I have a class that is used as part of a financial application. The class is bound to a UI form and accepts a handful of values that are then used to calculate financial data. The calculated values are presented as properties on the object. Several of these calculations use other calculations.
For example, CalculationA may return PropertyA + PropertyB. CalculationB returns PropertyC - CalculationA. (This is an extreme over-simplification).
I am trying to write some unit tests to make sure that these calculations are performed correctly and wondering what approach I should be taking.
My first approach was to manually recalculate the expected result in the test method. For example, when testing CalculationB, I populate the test object then set the expected result equal to PropertyC - PropertyA + PropertyB. But since the real object has 25 properties involved, this is quite cumbersome.
On option I thought of is to simply create the test object, populate it with values then write a test that verifies CalculationA equals PropertyA + PropertyB and another test that verifies CalculationB equals PropertyC - CalculationB. The latter assumes that CalculationB is correct, but does that really matter for the purpose of the unit test?
What guidance/suggestions can you make for setting up my tests so they are accurate, reliable and maintainable? What is the best way to ensure that the calculations are correct and that I didn't accidentally set CalculationB = PropertyB - CalculationA, for instance.
Your case sounds equivalent to a spreadsheet, and a spreadsheet is just unusual syntax for code of the form:
f1(f2(a, f3(b)), c);
Where f1-3 are the calculations, and a-c the input properties. The 'chaining' is the fact that the outputs of some functions are used as inputs to others.
This kind of functional calculation code is where unit testing really shines. Testing the assembly as a whole means that a change to the specification of f3 would change the test cases for f2 and f1 in some complicated but meaningless way. This could well result in someone cutting and pasting the calculation result back into the test as the expected result. Which kind of makes the whole exercise a little pointless.
So if a minimal set of test cases is something like:
f1(7, -2) => 23
f2(1, 2) => 7
f3(4) => 5
then you can implement each of those test cases by:
set all properties to fixed large numbers
set the input properties to the input for this case
check the output property
Because point one is shared between all tests, the effort to produce test cases for each calculation is proportional only to the complexity of that specific calculation, not the total number of properties.
I ran across this situation this afternoon, so I thought I'd ask what you guys do.
We have a randomized password generator for user password resets and while fixing a problem with it, I decided to move the routine into my (slowly growing) test harness.
I want to test that passwords generated conform to the rules we've set out, but of course the results of the function will be randomized (or, well, pseudo-randomized).
What would you guys do in the unit test? Generate a bunch of passwords, check they all pass and consider that good enough?
A unit test should do the same thing every time that it runs, otherwise you may run into a situation where the unit test only fails occasionally, and that could be a real pain to debug.
Try seeding your pseudo-randomizer with the same seed every time (in the test, that is--not in production code). That way your test will generate the same set of inputs every time.
If you can't control the seed and there is no way to prevent the function you are testing from being randomized, then I guess you are stuck with an unpredictable unit test. :(
The function is a hypothesis that for all inputs, the output conforms to the specifications. The unit test is an attempt to falsify that hypothesis. So yes, the best you can do in this case is to generate a large amount of outputs. If they all pass your specification, then you can be reasonably sure that your function works as specified.
Consider putting the random number generator outside this function and passing a random number to it, making the function deterministic, instead of having it access the random number generator directly. This way, you can generate a large number of random inputs in your test harness, pass them all to your function, and test the outputs. If one fails, record what that value is so that you have a documented test case.
In addition to testing a few to make sure that they pass, I'd write a test to make sure that passwords that break the rules fail.
Is there anything in the codebase that's checking the passwords generated to make sure they're random enough? If not, I may look at creating the logic to check the generated passwords, testing that, and then you can state that the random password generator is working (as "bad" ones won't get out).
Once you've got that logic you can probably write an integration type test that would generate boatloads of passwords and pass it through the logic, at which point you'd get an idea of how "good" your random password generate is.
Well, considering they are random, there is no really way to make sure, but testing for 100 000 password should clear most doubts :)
You could seed your random number generator with a constant value in order to get non-random results and test those results.
I'm assuming that the user-entered passwords conform to the same restrictions as the random generated ones. So you probably want to have a set of static passwords for checking known conditions, and then you'll have a loop that does the dynamic password checks. The size of the loop isn't too important, but it should be large enough that you get that warm fuzzy feeling from your generator, but not so large that your tests take forever to run. If anything crops up over time, you can add those cases to your static list.
In the long run though, a weak password isn't going to break your program, and password security falls in the hands of the user. So your priority would be to make sure that the dynamic generation and strength-check doesn't break the system.
