Flip Alternate Elements in a List ML - sml

I have written a function that will flip alternate elements in a list, however I have to call it, then call its methods (I'm new to ML so I apologize if I'm using the incorrect terms). I would prefer to just call the function without having to call the methods inside it. This is what I have to do now:
(*3. Flip alternate elements in a list, if n = odd, element n remains at end*)
fun flip nil x = x
| flip x nil = x
| flip (x::xs) (y::ys) = x::y::flip xs ys;
fun take l =
if l = nil then nil
else hd l::skip (tl l)
and skip l =
if l = nil then nil
else take (tl l);
but when I call it to reverse the elements, I have to call it :
flip (skip d) (take d);
flip (skip e) (take e);
Is there any way to call the function as :
flip (d);
If I call flip (d); now, it just prints
val take = fn : ''a list -> ''a list
val skip = fn : ''a list -> ''a list
Thank you all in advance!
EDIT: I should mention d is just a list of ints:
val d = [1,2,3,4];

Assuming "flipping alternate elements in a list" means turning [1,2,3,4,5,6] into [2,1,4,3,6,5], and throwing away the last element if the length is odd, then you can achieve this simply by pattern matching in a single function:
fun flip (x::y::xs) = y::x::flip xs
| flip _ = []
Some feedback on your code snippets:
Many of your parentheses are unnecessary.
Don't use hd / tl, but rather use pattern matching.
The actual flipping takes place in your take and skip.
Your flip could appropriately be called merge.
If this were the case, in order to fix flip so it only takes one argument:
fun flip xs = merge (skip xs) (take xs)
It is very useful to be able to make helper functions with more arguments and call these.

Related

I have difficulties with two problems with the langage OCaml

Important: I am only allowed to use List.head, List.tail and List.length
No List.map List.rev ...........etc
Only List.hd, List.tl and List.length
How to duplicate the elements of a list in a list of lists only if the length of the list is odd
Here is the code I tried:
let rec listes_paires x =
if x=[] then []
else [List.hd (List.hd x)]
# (List.tl (List.hd x))
# listes_paires (List.tl x);;
(* editor's note: I don't know where this line is supposed to go*)
if List.length mod 2 = 1 then []
For exemple:
lists_odd [[]; [1];[1;2];[1;2;3];[];[5;4;3;2;1]];;
returns
[[]; [1; 1]; [1; 2]; [1; 2; 3; 1; 2; 3]; []; [5; 4; 3; 2; 1; 5; 4; 3; 2; 1]]
Any help would be very appreciated
thank you all
It looks like that your exercise is about writing recursive functions on lists so that you can learn how to write functions like List.length, List.filter, and so on.
Start with the most simple recursive function, the one that computes the length to the list. Recall, that you can pattern match on the input list structure and make decisions on it, e.g.,
let rec length xs = match xs with
| [] -> 0 (* the empty list has size zero *)
| hd :: tl ->
(* here you can call `length` and it will return you
the length of the list hing how you can use it to
compute the length of the list that is made of `tl`
prepended with `hd` *)
???
The trick is to first write the simple cases and then write the complex cases assuming that your recursive function already works. Don't overthink it and don't try to compute how recursion will work in your head. It will make it hurt :) Just write correctly the base cases (the simple cases) and make sure that you call your function recursively and correctly combine the results while assuming that it works correctly. It is called the induction principle and it works, believe me :)
The above length function was easy as it was producing an integer as output and it was very easy to build it, e.g., you can use + to build a new integer from other integers, something that we have learned very early in our lives so it doesn't surprise us. But what if we want to build something more complex (in fact it is not more complex but just less common to us), e.g., a list data structure? Well, it is the same, we can just use :: instead of + to add things to our result.
So, lets try writing the filter function that will recurse over the input list and build a new list from the elements that satisfy the given predicate,
let rec filter xs keep = match xs with
| [] -> (* the simple case - no elements nothing to filter *)
[]
| x :: xs ->
(* we call filter and it returns the correctly filtered list *)
let filtered = filter xs keep in
(* now we need to decide what to do with `x` *)
if keep x then (* how to build a list from `x` and `filtered`?*)
else filtered (* keep filtering *)
The next trick to learn with recursive functions is how to employ helper functions that add an extra state (also called an accumulator). For example, the rev function, which reverses a list, is much better to define with an extra accumulator. Yes, we can easily define it without it,
let rec rev xs = match xs with
| [] -> []
| x :: xs -> rev xs # [x]
But this is an extremely bad idea as # operator will have to go to the end of the first list and build a completely new list on the road to add only one element. That is our rev implementation will have quadratic performance, i.e., for a list of n elements it will build n list each having n elements in it, only to drop most of them. So a more efficient implementation will employ a helper function that will have an extra parameter, an accumulator,
let rev xs =
(* we will pump elements from xs to ys *)
let rec loop xs ys = match xs with
| [] -> ys (* nothing more to pump *)
| x :: xs ->
let ys = (* push y to ys *) in
(* continue pumping *) in
loop xs []
This trick will also help you in implementing your tasks, as you need to filter by the position of the element. That means that your recursive function needs an extra state that counts the position (increments by one on each recursive step through the list elements). So you will need a helper function with an extra parameter for that counter.

