Related
Hie, I am a newbie in Prolog, especially recursion in Prolog. Here, start recursive on list X, makepairs recursive on list Y. These two rules should make a list of the pairs of items on X and Y. For example, if I enter query:
?- start([a,b], [c,d], Z)
Prolog should print out:
Z = [pair(a,c), pair(a,d), pair(b,c), pair(b,d)].
But my code prints only false. Could anyone help to find the bug in my code?
start([H|T], Y, Z):- makepairs(H, Y, Z), start(T, Y, Z).
start([], _Y, []).
makepairs(X, [H|T], Z) :- append([pair(X,H)], [], Z), makepairs(X, T, Z).
makepairs(_X, [], _Z).
Using library(lamdba) preinstalled in Scryer, available for
SICStus|SWI.
start(Xs, Ys, XYs) :-
maplist(\X^Y^pair(X,Y)^true, Xs, Ys, XYs).
Or manually,
list_list_pairs([], [], []).
list_list_pairs([X|Xs], [Y|Ys], [pair(X,Y)|Pairs]) :-
list_list_pairs(Xs, Ys, Pairs).
Note that this not only constructs such pairs, but it can also be used to "unzip" them:
?- list_list_pairs(Xs, Ys, [pair(1,one), pair(2,two), pair(3,three)]).
Xs = [1,2,3], Ys = [one,two,three].
But, maybe I should add, using pair/2 as a functor is fairly uncommon. It is more idiomatic in Prolog to use (-)/2 instead, which is so much more compact, think of
Ps = [1-one,2-two,3-three].
% vs
Ps = [pair(1,one), pair(2,two), pair(3,three)]
Assuming that this is a learning exercise, you are supposed to roll your own...
For the purposes of this exercise, I'm going to elect to represent the tuple using the :/2 operator (x:y), simply because it's less typing, more compact, and and easier on the eyes than, say, [x,y].
So, there are 3 cases in this problem:
Both lists are the empty list. The result is the empty list. You can represent that as
zip( [] , [] , [] ) .
Both lists are non-empty lists. The result is that we prepend the pair to the result list, and continue, thus:
zip( [X|Xs] , [Y|Ys] , [X:Y|Zs] ) :- zip(Xs,Ys,Zs) .
And then, there is the case where one list is empty and the other is non-empty. You need to consider how to handle that situation. You could
Fail.
Terminate the program and succeed, discarding the unmatched items.
Include the unpaired item as itself.
Include the unpaired item in the same x:y pair structure, selecting some atom to represent the missing data.
Here, I choose to include the last option, and will represent the missing data with the atom nil, so [nil:y] or [x:nil].
You can represent this in Prolog as
zip( [] , [Y|Ys] , [nil:Y|Zs] ) :- zip([],Ys,Zs) .
zip( [X|Xs] , [] , [X:nil|Zs] ) :- zip(Xs,[],Zs) .
Putting it all together, you get this:
zip( [] , [] , [] ) .
zip( [] , [Y|Ys] , [nil:Y|Zs] ) :- zip([],Ys,Zs) .
zip( [X|Xs] , [] , [X:nil|Zs] ) :- zip(Xs,[],Zs) .
zip( [X|Xs] , [Y|Ys] , [X:Y|Zs] ) :- zip(Xs,Ys,Zs) .
which you can fiddle with at https://swish.swi-prolog.org/p/zip/unzip.pl
Running
zip( [a,b,c], [1,2,3], Ps ).
results in
P = [ a:1, b:2, c:3 ]
You might note that this will also unzip a list of tuples, so running
zip(Xs,Ys,[a:1,b:2,c:3]).
results in
Xs = [a,b,c]
Ys = [1,2,3]
This line cannot succeed:
start([H|T],Y,Z):- makepairs(H,Y,Z), start(T,Y,Z).
The first part requires Prolog to find a value for Z which is the list of all pairs, the second part requires Z to become only the list of H paired with every element in Y, and the third part requires Z to become the pairs of the tail and Y.
One single Z cannot be three different things at the same time, the predicate cannot hold, and false must be the result.
This line:
start([],_Y,[]).
Introduces a helper variable, which you never use.
This line:
makepairs(X,[H|T],Z):-append([pair(X,H)],[], Z), makepairs(X,T,Z).
requires that Z is the list of pairs of X with everything in [H|T], and also that Z is what you get when you append an empty list onto a list with one pair, and that Z is the list of pairs of X with T. This has the same problem of requiring Z to be three different things. These lines are where you need to introduce helper variables such as Z_.
