Related
Suppose we have a variadic templated class like
template<class...Ts>
class X{
template<size_t I>
constexpr bool shouldSelect();
std::tuple<TransformedTs...> mResults; // this is want I want eventually
};
where the implementation of shouldSelect is not provided, but what it does is that, given an index i referring to the ith element of the variadic Ts, tells you whether we should select it to the subset.
I want to do a transformation on Ts such that only classes Ts at indexes that results in shouldSelect returning true should be selected. Is there an easy way to do this?
For example, if shouldSelect returns true for I = 1,2,4, and Ts... = short, int, double, T1, T2, then I want to get a TransformedTs... that is made up of int, double, T2. Then I can use this TransformedTs... in the same class.
If you're able to use C++17, this is pretty easy to implement using a combination of if constexpr and expression folding.
Start with some helper types, one with parameters to track the arguments to X::shouldSelect<I>(), and the other with a type to test.
template <typename T, size_t I, typename...Ts>
struct Accumulator {
using Type = std::tuple<Ts...>;
};
template <typename T>
struct Next { };
Then an operator overload either adds the type to the accumulator, or not with if constexpr:
template <typename TAcc, size_t I, typename... Ts, typename TArg>
decltype(auto) operator +(Accumulator<TAcc, I, Ts...>, Next<TArg>) {
if constexpr (TAcc::template shouldSelect<I>()) {
return Accumulator<TAcc, I + 1, Ts..., TArg>{};
} else {
return Accumulator<TAcc, I + 1, Ts...>{};
}
}
Finally, you can put it all together with a fold expression and extract the type with decltype:
template <template <typename... Ts> class T, typename... Ts>
constexpr decltype(auto) FilterImpl(const T<Ts...>&) {
return (Accumulator<T<Ts...>, 0>{} + ... + Next<Ts>{});
}
template<typename T>
using FilterT = typename decltype(FilterImpl(std::declval<T>()))::Type;
Usage:
using Result = FilterT<X<int, double, bool, etc>>;
Demo: https://godbolt.org/z/9h89zG
If you don't have C++17 available to you, it's still possible. You can do the same sort of conditional type transfer using a recursive inheritance chain to iterate though each type in the parameter pack, and std::enable_if to do the conditional copy. Below is the same code, but working in C++11:
// Dummy type for copying parameter packs
template <typename... Ts>
struct Mule {};
/* Filter implementation */
template <typename T, typename Input, typename Output, size_t I, typename = void>
struct FilterImpl;
template <typename T, typename THead, typename... TTail, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<THead, TTail...>, Mule<OutputTs...>, I, typename std::enable_if<( T::template shouldSelect<I>() )>::type >
: FilterImpl<T, Mule<TTail...>, Mule<OutputTs..., THead>, (I + 1)>
{ };
template <typename T, typename THead, typename... TTail, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<THead, TTail...>, Mule<OutputTs...>, I, typename std::enable_if<( !T::template shouldSelect<I>() )>::type >
: FilterImpl<T, Mule<TTail...>, Mule<OutputTs...>, (I + 1)>
{ };
template <typename T, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<>, Mule<OutputTs...>, I>
{
using Type = std::tuple<OutputTs...>;
};
/* Helper types */
template <typename T>
struct Filter;
template <template <typename... Ts> class T, typename... Ts>
struct Filter<T<Ts...>> : FilterImpl<T<Ts...>, Mule<Ts...>, Mule<>, 0>
{ };
template <typename T>
using FilterT = typename Filter<T>::Type;
Demo: https://godbolt.org/z/esso4M
Is there a utility in the standard library to get the index of a given type in std::variant? Or should I make one for myself? That is, I want to get the index of B in std::variant<A, B, C> and have that return 1.
There is std::variant_alternative for the opposite operation. Of course, there could be many same types on std::variant's list, so this operation is not a bijection, but it isn't a problem for me (I can have first occurrence of type on list, or unique types on std::variant list).
Update a few years later: My answer here may be a cool answer, but this is the correct one. That is how I would solve this problem today.