Without knowing what your rules are it's hard to say for sure, but assuming they are something like "the password must be at least 8 characters with at least one upper case letter, one lower case letter, one number and one special character" then it's impossible even with brute force to check sufficient quantities of generated passwords to prove the algorithm is correct (as that would require somewhere over 8^70 = 1.63x10^63 checks depending on how many special characters you designate for use, which would take a very, very long time to complete).
Ultimately all you can do is test as many passwords as is feasible, and if any break the rules then you know the algorithm is incorrect. Probably the best thing to do is leave it running overnight, and if all is well in the morning you're likely to be OK.
If you want to be doubly sure in production, then implement an outer function that calls the password generation function in a loop and checks it against the rules. If it fails then log an error indicating this (so you know you need to fix it) and generate another password. Continue until you get one that meets the rules.
You can also look into mutation testing (Jester for Java, Heckle for Ruby)
In my humble opinion you do not want a test that sometimes pass and sometimes fails. Some people may even consider that this kind of test is not a unit test. But the main idea is be sure that the function is OK when you see the green bar.
With this principle in mind you may try to execute it a reasonable number of times so that the chance of having a false correct is almost cero. However, une single failure of the test will force you to make more extensive tests apart from debbuging the failure.
Either use fixed random seed or make it reproducible (i.e.: derive from the current day)
Firstly, use a seed for your PRNG. Your input is no longer random and gets rid of the problem of unpredictable output - i.e. now your unit test is deterministic.
This doesn't however solve the problem of testing the implementation, but here is an example of how a typical method that relies upon randomness can be tested.
Imagine we've implemented a function that takes a collection of red and blue marbles and picks one at random, but a weighting can be assigned to the probability, i.e. weights of 2 and 1 would mean red marbles are twice as likely to be picked as blue marbles.
We can test this by setting the weight of one choice to zero and verifying that in all cases (in practice, for a large amount of test input) we always get e.g. blue marbles. Reversing the weights should then give the opposite result (all red marbles).
This doesn't guarantee our function is behaving as intended (if we pass in an equal number of red and blue marbles and have equal weights do we always get a 50/50 distribution over a large number of trials?) but in practice it is often sufficient.
OK, I have been working on a random image selector and queue system (so you don't see the same images too often).
All was going swimmingly (as far as my crappy code does) until I got to the random bit. I wanted to test it, but how do you test for it? There is no Debug.Assert(i.IsRandom) (sadly) :D
So, I got my brain on it after watering it with some tea and came up with the following, I was just wondering if I could have your thoughts?
Basically I knew the random bit was the problem, so I ripped that out to a delegate (which would then be passed to the objects constructor).
I then created a class that pretty much performs the same logic as the live code, but remembers the value selected in a private variable.
I then threw that delegate to the live class and tested against that:
i.e.
Debug.Assert(myObj.RndVal == RndIntTester.ValuePassed);
But I couldn't help but think, was I wasting my time? I ran that through lots of iterations to see if it fell over at any time etc.
Do you think I was wasting my time with this? Or could I have got away with:
GateKiller's answer reminded me of this:
Update to Clarify
I should add that I basically never want to see the same result more than X number of times from a pool of Y size.
The addition of the test container basically allowed me to see if any of the previously selected images were "randomly" selected.
I guess technically the thing here being tested in not the RNG (since I never wrote that code) but the fact that am I expecting random results from a limited pool, and I want to track them.
Test from the requirement : "so you don't see the same images too often"
Ask for 100 images. Did you see an image too often?
There is a handy list of statistical randomness tests and related research on Wikipedia. Note that you won't know for certain that a source is truly random with most of these, you'll just have ruled out some ways in which it may be easily predictable.
If you have a fixed set of items, and you don't want them to repeat too often, shuffle the collection randomly. Then you will be sure that you never see the same image twice in a row, feel like you're listening to Top 20 radio, etc. You'll make a full pass through the collection before repeating.
Item[] foo = …
for (int idx = foo.size(); idx > 1; --idx) {
/* Pick random number from half-open interval [0, idx) */
int rnd = random(idx);
Item tmp = foo[idx - 1];
foo[idx - 1] = foo[rnd];
foo[rnd] = tmp;
}
If you have too many items to collect and shuffle all at once (10s of thousands of images in a repository), you can add some divide-and-conquer to the same approach. Shuffle groups of images, then shuffle each group.