Flaws in the predicate makepairs/3
In the base case, makepairs(_X, [], _Z), the variable _Z remains free, but it should be instantiated to [].
In the recursive case, append([pair(X, H), [], Z] is equivalent to Z = [pair(X, H)] (however, all you need is Z = pair(X,H)); also, the recursive call must produce a list containing the remaining pairs, say Zs. So the final result should be [Z|Zs].
Thus, a correct code is:
makepairs(_X, [], []).
makepairs(X, [H|T], [Z|Zs]):-
Z = pair(X,H),
makepairs(X, T, Zs).
Example:
?- makepairs(a, [c,d], Pairs).
Pairs = [pair(a, c), pair(a, d)] ;
false. % <= spurious choice point!
Flaws in predicate start/3
In the recursive case, subgoal makepairs(H, Y, Z) produces a list Z containing only pairs whose first elements are equal to H; then, the recursive call must produce a list Zs containing the remaining pairs. So, the final result, say Zss, must be the concatenation of lists Z and Zs.
Thus, a correct code is:
start([], _Y, []).
start([H|T], Y, Zss):-
makepairs(H, Y, Z),
append(Z, Zs, Zss),
start(T, Y, Zs).
Example:
?- start([a,b], [c,d], Z).
Z = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)] ;
false. % <= spurious choice point
A BETTER SOLUTION
A better solution, that avoid spurious choice point using first argument indexing, is:
make_pairs([], _, []).
make_pairs([X|Xs], Y, Pairs):-
make_pairs_helper(Y, X, Px),
append(Px, Pxs, Pairs),
make_pairs(Xs, Y, Pxs).
make_pairs_helper([], _, []).
make_pairs_helper([Y|Ys], X, [pair(X,Y)|Zs]):-
make_pairs_helper(Ys, X, Zs).
Example:
?- make_pairs([a,b], [c,d], Pairs).
Pairs = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)].
Remark It's more idiomatic to use - as separator of the elements of a pair in Prolog.
xMenores(_,[],[]).
xMenores(X,[H|T],[R|Z]) :-
xMenores(X,T,Z),
X > H,
R is H.
xMenores takes three parameters:
The first one is a number.
The second is a list of numbers.
The third is a list and is the variable that will contain the result.
The objective of the rule xMenores is obtain a list with the numbers of the list (Second parameter) that are smaller than the value on the first parameter. For example:
?- xMenores(3,[1,2,3],X).
X = [1,2]. % expected result
The problem is that xMenores returns false when X > H is false and my programming skills are almost null at prolog. So:
?- xMenores(4,[1,2,3],X).
X = [1,2,3]. % Perfect.
?- xMenores(2,[1,2,3],X).
false. % Wrong! "X = [1]" would be perfect.
I consider X > H, R is H. because I need that whenever X is bigger than H, R takes the value of H. But I don't know a control structure like an if or something in Prolog to handle this.
Please, any solution? Thanks.
Using ( if -> then ; else )
The control structure you might be looking for is ( if -> then ; else ).
Warning: you should probably swap the order of the first two arguments:
lessthan_if([], _, []).
lessthan_if([X|Xs], Y, Zs) :-
( X < Y
-> Zs = [X|Zs1]
; Zs = Zs1
),
lessthan_if(Xs, Y, Zs1).
However, if you are writing real code, you should almost certainly go with one of the predicates in library(apply), for example include/3, as suggested by #CapelliC:
?- include(>(3), [1,2,3], R).
R = [1, 2].
?- include(>(4), [1,2,3], R).
R = [1, 2, 3].
?- include(<(2), [1,2,3], R).
R = [3].
See the implementation of include/3 if you want to know how this kind of problems are solved. You will notice that lessthan/3 above is nothing but a specialization of the more general include/3 in library(apply): include/3 will reorder the arguments and use the ( if -> then ; else ).
"Declarative" solution
Alternatively, a less "procedural" and more "declarative" predicate:
lessthan_decl([], _, []).
lessthan_decl([X|Xs], Y, [X|Zs]) :- X < Y,
lessthan_decl(Xs, Y, Zs).
lessthan_decl([X|Xs], Y, Zs) :- X >= Y,
lessthan_decl(Xs, Y, Zs).
(lessthan_if/3 and lessthan_decl/3 are nearly identical to the solutions by Nicholas Carey, except for the order of arguments.)