Insert function using foldl/foldr

I have been working on a separate function that returns a list that inserts element x after each k elements of list l (counting from
the end of the list). For example, separate (1, 0, [1,2,3,4]) should return [1,0,2,0,3,0,4]. I finished the function and have it working as follows:
fun separate (k: int, x: 'a, l: 'a list) : 'a list =
let
fun kinsert [] _ = []
| kinsert ls 0 = x::(kinsert ls k)
| kinsert (l::ls) i = l::(kinsert ls (i-1))
in
List.rev (kinsert (List.rev l) k)
end
Im now trying to simplify the function using foldl/foldr without any recursion, but I cant seem to get it working right. Any tips/suggestions on how to approach this? Thank You!
These are more or less the thoughts I had when trying to write the function using foldl/foldr:
foldl/foldr abstracts away the list recursion from the logic that composes the end result.
Start by sketching out a function that has a much similar structure to your original program, but where foldr is used and kinsert instead of being a recursive function is the function given to foldr:
fun separate (k, x, L) =
let fun kinsert (y, ys) = ...
in foldr kinsert [] L
end
This isn't strictly necessary; kinsert might as well be anonymous.
You're using an inner helper function kinsert because you need a copy of k (i) that you gradually decrement and reset to k every time it reaches 0. So while the list that kinsert spits out is equivalent to the fold's accumulated variable, i is temporarily accumulated (and occasionally reset) in much the same way.
Change kinsert's accumulating variable to make room for i:
fun separate (k, x, L) =
let fun kinsert (y, (i, xs)) = ...
in foldr kinsert (?, []) L
end
Now the result of the fold becomes 'a * 'a list, which causes two problems: 1) We only really wanted to accumulate i temporarily, but it's part of the final result. This can be circumvented by discarding it using #2 (foldr ...). 2) If the result is now a tuple, I'm not sure what to put as the first i in place of ?.
Since kinsert is a separate function declaration, you can use pattern matching and multiple function bodies:
fun separate (k, x, L) =
let fun kinsert (y, (0, ys)) = ...
| kinsert (y, (i, ys)) = ...
in ... foldr kinsert ... L
end
Your original kinsert deviates from the recursion pattern that a fold performs in one way: In the middle pattern, when i matches 0, you're not chopping an element off ls, which a fold would otherwise force you to. So your 0 case will look slightly different from the original; you'll probably run into an off-by-one error.
Remember that foldr actually visits the last element in the list first, at which point i will have its initial value, where with the original kinsert, the initial value for i will be when you're at the first element.
Depending on whether you use foldl or foldr you'll run into different problems: foldl will reverse your list, but address items in the right order. foldr will keep the list order correct, but create a different result when k does not divide the length of L...
At this point, consider using foldl and reverse the list instead:
fun separate (k, x, L) =
let fun kinsert (y, (?, ys)) = ...
| kinsert (y, (i, ys)) = ...
in rev (... foldl kinsert ... L)
end
Otherwise you'll start to notice that separate (2, 0, [1,2,3,4,5]) should probably give [1,2,0,3,4,0,5] and not [1,0,2,3,0,5].