We could take advantage of the fact that index() almost already does the right thing.
We can't arbitrarily create instances of various types - we wouldn't know how to do it, and arbitrary types might not be literal types. But we can create instances of specific types that we know about:
template <typename> struct tag { }; // <== this one IS literal
template <typename T, typename V>
struct get_index;
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: std::integral_constant<size_t, std::variant<tag<Ts>...>(tag<T>()).index()>
{ };
That is, to find the index of B in variant<A, B, C> we construct a variant<tag<A>, tag<B>, tag<C>> with a tag<B> and find its index.
This only works with distinct types.
I found this answer for tuple and slightly modificated it:
template<typename VariantType, typename T, std::size_t index = 0>
constexpr std::size_t variant_index() {
static_assert(std::variant_size_v<VariantType> > index, "Type not found in variant");
if constexpr (index == std::variant_size_v<VariantType>) {
return index;
} else if constexpr (std::is_same_v<std::variant_alternative_t<index, VariantType>, T>) {
return index;
} else {
return variant_index<VariantType, T, index + 1>();
}
}
It works for me, but now I'm curious how to do it in old way without constexpr if, as a structure.
You can also do this with a fold expression:
template <typename T, typename... Ts>
constexpr size_t get_index(std::variant<Ts...> const&) {
size_t r = 0;
auto test = [&](bool b){
if (!b) ++r;
return b;
};
(test(std::is_same_v<T,Ts>) || ...);
return r;
}
The fold expression stops the first time we match a type, at which point we stop incrementing r. This works even with duplicate types. If a type is not found, the size is returned. This could be easily changed to not return in this case if that's preferable, since missing return in a constexpr function is ill-formed.
If you dont want to take an instance of variant, the argument here could instead be a tag<variant<Ts...>>.
With Boost.Mp11 this is a short, one-liner:
template<typename Variant, typename T>
constexpr size_t IndexInVariant = mp_find<Variant, T>::value;
Full example:
#include <variant>
#include <boost/mp11/algorithm.hpp>
using namespace boost::mp11;
template<typename Variant, typename T>
constexpr size_t IndexInVariant = mp_find<Variant, T>::value;
int main()
{
using V = std::variant<int,double, char, double>;
static_assert(IndexInVariant<V, int> == 0);
// for duplicates first idx is returned
static_assert(IndexInVariant<V, double> == 1);
static_assert(IndexInVariant<V, char> == 2);
// not found returns ".end()"/ or size of variant
static_assert(IndexInVariant<V, float> == 4);
// beware that const and volatile and ref are not stripped
static_assert(IndexInVariant<V, int&> == 4);
static_assert(IndexInVariant<V, const int> == 4);
static_assert(IndexInVariant<V, volatile int> == 4);
}
One fun way to do this is to take your variant<Ts...> and turn it into a custom class hierarchy that all implement a particular static member function with a different result that you can query.
In other words, given variant<A, B, C>, create a hierarchy that looks like:
struct base_A {
static integral_constant<int, 0> get(tag<A>);
};
struct base_B {
static integral_constant<int, 1> get(tag<B>);
};
struct base_C {
static integral_constant<int, 2> get(tag<C>);
};
struct getter : base_A, base_B, base_C {
using base_A::get, base_B::get, base_C::get;
};
And then, decltype(getter::get(tag<T>())) is the index (or doesn't compile). Hopefully that makes sense.
In real code, the above becomes:
template <typename T> struct tag { };
template <std::size_t I, typename T>
struct base {
static std::integral_constant<size_t, I> get(tag<T>);
};
template <typename S, typename... Ts>
struct getter_impl;
template <std::size_t... Is, typename... Ts>
struct getter_impl<std::index_sequence<Is...>, Ts...>
: base<Is, Ts>...