On the downside, lessthan_decl/3 leaves behind choice points. However, it is a good starting point for a general, readable solution. We need two code transformations:
Replace the arithmetic comparisons < and >= with CLP(FD) constraints: #< and #>=;
Use a DCG rule to get rid of arguments in the definition.
You will arrive at the solution by lurker.
A different approach
The most general comparison predicate in Prolog is compare/3. A common pattern using it is to explicitly enumerate the three possible values for Order:
lessthan_compare([], _, []).
lessthan_compare([H|T], X, R) :-
compare(Order, H, X),
lessthan_compare_1(Order, H, T, X, R).
lessthan_compare_1(<, H, T, X, [H|R]) :-
lessthan_compare(T, X, R).
lessthan_compare_1(=, _, T, X, R) :-
lessthan_compare(T, X, R).
lessthan_compare_1(>, _, T, X, R) :-
lessthan_compare(T, X, R).
(Compared to any of the other solutions, this one would work with any terms, not just integers or arithmetic expressions.)
Replacing compare/3 with zcompare/3:
:- use_module(library(clpfd)).
lessthan_clpfd([], _, []).
lessthan_clpfd([H|T], X, R) :-
zcompare(ZOrder, H, X),
lessthan_clpfd_1(ZOrder, H, T, X, R).
lessthan_clpfd_1(<, H, T, X, [H|R]) :-
lessthan_clpfd(T, X, R).
lessthan_clpfd_1(=, _, T, X, R) :-
lessthan_clpfd(T, X, R).
lessthan_clpfd_1(>, _, T, X, R) :-
lessthan_clpfd(T, X, R).
This is definitely more code than any of the other solutions, but it does not leave behind unnecessary choice points:
?- lessthan_clpfd(3, [1,3,2], Xs).
Xs = [1, 2]. % no dangling choice points!
In the other cases, it behaves just as the DCG solution by lurker:
?- lessthan_clpfd(X, [1,3,2], Xs).
Xs = [1, 3, 2],
X in 4..sup ;
X = 3,
Xs = [1, 2] ;
X = 2,
Xs = [1] ;
X = 1,
Xs = [] .
?- lessthan_clpfd(X, [1,3,2], Xs), X = 3. %
X = 3,
Xs = [1, 2] ; % no error!
false.
?- lessthan_clpfd([1,3,2], X, R), R = [1, 2].
X = 3,
R = [1, 2] ;
false.
Unless you need such a general approach, include(>(X), List, Result) is good enough.
This can also be done using a DCG:
less_than([], _) --> [].
less_than([H|T], N) --> [H], { H #< N }, less_than(T, N).
less_than(L, N) --> [H], { H #>= N }, less_than(L, N).
| ?- phrase(less_than(R, 4), [1,2,3,4,5,6]).
R = [1,2,3] ? ;
You can write your predicate as:
xMenores(N, NumberList, Result) :- phrase(less_than(Result, N), NumberList).
You could write it as a one-liner using findall\3:
filter( N , Xs , Zs ) :- findall( X, ( member(X,Xs), X < N ) , Zs ) .
However, I suspect that the point of the exercise is to learn about recursion, so something like this would work:
filter( _ , [] , [] ) .
filter( N , [X|Xs] , [X|Zs] ) :- X < N , filter(N,Xs,Zs) .
filter( N , [X|Xs] , Zs ) :- X >= N , filter(N,Xs,Zs) .
It does, however, unpack the list twice on backtracking. An optimization here would be to combine the 2nd and 3rd clauses by introducing a soft cut like so:
filter( _ , [] , [] ) .
filter( N , [X|Xs] , [X|Zs] ) :-
( X < N -> Zs = [X|Z1] ; Zs = Z1 ) ,
filter(N,Xs,Zs)
.
(This is more like a comment than an answer, but too long for a comment.)
Some previous answers and comments have suggested using "if-then-else" (->)/2 or using library(apply) meta-predicate include/3. Both methods work alright, as long as only plain-old Prolog arithmetics—is/2, (>)/2, and the like—are used ...
?- X = 3, include(>(X),[1,3,2,5,4],Xs).
X = 3, Xs = [1,2].
?- include(>(X),[1,3,2,5,4],Xs), X = 3.
ERROR: >/2: Arguments are not sufficiently instantiated
% This is OK. When instantiation is insufficient, an exception is raised.
