& x)
{ return x; }
const int& y = f(23);
int z = y; /* OOPS */
The point being that the lifetime of the temporary int with value 23 doesn't extend beyond the end of the expression binding f(23) to y, so the attempt to assign y to z results in undefined behavior (due to the dangling reference).
Note that when you're dealing with POD types (Plain Old Data), like int or char, you don't win anything by avoiding a copy. Usually a reference is just as big as an int or long int (usually as big as a pointer), so copying an int by reference is the same as copying the int itself.

Why can't a function have a reference argument in C?

For example: void foo( int& i ); is not allowed. Is there a reason for this, or was it just not part of the specification? It is my understanding that references are generally implemented as pointers. In C++, is there any functional difference (not syntactic/semantic) between void foo( int* i ) and void foo( int& i )?
Because references are a C++ feature.
References are merely syntactic vinegar for pointers. Their implementation is identical, but they hide the fact that the called function might modify the variable. The only time they actually fill an important role is for making other C++ features possible - operator overloading comes to mind - and depending on your perspective these might also be syntactic vinegar.
For example: void foo( int& i ); is not allowed. Is there a reason for this, or was it just not part of the specification?
It was not a part of the specification. The syntax "type&" for references were introduced in C++.
It is my understanding that references are generally implemented as pointers. In C++, is there any functional difference (not syntactic/semantic) between void foo( int* i ) and void foo( int& i )?
I am not sure if it qualifies as a semantic difference, but references offer better protection against dereferencing nulls.
Because the & operator has only 2 meanings in C:
address of its operand (unary),
and, the bitwise AND operator (binary).
int &i; is not a valid declaration in C.
For a function argument, the difference between pointer and reference is not that big a deal, but in many cases (e.g. member variables) having references substantially limits what you can do, since it cannot be rebound.
References were not present in C. However, C did have what amounts to mutable arguments passed by reference. Example:
int foo(int in, int *out) { return (*out)++ + in; }
// ...
int x = 1; int y = 2;
x = foo(x, &y);
// x == y == 3.
However, it was a common error to forget to dereference "out" in every usage in more complicated foo()s. C++ references allowed a smoother syntax for representing mutable members of the closure. In both languages, this can confound compiler optimizations by having multiple symbols referring to the same storage. (Consider "foo(x,x)". Now it's undefined whether the "++" occurs after only "*out" or also after "in", since there's no sequence point between the two uses and the increment is only required to happen sometime after the value of the left expression is taken.)
But additionally, explicit references disambiguate two cases to a C++ compiler. A pointer passed into a C function could be a mutable argument or a pointer to an array (or many other things, but these two adequately illustrate the ambiguity). Contrast "char *x" and "char *y". (... or fail to do so, as expected.) A variable passed by reference into a C++ function is unambiguously a mutable member of the closure. If for instance we had
// in class baz's scope
private: int bar(int &x, int &y) {return x - y};
public : int foo(int &x, int &y) {return x + bar(x,y);}
// exit scope and wander on ...
int a = 1; int b = 2; baz c;
a = c.foo(a,b);
We know several things:
bar() is only called from foo(). This means bar() can be compiled so that its two arguments are found in foo()'s stack frame instead of it's own. It's called copy elision and it's a great thing.
Copy elision gets even more exciting when a function is of the form "T &foo(T &)", the compiler knows a temporary is going in and coming out, and the compiler can infer that the result can be constructed in place of the argument. Then no copying of the temporary in or the result out need be compiled in. foo() can be compiled to get its argument from some enclosing stack frame and write its result directly to some enclosing stack frame.
a recent article about copy elision and (surprise) it works even better if you pass by value in modern compilers (and how rvalue references in C++0x will help the compilers skip even more pointless copies), see http://cpp-next.com/archive/2009/08/want-speed-pass-by-value/ .