A slightly different approach that sounds like it might apply to your revised problem statement is to have your "image selector" implementation keep its recent selection history in a queue of at most Y length. Before returning an image, it tests to see if its in the queue X times already, and if so, it randomly selects another, until it find one that passes.
If you are really asking about testing the quality of the random number generator, I'll have to open the statistics book.
It's impossible to test if a value is truly random or not. The best you can do is perform the test some large number of times and test that you got an appropriate distribution, but if the results are truly random, even this has a (very small) chance of failing.
If you're doing white box testing, and you know your random seed, then you can actually compute the expected result, but you may need a separate test to test the randomness of your RNG.
The generation of random numbers is
too important to be left to chance. -- Robert R. Coveyou
To solve the psychological problem:
A decent way to prevent apparent repetitions is to select a few items at random from the full set, discarding duplicates. Play those, then select another few. How many is "a few" depends on how fast you're playing them and how big the full set is, but for example avoiding a repeat inside the larger of "20", and "5 minutes" might be OK. Do user testing - as the programmer you'll be so sick of slideshows you're not a good test subject.
To test randomising code, I would say:
Step 1: specify how the code MUST map the raw random numbers to choices in your domain, and make sure that your code correctly uses the output of the random number generator. Test this by Mocking the generator (or seeding it with a known test value if it's a PRNG).
Step 2: make sure the generator is sufficiently random for your purposes. If you used a library function, you do this by reading the documentation. If you wrote your own, why?
Step 3 (advanced statisticians only): run some statistical tests for randomness on the output of the generator. Make sure you know what the probability is of a false failure on the test.
There are whole books one can write about randomness and evaluating if something appears to be random, but I'll save you the pages of mathematics. In short, you can use a chi-square test as a way of determining how well an apparently "random" distribution fits what you expect.
If you're using Perl, you can use the Statistics::ChiSquare module to do the hard work for you.
However if you want to make sure that your images are evenly distributed, then you probably won't want them to be truly random. Instead, I'd suggest you take your entire list of images, shuffle that list, and then remove an item from it whenever you need a "random" image. When the list is empty, you re-build it, re-shuffle, and repeat.
This technique means that given a set of images, each individual image can't appear more than once every iteration through your list. Your images can't help but be evenly distributed.
All the best,
Paul
What the Random and similar functions give you is but pseudo-random numbers, a series of numbers produced through a function. Usually, you give that function it's first input parameter (a.k.a. the "seed") which is used to produce the first "random" number. After that, each last value is used as the input parameter for the next iteration of the cycle. You can check the Wikipedia article on "Pseudorandom number generator", the explanation there is very good.
All of these algorithms have something in common: the series repeats itself after a number of iterations. Remember, these aren't truly random numbers, only series of numbers that seem random. To select one generator over another, you need to ask yourself: What do you want it for?
How do you test randomness? Indeed you can. There are plenty of tests for that. The first and most simple is, of course, run your pseudo-random number generator an enormous number of times, and compile the number of times each result appears. In the end, each result should've appeared a number of times very close to (number of iterations)/(number of possible results). The greater the standard deviation of this, the worse your generator is.
The second is: how much random numbers are you using at the time? 2, 3? Take them in pairs (or tripplets) and repeat the previous experiment: after a very long number of iterations, each expected result should have appeared at least once, and again the number of times each result has appeared shouldn't be too far away from the expected. There are some generators which work just fine for taking one or 2 at a time, but fail spectacularly when you're taking 3 or more (RANDU anyone?).
There are other, more complex tests: some involve plotting the results in a logarithmic scale, or onto a plane with a circle in the middle and then counting how much of the plots fell within, others... I believe those 2 above should suffice most of the times (unless you're a finicky mathematician).
Random is Random. Even if the same picture shows up 4 times in a row, it could still be considered random.
My opinion is that anything random cannot be properly tested.
Sure you can attempt to test it, but there are so many combinations to try that you are better off just relying on the RNG and spot checking a large handful of cases.
Well, the problem is that random numbers by definition can get repeated (because they are... wait for it: random). Maybe what you want to do is save the latest random number and compare the calculated one to that, and if equal just calculate another... but now your numbers are less random (I know there's not such a thing as "more or less" randomness, but let me use the term just this time), because they are guaranteed not to repeat.
Anyway, you should never give random numbers so much thought. :)
As others have pointed out, it is impossible to really test for randomness. You can (and should) have the randomness contained to one particular method, and then write unit tests for every other method. That way, you can test all of the other functionality, assuming that you can get a random number out of that one last part.
store the random values and before you use the next generated random number, check against the stored value.