..., but when doing the seemingly benign switch from (>)/2 to (#>)/2, we lose soundness!
?- X = 3, include(#>(X),[1,3,2,5,4],Xs).
X = 3, Xs = [1,2].
?- include(#>(X),[1,3,2,5,4],Xs), X = 3.
false.
% This is BAD! Expected success with answer substitutions `X = 3, Xs = [1,2]`.
No new code is presented in this answer.
In the following we take a detailed look at different revisions of this answer by #lurker.
Revision #1, renamed to less_than_ver1//2. By using dcg and clpfd, the code is both very readable and versatile:
less_than_ver1(_, []) --> [].
less_than_ver1(N, [H|T]) --> [H], { H #< N }, less_than_ver1(N, T).
less_than_ver1(N, L) --> [H], { H #>= N }, less_than_ver1(N, L).
Let's query!
?- phrase(less_than_ver1(N,Zs),[1,2,3,4,5]).
N in 6..sup, Zs = [1,2,3,4,5]
; N = 5 , Zs = [1,2,3,4]
; N = 4 , Zs = [1,2,3]
; N = 3 , Zs = [1,2]
; N = 2 , Zs = [1]
; N in inf..1, Zs = []
; false.
?- N = 3, phrase(less_than_ver1(N,Zs),[1,2,3,4,5]).
N = 3, Zs = [1,2] % succeeds, but leaves useless choicepoint
; false.
?- phrase(less_than_ver1(N,Zs),[1,2,3,4,5]), N = 3.
N = 3, Zs = [1,2]
; false.
As a small imperfection, less_than_ver1//2 leaves some useless choicepoints.
Let's see how things went with the newer revision...
Revision #3, renamed to less_than_ver3//2:
less_than_ver3([],_) --> [].
less_than_ver3(L,N) --> [X], { X #< N -> L=[X|T] ; L=T }, less_than_ver3(L,N).
This code uses the if-then-else ((->)/2 + (;)/2) in order to improve determinism.
Let's simply re-run the above queries!
?- phrase(less_than_ver3(Zs,N),[1,2,3,4,5]).
N in 6..sup, Zs = [1,2,3,4,5]
; false. % all other solutions are missing!
?- N = 3, phrase(less_than_ver3(Zs,N),[1,2,3,4,5]).
N = 3, Zs = [1,2] % works as before, but no better.
; false. % we still got the useless choicepoint
?- phrase(less_than_ver3(Zs,N),[1,2,3,4,5]), N = 3.
false. % no solution!
% we got one with revision #1!
Surprise! Two cases that worked before are now (somewhat) broken, and the determinism in the ground case is no better... Why?
The vanilla if-then-else often cuts too much too soon, which is particularly problematic with code which uses coroutining and/or constraints.
Note that (*->)/2 (a.k.a. "soft-cut" or if/3), fares only a bit better, not a lot!
As if_/3 never ever cuts more (often than) the vanilla if-then-else (->)/2, it cannot be used in above code to improve determinism.
If you want to use if_/3 in combination with constraints, take a step back and write code that is non-dcg as the first shot.
If you're lazy like me, consider using a meta-predicate like tfilter/3 and (#>)/3.
This answer by #Boris presented a logically pure solution which utilizes clpfd:zcompare/3 to help improve determinism in certain (ground) cases.
In this answer we will explore different ways of coding logically pure Prolog while trying to avoid the creation of useless choicepoints.
Let's get started with zcompare/3 and (#<)/3!
zcompare/3 implements three-way comparison of finite domain variables and reifies the trichotomy into one of <, =, or >.
As the inclusion criterion used by the OP was a arithmetic less-than test, we propose using
(#<)/3 for reifying the dichotomy into one of true or false.
Consider the answers of the following queries:
?- zcompare(Ord,1,5), #<(1,5,B).
Ord = (<), B = true.
?- zcompare(Ord,5,5), #<(5,5,B).
Ord = (=), B = false.
?- zcompare(Ord,9,5), #<(9,5,B).
Ord = (>), B = false.
Note that for all items to be selected both Ord = (<) and B = true holds.
Here's a side-by-side comparison of three non-dcg solutions based on clpfd:
The left one uses zcompare/3 and first-argument indexing on the three cases <, =, and >.
The middle one uses (#<)/3 and first-argument indexing on the two cases true and false.
The right one uses (#<)/3 in combination with if_/3.