{
using base<Is, Ts>::get...;
};
template <typename... Ts>
struct getter : getter_impl<std::index_sequence_for<Ts...>, Ts...>
{ };
And once you establish a getter, actually using it is much more straightforward:
template <typename T, typename V>
struct get_index;
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: decltype(getter<Ts...>::get(tag<T>()))
{ };
That only works in the case where the types are distinct. If you need it to work with independent types, then the best you can do is probably a linear search?
template <typename T, typename>
struct get_index;
template <size_t I, typename... Ts>
struct get_index_impl
{ };
template <size_t I, typename T, typename... Ts>
struct get_index_impl<I, T, T, Ts...>
: std::integral_constant<size_t, I>
{ };
template <size_t I, typename T, typename U, typename... Ts>
struct get_index_impl<I, T, U, Ts...>
: get_index_impl<I+1, T, Ts...>
{ };
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: get_index_impl<0, T, Ts...>
{ };
My two cents solutions:
template <typename T, typename... Ts>
constexpr std::size_t variant_index_impl(std::variant<Ts...>**)
{
std::size_t i = 0; ((!std::is_same_v<T, Ts> && ++i) && ...); return i;
}
template <typename T, typename V>
constexpr std::size_t variant_index_v = variant_index_impl<T>(static_cast<V**>(nullptr));
template <typename T, typename V, std::size_t... Is>
constexpr std::size_t variant_index_impl(std::index_sequence<Is...>)
{
return ((std::is_same_v<T, std::variant_alternative_t<Is, V>> * Is) + ...);
}
template <typename T, typename V>
constexpr std::size_t variant_index_v = variant_index_impl<T, V>(std::make_index_sequence<std::variant_size_v<V>>{});
If you wish a hard error on lookups of not containing type or duplicate type - here are static asserts:
constexpr auto occurrences = (std::is_same_v<T, Ts> + ...);
static_assert(occurrences != 0, "The variant cannot have the type");
static_assert(occurrences <= 1, "The variant has duplicates of the type");
Another take on it:
#include <type_traits>
namespace detail {
struct count_index {
std::size_t value = 0;
bool found = false;
template <typename T, typename U>
constexpr count_index operator+(const std::is_same<T, U> &rhs)
{
if (found)
return *this;
return { value + !rhs, rhs};
}
};
}
template <typename Seq, typename T>
struct index_of;
template <template <typename...> typename Seq, typename... Ts, typename T>
struct index_of<Seq<Ts...>, T>: std::integral_constant<std::size_t, (detail::count_index{} + ... + std::is_same<T, Ts>{}).value> {
static_assert(index_of::value < sizeof...(Ts), "Sequence doesn't contain the type");
};
And then:
#include <variant>
struct A{};
struct B{};
struct C{};
using V = std::variant<A, B, C>;
static_assert(index_of<V, B>::value == 1);
Or:
static_assert(index_of<std::tuple<int, float, bool>, float>::value == 1);
See on godbolt: https://godbolt.org/z/7ob6veWGr
I need a template to find out the order of types in which the class inherits from its bases and their index. The code works fine with clang and gcc but in Visual Studio, which is the target environment, I'm getting an internal compiler error "fatal error C1001: An internal error has occurred in the compiler.". I'm looking for some workaround or maybe an error in my code. Yes, I have already tried google.
Thanks, in advance.
#include <type_traits>
#include <iostream>
struct BaseA
{
};
struct BaseB
{
};
struct BaseC
{
};
template <class... Types>
class type_list {};
template<typename Type, typename TypeList>
struct get_idx_for_type;
template<typename Type, template<typename...> typename TypeList, typename ...Types>
struct get_idx_for_type<Type, TypeList<Types...>>
{
template<int I, typename T, typename ...Rest>
struct find_type;
template<int I, typename T, typename U, typename ...Rest>
struct find_type< I, T, U, Rest... >
{
// problematic line for compiler, problem is somewhere in find_type recursion
static constexpr int value = std::is_same<T, U>::value ? I : find_type<I + 1, T, Rest...>::value;
};
template<int I, typename T, typename U>
struct find_type< I, T, U >
{
static constexpr int value = std::is_same<T, U>::value ? I : -1;
};
static constexpr int value = find_type<0, Type, Types...>::value;
};
template<typename ...Bases>
struct Foo : public Bases...