how to stop a recursive function in this case (SML)

fun p(L) =
[L] # p( tl(L) # [hd(L)] );
If L is [1,2,3] then I want to have a [ [1,2,3], [2,3,1], [3,1,2] ].
Since every time I append the first num to the end, then if L = [] then [] doesn't work here.
How to stop the function once it has the three lists?
You can have a parameter x in the function to keep track of how many levels deep in the recursion you are.
fun p(L, x) =
if x < length(L) then [L] # p(tl(L) # [hd(L)], x+1)
else [];
Then call the function with x=0.
p([1, 2, 3], 0)
And if you don't like the extra parameter, then as you probably know you can define another function and make it equal to the p function with the parameter forced to 0.
fun p0(L) = p(L, 0);
p0([1, 2, 3]); (* same result as p([1, 2, 3], 0); *)
Let me show some more implementation variants.
First of all, let's define an auxiliary function, which rotates a list 1 position to the left:
(* operates on non-empty lists only *)
fun rot1_left (h :: tl) = tl # [h]
Then the p function could be defined as follows:
fun p xs =
let
(* returns reversed result *)
fun loop [] _ _ = []
| loop xs n res =
if n = 0
then res
else loop (rot1_left xs) (n-1) (xs :: res)
in
List.rev (loop xs (length xs) [])
end
It's usually better (performance-wise) to add new elements at the beginning of the list and then reverse the resulting list once, than to append to the end many times. Note: this version does one spurious rotate at the end and I could have optimized it out, but didn't, to make code more clear.
We have calculated the length of the given list to make its rotated "copies", but we don't have to traverse xs beforehand, we can do it as we rotate it. So, we can use xs as a kind of counter, recursively calling the loop helper function on the tail of the xs list.
fun p xs =
let
(* returns reversed result *)
fun loop [] _ _ = []
| loop xs [] res = res
| loop xs (_::tl) res =
loop (rot1_left xs) tl (xs :: res)
in
List.rev (loop xs xs [])
end
Having done that, we are now closer to implementing p as a foldl function:
fun p xs =
(List.rev o #1)
(List.foldl
(fn (_, (res, rot)) => (rot::res, rot1_left rot))
([], xs)
xs)
The second argument to the List.foldl function is our "accumulator", which is represented here as a pair of the current (partial) result as in the previous implementations and the current rotated list. That explains (List.rev o #1) part: we need to take the first component of the accumulator and reverse it. And as for the ([], xs) part -- the current result is empty at the beginning (hence []) and we start rotating the initial xs list. Also, the _ in (_, (res, rot)) means the current element of the given xs, which we don't care about, since it just serves as a counter (see the prev. variant).
Note: o stands for function composition in Standard ML.

SML list summing

I'm very new to SML and I am trying a list exercise. The goal is sum up the previous numbers of a list and create a new list. For example, an input list [1, 4, 6, 9] would return [1, 5, 11, 20].
This is my solution so far, but I think the issue is with how I'm defining the function.
fun rec sum:int list -> int list =
if tl(list) = nil then
hd(list)
else
hd :: sum((hd(tail) + hd(tl(list)))::tl(tl(list)));
Besides that you are using rec as a function name, then you have some minor issues to work on.
The explicit type annotation you have made is treated as an annotation of the function result.
Thus, according to what you have written, then it should return a function and not the expected
list. This is clearly seen from the below example:
- fun rec_ sum : int list -> int list = raise Domain;
val rec_ = fn : 'a -> int list -> int list
Your should be careful of using the head and tail functions, when you don't do any checks on the
number of elements in the list. This could be done with either the length function, or (even
easier and often better) by pattern matching the number of elements.
Your code contains sum as a function call and tail as an variable. The variable tail has never
been defined, and using sum as a function call, makes me believe that you are actually using rec
as a keyword, but don't know what it means.
The keyword rec is used, when defining functions using the val keyword. In this case, rec is
needed to be able to define recursive functions (not a big surprise). In reality, the keyword fun
is syntactic sugar (a derived form) of val rec.
The following 3 are examples of how it could have been made:
The first is a simple, straight forward solution.
fun sumList1 (x::y::xs) = x :: sumList1 (x+y::xs)
| sumList1 xs = xs
This second example, uses a helper function, with an added argument (an accumulator). The list is constructed in the reverse order, to avoid using the slow append (#) operator. Thus we reverse the list before returning it:
fun sumList2 xs =
let
fun sumList' [] acc = rev acc
| sumList' [x] acc = rev (x::acc)
| sumList' (x :: y :: xs) acc = sumList' (y+x :: xs) (x :: acc)
in
sumList' xs []
end
The last example, show how small and easy it can be, if you use the standard list functions. Here the fold left is used, to go through all elements. Again note that the list is constructed in the reverse order, thus it is reversed as the last step:
fun sumList3 [] = []
| sumList3 (x::xs) = rev (foldl (fn (a, b) => hd b + a :: b) [x] xs)
try this -
fun recList ([], index, sum) = []
| recList (li, index, sum) =
if index=0 then
hd li :: recList (tl li, index+1, hd li)
else
sum + hd li :: recList (tl li, index+1, sum + hd li)
fun recSum li = recList (li, 0, 0)
In your case -
recSum([1,4,6,9]) ;
will give
val it = [1,5,11,20] : int list
also don't use rec as fun name -it keyword .