Note that we do not need to define auxiliary predicates in the right column!
less_than([],[],_). % less_than([],[],_). % less_than([],[],_).
less_than([Z|Zs],Ls,X) :- % less_than([Z|Zs],Ls,X) :- % less_than([Z|Zs],Ls,X) :-
zcompare(Ord,Z,X), % #<(Z,X,B), % if_(Z #< X,
ord_lt_(Ord,Z,Ls,Rs), % incl_lt_(B,Z,Ls,Rs), % Ls = [Z|Rs],
less_than(Zs,Rs,X). % less_than(Zs,Rs,X). % Ls = Rs),
% % less_than(Zs,Rs,X).
ord_lt_(<,Z,[Z|Ls],Ls). % incl_lt_(true ,Z,[Z|Ls],Ls). %
ord_lt_(=,_, Ls ,Ls). % incl_lt_(false,_, Ls ,Ls). %
ord_lt_(>,_, Ls ,Ls). % %
Next, let's use dcg!
In the right column we use if_//3 instead of if_/3.
Note the different argument orders of dcg and non-dcg solutions: less_than([1,2,3],Zs,3) vs phrase(less_than([1,2,3],3),Zs).
The following dcg implementations correspond to above non-dcg codes:
less_than([],_) --> []. % less_than([],_) --> []. % less_than([],_) --> [].
less_than([Z|Zs],X) --> % less_than([Z|Zs],X) --> % less_than([Z|Zs],X) -->
{ zcompare(Ord,Z,X) }, % { #<(Z,X,B) }, % if_(Z #< X,[Z],[]),
ord_lt_(Ord,Z), % incl_lt_(B,Z), % less_than(Zs,X).
less_than(Zs,X). % less_than(Zs,X). %
% %
ord_lt_(<,Z) --> [Z]. % incl_lt_(true ,Z) --> [Z]. %
ord_lt_(=,_) --> []. % incl_lt_(false,_) --> []. %
ord_lt_(>,_) --> []. % %
OK! Saving the best for last... Simply use meta-predicate tfilter/3 together with (#>)/3!
less_than(Xs,Zs,P) :-
tfilter(#>(P),Xs,Zs).
The dcg variant in this previous answer is our starting point.
Consider the auxiliary non-terminal ord_lt_//2:
ord_lt_(<,Z) --> [Z].
ord_lt_(=,_) --> [].
ord_lt_(>,_) --> [].
These three clauses can be covered using two conditions:
Ord = (<): the item should be included.
dif(Ord, (<)): it should not be included.
We can express this "either-or choice" using if_//3:
less_than([],_) --> [].
less_than([Z|Zs],X) -->
{ zcompare(Ord,Z,X) },
if_(Ord = (<), [Z], []),
less_than(Zs,X).
Thus ord_lt_//2 becomes redundant.
Net gain? 3 lines-of-code !-)
I'm trying to compare the elements of a list of integer to see if they are ordered (or not). I'm using Amzi!
I gave a few attempts, but nothing works... :(
ordered([X]).
ordered([N|[N1|L]]) :- N <= N1, ordered([N1|L]).
ordered_([X]).
ordered_([Head,Head1|Tail]) :- Head <= Head1, ordered_([Head1|Tail]).
Both return no if this list is entered:
ordered([1,2,3,4]).
ordered_([1,2,3,4]).
I understand that I need to compare the head with the head of the tail.
Doesn't seem like it should be any more complex than
ordered( [] ) .
ordered( [_] ) .
ordered( [X,Y|Z] ) :- X =< Y , ordered( [Y|Z] ) .
Arithmetic comparison predicates are covered here: http://www.amzi.com/manuals/amzi/pro/ref_math.htm#MathematicalComparisons
Use #=</2 or compare/3 to check the ordering of things in the standard order of terms: http://www.amzi.com/manuals/amzi/pro/ref_manipulating_terms.htm#StandardOrder
a compact alternative:
ordered(L) :- \+ ( append(_,[A,B|_], L), A > B ).
More efficient alternative to most upvoted solution, comparing three instead of appending the bigger element back to the list
is_sorted([]).
is_sorted([X, Y, Z|T]) :- X =< Y, Y =< Z, is_sorted(T).
is_sorted([X, Y|T]) :- X =< Y, is_sorted(T).