{
using base_types_list = type_list<Bases...>;
};
int main()
{
using T = Foo<BaseA, BaseB, BaseC>;
Foo<BaseA, BaseB, BaseC> q;
int a = get_idx_for_type<BaseA, T::base_types_list>::value;
std::cout << a << std::endl;
return 0;
}
An internal compiler error is always a bug in the compiler, whether or not there
is anything wrong with your code. To work around this one, you can replace:
template<int I, typename T, typename U, typename ...Rest>
struct find_type< I, T, U, Rest... >
{
// problematic line for compiler, problem is somewhere in find_type recursion
static constexpr int value = std::is_same<T, U>::value ? I : find_type<I + 1, T, Rest...>::value;
};
with:
template<int I, typename T, typename U, typename V, typename ...Rest>
struct find_type< I, T, U, V, Rest... >
{
static constexpr int value = std::is_same<T, U>::value ? I : find_type<I + 1, T, V, Rest...>::value;
};
to assist VC++ in disambiguating it from:
template<int I, typename T, typename U>
struct find_type< I, T, U >
{
static constexpr int value = std::is_same<T, U>::value ? I : -1;
};
when ...Rest is empty.
Live demo
I'm getting an internal compiler error "fatal error C1001: An internal error has occurred in the compiler.".
So, I suppose, your code is correct but the compiler is bugged.
I'm looking for some workaround or maybe an error in my code.
I don't have your compiler, so it's a shoot in the dark, but I propose to rewrite your find_type struct using another specialization (a specialization for U and T are the same type; a specialization for U and T are different) and inherit the value from std::integral_constant.
So I propose the following
template <int, typename ...>
struct find_type;
template <int I, typename T>
struct find_type<I, T> : public std::integral_constant<int, -1>
{ };
template <int I, typename T, typename ... Rest>
struct find_type<I, T, T, Rest...> : public std::integral_constant<int, I>
{ };
template <int I, typename T, typename U, typename ... Rest>
struct find_type<I, T, U, Rest...> : public find_type<I+1, T, Rest...>
{ };
Another possible alternative is pass through a template function, instead of a find_type struct.
By example... if you define a static constexpr method find_type_func() as follows (C++17, but I can easily adapt it to C++14 if you want)
template <typename T, typename ... List>
constexpr static int find_type_func ()
{
int ret { -1 };
int i { 0 };
((ret = (ret == -1) && std::is_same<T, List>{} ? i : ret, ++i), ...);
return ret;
}
you can delete the struct find_type and initialize value as follows
static constexpr int value = find_type_func<Type, Types...>();
-- EDIT --
As asked, a C++14 version
template <typename T, typename ... List>
constexpr static int find_type_func ()
{
using unused = int[];
int ret { -1 };
int i { 0 };
(void)unused { 0, (std::is_same<T, List>::value ? ret = i : ++i)... };
return ret;
}
I tried to implement the C++14 alias template make_integer_sequence, which simplifies the creation of the class template integer_sequence.
template< class T, T... I> struct integer_sequence
{
typedef T value_type;
static constexpr size_t size() noexcept { return sizeof...(I) ; }
};
template< class T, T N>
using make_integer_sequence = integer_sequence< T, 0,1,2, ... ,N-1 >; // only for illustration.
To implement make_integer_sequence we need a helper structure make_helper.
template< class T , class N >
using make_integer_sequence = typename make_helper<T,N>::type;
Implementing make_helper isn't too difficult.
template< class T, T N, T... I >
struct make_helper
{
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T,I...> >,
make_helper< T, N-1, N-1,I...>
>::type;
};
To test make_integer_sequence I made this main function:
int main()
{
#define GEN(z,n,temp) \
typedef make_integer_sequence< int, n > BOOST_PP_CAT(int_seq,n) ;
BOOST_PP_REPEAT(256, GEN, ~);
}
I compiled the program with GCC 4.8.0, on a quad-core i5 system with 8GBs of RAM.