Any good pseudo-random number generator will let you seed the generator. If you seed the generator with same number, then the stream of random numbers generated will be the same. So why not seed your random number generator and then create your unit tests based on that particular stream of numbers?
To get a series of non-repeating random numbers:
Create a list of random numbers.
Add a sequence number to each random number
Sort the sequenced list by the original random number
Use your sequence number as a new random number.
Don't test the randomness, test to see if the results your getting are desirable (or, rather, try to get undesirable results a few times before accepting that your results are probably going to be desirable).
It will be impossible to ensure that you'll never get an undesirable result if you're testing a random output, but you can at least increase the chances that you'll notice it happening.
I would either take N pools of Y size, checking for any results that appear more than X number of times, or take one pool of N*Y size, checking every group of Y size for any result that appears more than X times (1 to Y, 2 to Y + 1, 3 to Y + 2, etc). What N is would depend on how reliable you want the test to be.
Random numbers are generated from a distribution. In this case, every value should have the same propability of appearing. If you calculate an infinite amount of randoms, you get the exact distribution.
In practice, call the function many times and check the results. If you expect to have N images, calculate 100*N randoms, then count how many of each expected number were found. Most should appear 70-130 times. Re-run the test with different random-seed to see if the results are different.
If you find the generator you use now is not good enough, you can easily find something. Google for "Mersenne Twister" - that is much more random than you ever need.
To avoid images re-appearing, you need something less random. A simple approach would be to check for the unallowed values, if its one of those, re-calculate.
Although you cannot test for randomness, you can test that for correlation, or distribution, of a sequence of numbers.
Hard to test goal: Each time we need an image, select 1 of 4 images at random.
Easy to test goal: For every 100 images we select, each of the 4 images must appear at least 20 times.
I agree with Adam Rosenfield. For the situation you're talking about, the only thing you can usefully test for is distribution across the range.
The situation I usually encounter is that I'm generating pseudorandom numbers with my favourite language's PRNG, and then manipulating them into the desired range. To check whether my manipulations have affected the distribution, I generate a bunch of numbers, manipulate them, and then check the distribution of the results.
To get a good test, you should generate at least a couple orders of magnitude more numbers than your range holds. The more values you use, the better the test. Obviously if you have a really large range, this won't work since you'll have to generate far too many numbers. But in your situation it should work fine.
Here's an example in Perl that illustrates what I mean:
for (my $i=0; $i<=100000; $i++) {
my $r = rand; # Get the random number
$r = int($r * 1000); # Move it into the desired range
$dist{$r} ++; # Count the occurrences of each number
}
print "Min occurrences: ", (sort { $a <=> $b } values %dist)[1], "\n";
print "Max occurrences: ", (sort { $b <=> $a } values %dist)[1], "\n";
If the spread between the min and max occurrences is small, then your distribution is good. If it's wide, then your distribution may be bad. You can also use this approach to check whether your range was covered and whether any values were missed.
Again, the more numbers you generate, the more valid the results. I tend to start small and work up to whatever my machine will handle in a reasonable amount of time, e.g. five minutes.
Supposing you are testing a range for randomness within integers, one way to verify this is to create a gajillion (well, maybe 10,000 or so) 'random' numbers and plot their occurrence on a histogram.
****** ****** ****
***********************************************
*************************************************
*************************************************
*************************************************
*************************************************
*************************************************
*************************************************
*************************************************
*************************************************
1 2 3 4 5
12345678901234567890123456789012345678901234567890
The above shows a 'relatively' normal distribution.
if it looked more skewed, such as this:
****** ****** ****
************ ************ ************
************ ************ ***************
************ ************ ****************
************ ************ *****************
************ ************ *****************
*************************** ******************
**************************** ******************
******************************* ******************
**************************************************
1 2 3 4 5
12345678901234567890123456789012345678901234567890
Then you can see there is less randomness. As others have mentioned, there is the issue of repetition to contend with as well.
If you were to write a binary file of say 10,000 random numbers from your generator using, say a random number from 1 to 1024 and try to compress that file using some compression (zip, gzip, etc.) then you could compare the two file sizes. If there is 'lots' of compression, then it's not particularly random. If there isn't much of a change in size, then it's 'pretty random'.
Why this works
The compression algorithms look for patterns (repetition and otherwise) and reduces that in some way. One way to look a these compression algorithms is a measure of the amount of information in a file. A highly compressed file has little information (e.g. randomness) and a little-compressed file has much information (randomness)