I've been trying to write some code that takes a list of values, and removes all values which are only in the list once, the non-duplicates:
dbltaker([], []).
dbltaker([H | X], Y):-
\+mem(H, X),
dbltaker(X, Y).
dbltaker([H | X], [H | Y]):-
mem(H, X), !,
dbltaker(X, Y).
dbltaker([H | X], [H | Y]):-
mem(H, Y),
dbltaker(X, Y).
mem(H, [H | _]).
mem(H, [_ | T]):-
mem(H, T).
The trouble I've been having is that after I move a non-duplicate to the other list, it's duplicate is no longer a duplicate so isn't moved into the list. For example, the list [1, 1, 1, 2, 2, 3] gives [1, 1, 2] as the output, as the last one and two aren't considered duplicates as they're no longer members of their tails, and I can't check to see if they're members of the new list, as it's yet to be instantiated.
Is there a way around this?
Thanks.
I think the simpler way should be to should pass around to original list, to be able to check when an element is duplicate or not.
dbltaker(L, R) :- dbltaker(L, L, R).
dbltaker([], _L, []).
dbltaker([H|T], L, [H|R]) :- at_least_2(H, L), !, dbltaker(T, L, R).
dbltaker([_|T], L, R) :- dbltaker(T, L, R).
the service predicate at_least_2(H, L) can easily be implemented...
This is how I'd do it:
First, a check for list membership:
exists_in( A , [A|_] ) :- ! .
exists_in( A , [_|B] ) :- exists_in(A,B) .
Then a conditional add. If X is not contained in Y, add X to Y giving Z:
add_if_not_exists( X , Z , Z ) :- exists(X,T) , ! .
add_if_not_exists( X , Y , [X|Y] ) .
A worker predicate that does the hard work, using an accumulator (seeded to the empty list []) to build the set of distinct elements:
dedupe( [] , Z , Z ) . % if the source list is exhausted, we're done: the accumulator is the set of distinct list members.
dedupe( [X|Xs] , Y , Z ) :- % otherwise...
add_if_not_exists(X,Y,T) , % - add X to the accumulator if it's not already there.
dedupe(Xs,T,Z) % - and recurse down.
. % Easy!
And finally, the public interface predicate that simply invokes the worker predicate:
dedupe( Xs, Ys ) :- % dedupe a list
dedupe( Xs, [] , Ys ) % by invoking the helper predicate with the accumulator seeded with the empty set.
. %
Note: the worker predicate builds the deduped list in reverse order. If order is important, reversing a list is trivial:
rev( [] , [] ) .
rev( [X|Xs] , Rs ) :- rev( Xs , [X|Rs] ) .
Just modify the public interface to do the reversal:
dedupe1( Xs, Ys ) :- % dedupe a list
dedupe( Xs, [] , T ) , % by invoking the helper predicate with the accumulator seeded to the empty set.
rev(T,Ys) % and reversing the result.
. %
I have a list [a, b, a, a, a, c, c]
and I need to add two more occurrences of each element.
The end result should look like this:
[a, a, a, b, b, b, a, a, a, a, a, c, c, c, c]
If I have an item on the list that is the same as the next item, then it keeps going until there is a new item, when it finds the new item, it adds two occurrences of the previous item then moves on.
This is my code so far, but I can't figure out how to add two...
dbl([], []).
dbl([X], [X,X]).
dbl([H|T], [H,H|T], [H,H|R]) :- dbl(T, R).
Your code looks a bit strange because the last rule takes three parameters. You only call the binary version, so no recursion will ever try to derive it.
You already had a good idea to look at the parts of the list, where elements change. So there are 4 cases:
1) Your list is empty.
2) You have exactly one element.
3) Your list starts with two equal elements.
4) Your list starts with two different elements.
Case 1 is not specified, so you might need to find a sensible choice for that. Case 2 is somehow similar to case 4, since the end of the list can be seen as a change in elements, where you need to append two copies, but then you are done. Case 3 is quite simple, we can just keep the element and recurse on the rest. Case 4 is where you need to insert the two copies again.
This means your code will look something like this:
% Case 1
dbl([],[]).
% Case 2
dbl([X],[X,X,X]).
% Case 3
dbl([X,X|Xs], [X|Ys]) :-
% [...] recursion skipping the leading X
% Case 4
dbl([X,Y|Xs], [X,X,X|Ys]) :-
dif(X,Y),
% [...] we inserted the copies, so recursion on [Y|Xs] and Ys
Case 3 should be easy to finish, we just drop the first X from both lists and recurse on dbl([X|Xs],Ys). Note that we implicitly made the first two elements equal (i.e. we unified them) by writing the same variable twice.