Successful compilation took 4 seconds.
But, when I changed the GEN macro to:
int main() {
#define GEN(z,n,temp) \
typedef make_integer_sequence< int, n * 4 > BOOST_PP_CAT(int_seq, n) ;
BOOST_PP_REPEAT(256, GEN, ~ );
}
The compilation was unsuccessful and outputted the error message:
virtual memory exhausted.
Could somebody explain this error and what caused it?
EDIT:
I simplified the test to:
int main()
{
typedef make_integer_sequence< int, 4096 > int_seq4096;
}
I then successfully compiled with GCC 4.8.0 -ftemplate-depth=65536.
However this second test:
int main()
{
typedef make_integer_sequence< int, 16384 > int_seq16384;
}
Did not compile with GCC 4.8.0 -ftemplate-depth=65536, and resulted in the error:
virtual memory exhausted.
So, my question is, how do I decrease template deep instantiation?
Regards,
Khurshid.
Here's a log N implementation that doesn't even need an increased max-depth for template instantiations and compiles pretty fast:
// using aliases for cleaner syntax
template<class T> using Invoke = typename T::type;
template<unsigned...> struct seq{ using type = seq; };
template<class S1, class S2> struct concat;
template<unsigned... I1, unsigned... I2>
struct concat<seq<I1...>, seq<I2...>>
: seq<I1..., (sizeof...(I1)+I2)...>{};
template<class S1, class S2>
using Concat = Invoke<concat<S1, S2>>;
template<unsigned N> struct gen_seq;
template<unsigned N> using GenSeq = Invoke<gen_seq<N>>;
template<unsigned N>
struct gen_seq : Concat<GenSeq<N/2>, GenSeq<N - N/2>>{};
template<> struct gen_seq<0> : seq<>{};
template<> struct gen_seq<1> : seq<0>{};
This is basically me hacking around Xeo's solution: Making community wiki - if appreciative, please upvote Xeo.
...just modified until I felt it couldn't get any simpler, renamed and added value_type and size() per the Standard (but only doing index_sequence not integer_sequence), and code working with GCC 5.2 -std=c++14 could run otherwise unaltered under older/other compilers I'm stuck with. Might save someone some time / confusion.
// based on http://stackoverflow.com/a/17426611/410767 by Xeo
namespace std // WARNING: at own risk, otherwise use own namespace
{
template <size_t... Ints>
struct index_sequence
{
using type = index_sequence;
using value_type = size_t;
static constexpr std::size_t size() noexcept { return sizeof...(Ints); }
};
// --------------------------------------------------------------
template <class Sequence1, class Sequence2>
struct _merge_and_renumber;
template <size_t... I1, size_t... I2>
struct _merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
: index_sequence<I1..., (sizeof...(I1)+I2)...>
{ };
// --------------------------------------------------------------
template <size_t N>
struct make_index_sequence
: _merge_and_renumber<typename make_index_sequence<N/2>::type,
typename make_index_sequence<N - N/2>::type>
{ };
template<> struct make_index_sequence<0> : index_sequence<> { };
template<> struct make_index_sequence<1> : index_sequence<0> { };
}
Notes:
the "magic" of Xeo's solution is in the declaration of _merge_and_renumber (concat in his code) with exactly two parameters, while the specilisation effectively exposes their individual parameter packs
the typename...::type in...
struct make_index_sequence
: _merge_and_renumber<typename make_index_sequence<N/2>::type,
typename make_index_sequence<N - N/2>::type>
avoids the error:
invalid use of incomplete type 'struct std::_merge_and_renumber<std::make_index_sequence<1ul>, std::index_sequence<0ul> >'
I found very fast and needless deep recursion version of implementation of make_index_sequence. In my PC it compiles with N = 1 048 576 , with 2 s.
(PC : Centos 6.4 x86, i5, 8 Gb RAM, gcc-4.4.7 -std=c++0x -O2 -Wall).