Ocaml list of ints to list of int lists (Opposite of flattening)

With a list of integers such as:
[1;2;3;4;5;6;7;8;9]
How can I create a list of list of ints from the above, with all new lists the same specified length?
For example, I need to go from:
[1;2;3;4;5;6;7;8;9] to [[1;2;3];[4;5;6];[7;8;9]]
with the number to split being 3?
Thanks for your time.
So what you actually want is a function of type
val split : int list -> int -> int list list
that takes a list of integers and a sub-list-size. How about one that is even more general?
val split : 'a list -> int -> 'a list list
Here comes the implementation:
let split xs size =
let (_, r, rs) =
(* fold over the list, keeping track of how many elements are still
missing in the current list (csize), the current list (ys) and
the result list (zss) *)
List.fold_left (fun (csize, ys, zss) elt ->
(* if target size is 0, add the current list to the target list and
start a new empty current list of target-size size *)
if csize = 0 then (size - 1, [elt], zss # [ys])
(* otherwise decrement the target size and append the current element
elt to the current list ys *)
else (csize - 1, ys # [elt], zss))
(* start the accumulator with target-size=size, an empty current list and
an empty target-list *)
(size, [], []) xs
in
(* add the "left-overs" to the back of the target-list *)
rs # [r]
Please let me know if you get extra points for this! ;)
The code you give is a way to remove a given number of elements from the front of a list. One way to proceed might be to leave this function as it is (maybe clean it up a little) and use an outer function to process the whole list. For this to work easily, your function might also want to return the remainder of the list (so the outer function can easily tell what still needs to be segmented).
It seems, though, that you want to solve the problem with a single function. If so, the main thing I see that's missing is an accumulator for the pieces you've already snipped off. And you also can't quit when you reach your count, you have to remember the piece you just snipped off, and then process the rest of the list the same way.
If I were solving this myself, I'd try to generalize the problem so that the recursive call could help out in all cases. Something that might work is to allow the first piece to be shorter than the rest. That way you can write it as a single function, with no accumulators
(just recursive calls).
I would probably do it this way:
let split lst n =
let rec parti n acc xs =
match xs with
| [] -> (List.rev acc, [])
| _::_ when n = 0 -> (List.rev acc, xs)
| x::xs -> parti (pred n) (x::acc) xs
in let rec concat acc = function
| [] -> List.rev acc
| xs -> let (part, rest) = parti n [] xs in concat (part::acc) rest
in concat [] lst
Note that we are being lenient if n doesn't divide List.length lst evenly.
Example:
split [1;2;3;4;5] 2 gives [[1;2];[3;4];[5]]
Final note: the code is very verbose because the OCaml standard lib is very bare bones :/ With a different lib I'm sure this could be made much more concise.
let rec split n xs =
let rec take k xs ys = match k, xs with
| 0, _ -> List.rev ys :: split n xs
| _, [] -> if ys = [] then [] else [ys]
| _, x::xs' -> take (k - 1) xs' (x::ys)
in take n xs []