If you look at the head of case 4, you can directly imitate the pattern you described: supposed the list starts with X, then Y and they are different (dif(X,Y)), the X is repeated 3 times instead of just copied and we then continue with the recursion on the rest starting with Y: dbl([Y|Xs],Ys).
So let's try out the predicate:
?- dbl([a,b,a,a,a,c,c],[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]).
true ;
false.
Our test case is accepted (true) and we don't find more than one solution (false).
Let's see if we find a wrong solution:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), dbl([a,b,a,a,a,c,c],Xs).
false.
No, that's also good. What happens, if we have variables in our list?
?- dbl([a,X,a],Ys).
X = a,
Ys = [a, a, a, a, a] ;
Ys = [a, a, a, X, X, X, a, a, a],
dif(X, a),
dif(X, a) ;
false.
Either X = a, then Ys is single run of 5 as; or X is not equal to a, then we need to append the copies in all three runs. Looks also fine. (*)
Now lets see, what happens if we only specify the solution:
?- dbl(X,[a,a,a,b,b]).
false.
Right, a list with a run of only two bs can not be a result of our specification. So lets try to add one:
?- dbl(X,[a,a,a,b,b,b]).
X = [a, b] ;
false.
Hooray, it worked! So lets as a last test look what happens, if we just call our predicate with two variables:
?- dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G15],
Ys = [_G15, _G15, _G15] ;
Xs = [_G15, _G15],
Ys = [_G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15, _G15] ;
[...]
It seems we get the correct answers, but we see only cases for a single run. This is a result of prolog's search strategy(which i will not explain in here). But if we look at shorter lists before we generate longer ones, we can see all the solutions:
?- length(Xs,_), dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G16],
Ys = [_G16, _G16, _G16] ;
Xs = [_G16, _G16],
Ys = [_G16, _G16, _G16, _G16] ;
Xs = [_G86, _G89],
Ys = [_G86, _G86, _G86, _G89, _G89, _G89],
dif(_G86, _G89) ;
Xs = [_G16, _G16, _G16],
Ys = [_G16, _G16, _G16, _G16, _G16] ;
Xs = [_G188, _G188, _G194],
Ys = [_G188, _G188, _G188, _G188, _G194, _G194, _G194],
dif(_G188, _G194) ;
[...]
So it seems we have a working predicate (**), supposed you filled in the missing goals from the text :)
(*) A remark here: this case only works because we are using dif. The first predicates with equality, one usually encounters are =, == and their respective negations \= and \==. The = stands for unifyability (substituting variables in the arguments s.t. they become equal) and the == stands for syntactic equality (terms being exactly equal). E.g.:
?- f(X) = f(a).
X = a.
?- f(X) \= f(a).
false.
?- f(X) == f(a).
false.
?- f(X) \== f(a).
true.
This means, we can make f(X) equal to f(a), if we substitute X by a. This means if we ask if they can not be made equal (\=), we get the answer false. On the other hand, the two terms are not equal, so == returns false, and its negation \== answers true.
What this also means is that X \== Y is always true, so we can not use \== in our code. In contrast to that, dif waits until it can decide wether its arguments are equal or not. If this is still undecided after finding an answer, the "dif(X,a)" statements are printed.
(**) One last remark here: There is also a solution with the if-then-else construct (test -> goals_if_true; goals_if_false, which merges cases 3 and 4. Since i prefer this solution, you might need to look into the other version yourself.
TL;DR:
From a declarative point of view, the code sketched by #lambda.xy.x is perfect.
Its determinacy can be improved without sacrificing logical-purity.
Code variant #0: #lambda.xy.x's code
Here's the code we want to improve:
dbl0([], []).
dbl0([X], [X,X,X]).
dbl0([X,X|Xs], [X|Ys]) :-
dbl0([X|Xs], Ys).
dbl0([X,Y|Xs], [X,X,X|Ys]) :-
dif(X, Y),
dbl0([Y|Xs], Ys).
Consider the following query and the answer SWI-Prolog gives us:
?- dbl0([a],Xs).
Xs = [a,a,a] ;
false.
With ; false the SWI prolog-toplevel
indicates a choicepoint was left when proving the goal.
For the first answer, Prolog did not search the entire proof tree.
Instead, it replied "here's an answer, there may be more".
Then, when asked for more solutions, Prolog traversed the remaining branches of the proof tree but finds no more answers.