#include <cstddef> // for std::size_t
template< std::size_t ... i >
struct index_sequence
{
typedef std::size_t value_type;
typedef index_sequence<i...> type;
// gcc-4.4.7 doesn't support `constexpr` and `noexcept`.
static /*constexpr*/ std::size_t size() /*noexcept*/
{
return sizeof ... (i);
}
};
// this structure doubles index_sequence elements.
// s- is number of template arguments in IS.
template< std::size_t s, typename IS >
struct doubled_index_sequence;
template< std::size_t s, std::size_t ... i >
struct doubled_index_sequence< s, index_sequence<i... > >
{
typedef index_sequence<i..., (s + i)... > type;
};
// this structure incremented by one index_sequence, iff NEED-is true,
// otherwise returns IS
template< bool NEED, typename IS >
struct inc_index_sequence;
template< typename IS >
struct inc_index_sequence<false,IS>{ typedef IS type; };
template< std::size_t ... i >
struct inc_index_sequence< true, index_sequence<i...> >
{
typedef index_sequence<i..., sizeof...(i)> type;
};
// helper structure for make_index_sequence.
template< std::size_t N >
struct make_index_sequence_impl :
inc_index_sequence< (N % 2 != 0),
typename doubled_index_sequence< N / 2,
typename make_index_sequence_impl< N / 2> ::type
>::type
>
{};
// helper structure needs specialization only with 0 element.
template<>struct make_index_sequence_impl<0>{ typedef index_sequence<> type; };
// OUR make_index_sequence, gcc-4.4.7 doesn't support `using`,
// so we use struct instead of it.
template< std::size_t N >
struct make_index_sequence : make_index_sequence_impl<N>::type {};
//index_sequence_for any variadic templates
template< typename ... T >
struct index_sequence_for : make_index_sequence< sizeof...(T) >{};
// test
typedef make_index_sequence< 1024 * 1024 >::type a_big_index_sequence;
int main(){}
You are missing a -1 here:
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T> >,
make_helper< T, N, N-1,I...>
>::type;
in particular:
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T> >,
make_helper< T, N-1, N-1,I...>
>::type;
Next, the first branch shouldn't be integer_sequence<T>, but rather integer_sequence<T, I...>.
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T, I...> >,
make_helper< T, N-1, N-1,I...>
>::type;
which should be enough to get your original code to compile.
In general, when writing serious template metaprogramming, your main goal should be to keep the depth of template instantiation down. A way to think about this problem is imagining you have an infinite-thread computer: each independent calculation should be shuffled off onto its own thread, then shuffled together at the end. You have a few operations that take O(1) depth, like ... expansion: exploit them.
Usually, pulling of logarithmic depth is enough, because with a 900 depth, that allows 2^900 sized structures, and something else breaks first. (To be fair, what is more likely to happen is 90 different layers of 2^10 sized structures).
Here is another slightly more general variation of Xeo's logarithmic answer which provides make_integer_sequence for arbitrary types. This is done by using std::integral_constant in order to avoid the dreaded "template argument involves template parameter" error.
template<typename Int, Int... Ints>
struct integer_sequence
{
using value_type = Int;
static constexpr std::size_t size() noexcept
{
return sizeof...(Ints);
}
};
template<std::size_t... Indices>
using index_sequence = integer_sequence<std::size_t, Indices...>;
namespace
{
// Merge two integer sequences, adding an offset to the right-hand side.
template<typename Offset, typename Lhs, typename Rhs>
struct merge;
template<typename Int, Int Offset, Int... Lhs, Int... Rhs>
struct merge<
std::integral_constant<Int, Offset>,
integer_sequence<Int, Lhs...>,
integer_sequence<Int, Rhs...>
>
{
using type = integer_sequence<Int, Lhs..., (Offset + Rhs)...>;
};
template<typename Int, typename N>
struct log_make_sequence
{
using L = std::integral_constant<Int, N::value / 2>;
using R = std::integral_constant<Int, N::value - L::value>;
using type = typename merge<
L,
typename log_make_sequence<Int, L>::type,
typename log_make_sequence<Int, R>::type
>::type;
};
// An empty sequence.
template<typename Int>
struct log_make_sequence<Int, std::integral_constant<Int, 0>>
{
using type = integer_sequence<Int>;
};
// A single-element sequence.
template<typename Int>
struct log_make_sequence<Int, std::integral_constant<Int, 1>>
{
using type = integer_sequence<Int, 0>;
};
}
template<typename Int, Int N>
using make_integer_sequence =
typename log_make_sequence<
Int, std::integral_constant<Int, N>
>::type;
template<std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;
Demo: coliru
Simple implementation O(N). Probably not what you want for large N, but my application is only for calling functions with indexed arguments, and I wouldn't expect an arity of more than about 10. I haven't filled in the members of integer_sequence. I'm looking forward to using a standard library implementation and nuking this :)
template <typename T, T... ints>
struct integer_sequence
{ };
template <typename T, T N, typename = void>
struct make_integer_sequence_impl
{
template <typename>
struct tmp;
template <T... Prev>
struct tmp<integer_sequence<T, Prev...>>
{
using type = integer_sequence<T, Prev..., N-1>;
};
using type = typename tmp<typename make_integer_sequence_impl<T, N-1>::type>::type;
};
template <typename T, T N>
struct make_integer_sequence_impl<T, N, typename std::enable_if<N==0>::type>
{ using type = integer_sequence<T>; };
template <typename T, T N>
using make_integer_sequence = typename make_integer_sequence_impl<T, N>::type;
Here is another implementation technique (for T=size_t), it uses C++17 fold expressions and bitwise generation (i.e. O(log(N)):
template <size_t... Is>
struct idx_seq {
template <size_t N, size_t Offset>
struct pow2_impl {
using type = typename idx_seq<Is..., (Offset + Is)...>::template pow2_impl<N - 1, Offset + sizeof...(Is)>::type;
};
template <size_t _> struct pow2_impl<0, _> { using type = idx_seq; };
template <size_t _> struct pow2_impl<(size_t)-1, _> { using type = idx_seq<>; };
template <size_t Offset>
using offset = idx_seq<(Offset + Is)...>;
};
template <size_t N>
using idx_seq_pow2 = typename idx_seq<0>::template pow2_impl<N, 1>::type;
template <size_t... Is, size_t... Js>
constexpr static auto operator,(idx_seq<Is...>, idx_seq<Js...>)
-> idx_seq<Is..., Js...>
{ return {}; }
template <size_t N, size_t Mask, size_t... Bits>
struct make_idx_seq_impl {
using type = typename make_idx_seq_impl<N, (N >= Mask ? Mask << 1 : 0), Bits..., (N & Mask)>::type;
};
template <size_t N, size_t... Bits>
struct make_idx_seq_impl<N, 0, Bits...> {
using type = decltype((idx_seq<>{}, ..., typename idx_seq_pow2<Bits>::template offset<(N & (Bits - 1))>{}));
};
template <size_t N>
using make_idx_seq = typename make_idx_seq_impl<N, 1>::type;
Here is a very simple solution implemented with recursion based on tag dispatching
template <typename T, T M, T ... Indx>
constexpr std::integer_sequence<T, Indx...> make_index_sequence_(std::false_type)
{
return {};
}
template <typename T, T M, T ... Indx>
constexpr auto make_index_sequence_(std::true_type)
{
return make_index_sequence_<T, M, Indx..., sizeof...(Indx)>(
std::integral_constant<bool, sizeof...(Indx) + 1 < M>());
}
template <size_t M>
constexpr auto make_index_sequence()
{
return make_index_sequence_<size_t, M>(std::integral_constant<bool, (0 < M)>());
}
However, this solution can not be extended to C++11.
template <int I> struct int_ {};
template < typename ... Pack >
struct thingy
{
void call()
{
f(???);
}
};
When instantiated it should end up being:
struct thingy<int,char,double>
{
void call()
{
f(int, int_<1>(), char, int_<2>(), double, int_<3>());
}
}
What you think, can it be done? How?