In other words: Prolog needs to think twice to prove something we knew all along!
So, how can we give determinacy hints to Prolog?
By utilizing:
control constructs !/0 and / or (->)/2 (potentially impure)
first argument indexing on the principal functor (never impure)
The code presented in the earlier answer by #CapelliC—which is based on !/0, (->)/2, and the meta-logical predicate (\=)/2—runs well if all arguments are sufficiently instantiated. If not, erratic answers may result—as #lambda.xy.x's comment shows.
Code variant #1: indexing
Indexing can improve determinacy without ever rendering the code non-monotonic. While different Prolog processors have distinct advanced indexing capabilities, the "first-argument principal-functor" indexing variant is widely available.
Principal? This is why executing the goal dbl0([a],Xs) leaves a choicepoint behind: Yes, the goal only matches one clause—dbl0([X],[X,X,X]).—but looking no deeper than the principal functor Prolog assumes that any of the last three clauses could eventually get used. Of course, we know better...
To tell Prolog we utilize principal-functor first-argument indexing:
dbl1([], []).
dbl1([E|Es], Xs) :-
dbl1_(Es, Xs, E).
dbl1_([], [E,E,E], E).
dbl1_([E|Es], [E|Xs], E) :-
dbl1_(Es, Xs, E).
dbl1_([E|Es], [E0,E0,E0|Xs], E0) :-
dif(E0, E),
dbl1_(Es, Xs, E).
Better? Somewhat, but determinacy could be better still...
Code variant #2: indexing on reified term equality
To make Prolog see that the two recursive clauses of dbl1_/3 are mutually exclusive (in certain cases), we reify the truth value of
term equality and then index on that value:
This is where reified term equality (=)/3 comes into play:
dbl2([], []).
dbl2([E|Es], Xs) :-
dbl2_(Es, Xs, E).
dbl2_([], [E,E,E], E).
dbl2_([E|Es], Xs, E0) :-
=(E0, E, T),
t_dbl2_(T, Xs, E0, E, Es).
t_dbl2_(true, [E|Xs], _, E, Es) :-
dbl2_(Es, Xs, E).
t_dbl2_(false, [E0,E0,E0|Xs], E0, E, Es) :-
dbl2_(Es, Xs, E).
Sample queries using SWI-Prolog:
?- dbl0([a],Xs).
Xs = [a, a, a] ;
false.
?- dbl1([a],Xs).
Xs = [a, a, a].
?- dbl2([a],Xs).
Xs = [a, a, a].
?- dbl0([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl1([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl2([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b].
To make above code more compact, use control construct if_/3 .
I was just about to throw this version with if_/3 and (=)/3 in the hat when I saw #repeat already suggested it. So this is essentially the more compact version as outlined by #repeat:
list_dbl([],[]).
list_dbl([X],[X,X,X]).
list_dbl([A,B|Xs],DBL) :-
if_(A=B,DBL=[A,B|Ys],DBL=[A,A,A,B|Ys]),
list_dbl([B|Xs],[B|Ys]).
It yields the same results as dbl2/2 by #repeat:
?- list_dbl([a],DBL).
DBL = [a,a,a]
?- list_dbl([a,b,b],DBL).
DBL = [a,a,a,b,b,b,b]
The example query by the OP works as expected:
?- list_dbl([a,b,a,a,a,c,c],DBL).
DBL = [a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]
Plus here are some of the example queries provided by #lambda.xy.x. They yield the same results as #repeat's dbl/2 and #lambda.xy.x's dbl/2:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), list_dbl([a,b,a,a,a,c,c],Xs).
no
?- list_dbl(X,[a,a,a,b,b]).
no
?- list_dbl(L,[a,a,a,b,b,b]).
L = [a,b] ? ;
no
?- list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ? ;
...
?- list_dbl([a,X,a],DBL).
DBL = [a,a,a,a,a],
X = a ? ;
DBL = [a,a,a,X,X,X,a,a,a],
dif(X,a),
dif(a,X)
?- length(L,_), list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_B,_B,_B],
L = [_A,_B],
dif(_A,_B) ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ?
dbl([X,Y|T], [X,X,X|R]) :- X \= Y, !, dbl([Y|T], R).
dbl([H|T], R) :-
T = []
-> R = [H,H,H]
; R = [H|Q], dbl(T, Q).
The first clause handles the basic requirement, adding two elements on sequence change.
The second one handles list termination as a sequence change, otherwise, does a plain copy.