The only thing I can think of is to have overloads for thingy with N different parameters like so:
template < typename T0 > struct thingy<T0> { ... };
template < typename T0, typename T1 > struct thingy<T0,T1> { ... };
etc...
With a call implementation in each.
Can it be done
Yes, of course.
How ?
In several steps.
You need to be able to create a range of integers
You need to be able to interleave two sequences
Let us start with the range of integers.
template <size_t...>
struct IntegralPack {};
template <size_t A, size_t... N>
IntegralPack<N..., A> push_back(IntegralPack<N...>);
template <size_t A, size_t... N>
IntegralPack<A, N...> push_front(IntegralPack<N...>);
template <size_t L, size_t H>
struct IntegralRangeImpl {
typedef typename IntegralRangeImpl<L+1, H>::type Base;
typedef decltype(push_front<L>((Base()))) type;
};
template <size_t X>
struct IntegralRangeImpl<X, X> {
typedef IntegralPack<> type;
};
template <size_t L, size_t H>
struct IntegralRange {
static_assert(L <= H, "Incorrect range");
typedef typename IntegralRangeImpl<L, H>::type type;
};
The conversion step is easy enough (thankfully):
template <typename...>
struct TypePack {};
template <size_t... N>
TypePack<int_<N>...> to_int(IntegralPack<N...>);
So the next difficulty is the merge.
template <typename... As, typename... Bs>
TypePack<As..., Bs...> cat(TypePack<As...>, TypePack<Bs...>);
template <typename, typename> struct Interleaver;
template <>
struct Interleaver<TypePack<>, TypePack<>> {
typedef TypePack<> type;
};
template <typename A0, typename B0, typename... As, typename... Bs>
struct Interleaver<TypePack<A0, As...>, TypePack<B0, Bs...>> {
typedef typename Interleaver<TypePack<As...>, TypePack<Bs...>>::type Base;
typedef decltype(cat(TypePack<A0, B0>{}, Base{})) type;
};
Putting it altogether:
template <typename... Pack>
struct thingy {
typedef typename IntegralRange<1, sizeof...(Pack) + 1>::type Indexes;
typedef decltype(to_int(Indexes{})) Ints;
typedef typename Interleaver<TypePack<Pack...>, Ints>::type Types;
void call() { this->callImpl(Types{}); }
template <typename... Ts>
void callImpl(TypePack<Ts...>) {
f(Ts{}...);
}
};
Tadaam!
So the way I went about it is a little more specific to what I was actually doing. Turns out some information I thought was beside the point helped me out. I think though that a similar technique could be used for any case.
For one thing...in my case "thingy<>" actually has values in it and is passed to the invoker function. This actually helps a lot.
Also, since the object was to convert the stuff in thingy to serve as induces for another weird thingy, and the ints being passed in were to index the first thingy...the ints end up all being 1 when I do my recursion. So while what I was after was something like (simplified to remove the second tuple):
f(get(my_thingy, idx<1>), get(my_thingy, idx<2>), ...)
It turns out the recursion gets rid of idx<2>...idx:
template < typename Fun, typename H, typename ... T, typename ... Args >
auto call(Fun f, thingy<H,T...> const& t, Args&& ... args)
-> decltype(call(f,static_cast<thingy<T...>const&>(t), get(t,idx<1>), std::forward<Args>(args)...)
{
return call(f, static_cast<thingy<T...>const&>(t), get(t, idx<1>), args...);
}
template < typename Fun, typename ... Args >
auto call(Fun f, thingy<> const&, Args&& ... args)
-> decltype(f(std::forward<Args>(args)...))
{
return f(std::forward<Args>(args)...);
}
I have not been able to fully test thing because the get function fails on me for some reason when using const&...kinda pissing me off. I'm fairly confident that this does the trick though.
If the parameter to idx wasn't always 1 I think that could be forwarded along in a similar fashion.