paste lines of string characters in raw text - regex

I work on raw textual data from a scanned catalog.
Here is an example:
ABADIE-LANDEL (Pierre) — 1920 — né à Paris. — 17, rue Campagne-Première
ABOU (Albert) — 1930 — né à Marseille.
— 41, rue de Seine, 6e.
ANGER (Jacques) — 1925 — né à Paris. — 33, rue Vineuse, 16e.
ANTHONE (Armand) — 1908 — né à Paris. — 4, avenue Victor-Hugo
Rue des Tournelles
ANTRAL (Jean) — 1920
This is a list of names with occasional lines including address mentions.
The data is imported into R with:
readlines ("clipboard", encoding = " latin1 ")
I am able to identify lines including artist names in capital letters with different regex
[A-ZÁÀÂÄÃÅÇÉÈÊËÍÌÎÏÑÓÒÔÖÕÚÙÛÜÝYÆO][A-ZÁÀÂÄÃÅÇÉÈÊËÍÌÎÏÑÓÒÔÖÕÚÙÛÜÝYÆO |']
or (ICU)
[\p{Uppercase Letter}][\p{Uppercase Letter}|']
I am able to identify lines including artworks
^[0-9]+[\s][^bis]`
I am able to extract artists names
".+(?=- [0-9]{4})"
or
(.+)[0-9]{4}.+ # with backreference \1
For more data, here is a sample of data from a 1930 catalog:
https://docs.google.com/document/d/1nF3CQmZbDsCGKMp_OgZymxWIfoOx5xrNdTmDXZANwuc/edit?usp=sharing
I wish I could paste the pieces of adress substrings but My final goal is to create a data.frame object structured as follows:
1st column: NAME artist and surname;
2nd column: supplements (address, nationality ...)
3rd columns: works or better ...
Column 3: 1 work
4th column 2 work, etc.
Thank you in advance for your help.

If I understand your question correctly, you want to extract names and addresses from your records some of which may span across different lines.
One solution may be to exploit the fact that the character — works as a field separator. So assuming that the structure of your records is regular you could do:
(data is a variable holding your example string)
## Replace newlines with the separator character
data <- gsub("\\n(\\s*—)?", " — ", data)
## Normalize space
data <- gsub("\\s+", " ", data)
## Now split by the separator character
tokens <- strsplit(data, "\\s—\\s")[[1]]
tokens now contains:
[1] "ABADIE-LANDEL (Pierre)" "1920" "né à Paris." "17, rue Campagne-Première" "ABOU (Albert)"
[6] "1930" "né à Marseille." "41, rue de Seine, 6e." "ANGER (Jacques)" "1925"
[11] "né à Paris." "33, rue Vineuse, 16e." "ANTHONE (Armand)" "1908" "né à Paris."
[16] "4, avenue Victor-Hugo" "Rue des Tournelles" "ANTRAL (Jean)" "1920"
Each complete record should have 4 sequential indices in this vector but since there may be incomplete records we must work a little more.
We exploit the fact that people's names are all-capitals and follow a strict pattern. We get the indices of the names in tokens and then split tokens on those indices. Each subvector produced is now a complete record:
## Get the indices of names
idx <- which(grepl("^[A-Z-]+\\s\\(", tokens))
## Use the indices to partition tokens to subvectors
records <- list()
for (i in 1:length(idx)) {
start <- idx[i]
if (i == length(idx)) {
stop <- length(tokens)
}
else {
stop <- idx[i+1] - 1
}
records[[i]] <- tokens[start:stop]
}
Here is the final list of results:
[[1]]
[1] "ABADIE-LANDEL (Pierre)" "1920" "né à Paris." "17, rue Campagne-Première"
[[2]]
[1] "ABOU (Albert)" "1930" "né à Marseille." "41, rue de Seine, 6e."
[[3]]
[1] "ANGER (Jacques)" "1925" "né à Paris." "33, rue Vineuse, 16e."
[[4]]
[1] "ANTHONE (Armand)" "1908" "né à Paris." "4, avenue Victor-Hugo" "Rue des Tournelles"
[[5]]
[1] "ANTRAL (Jean)" "1920"
Hope this helps or leads to better ideas.

Related

Easy way to extract text between defined set of strings in R

I have some text with defined labels and need to split the text according to the labels.
For example given the text with labels set {A, B, C..}
text <- c("A: how are you B: hello sir C: bye bye")
text2 <- c("USER COMMENTS: TEST PROC: Refer manual. SOLUTION: fix BIAS32 user:param", "TEST PROC: install spare unit. USER COMMENTS: hello sir SOLUTION: tighten bolt 12","TEST PROC: bye bye.")
I need to extract text "how are you", "hello sir" , etc.. corresponding to labels A, B, etc.
There is no specific order of the labels, certain labels could be missing and labels can be phrases (not just characters)
This is what I have so far to extract text corresponding to label A:
gsub("(.*A.*:)(.*)(B.*|C.*)","\\2",text,perl=TRUE)
But this does not work in so many cases!
I am looking for a solution where I can define a vector of labels such as
labels <- c("USER COMMENTS", "TEST PROC", "SOLUTION") # this is a big list!
and extract the text corresponding to these labels as below
USER COMMENTS are "", "hello sir"
TEST PROC are "Refer manual.", "install spare unit.","bye bye."
SOLUTION are "fix BIAS32 user:param", "tighten bolt 12"
etc..
I think I might have a solution based on Sharath's comment.
First, there's strsplit(), which can split a vector based on regex. In your case you could use:
labels2<-paste(labels,collapse="|")
[1] "USER COMMENTS|TEST PROC|SOLUTION"
If you apply strsplit on that:
splittedtext<-strsplit(text2,labels2)
[[1]]
[1] "" ": "
[3] ": Refer manual. " ": fix BIAS32 user:param"
[[2]]
[1] "" ": install spare unit. " ": hello sir "
[4] ": tighten bolt 12"
[[3]]
[1] "" ": bye bye."
Pretty much what you want, right? You could do some refining by adding ": " to the end of every index, and the first element is gibberish. So taking care of the latter:
splittedtext<-lapply(splittedtext,"[",-1)
That generates the problem that you must figure out to which label a comment applies. For that you could use regexpr() function in R.
pos=sapply(labels,regexpr,text2)
USER COMMENTS TEST PROC SOLUTION
[1,] 1 16 41
[2,] 32 1 57
[3,] -1 1 -1
Each cell represents the position in which said label [column] appear on string [row]. -1 denote that it does not appear on this string.
Now switch, -1 for NA, and rank the remaining numbers. That will give to you which string snippet represents that label.
pos=ifelse(pos==-1,NA,pos) #switch -1 for NA
pos=t(apply(pos,1,rank,na.last="keep"))
USER COMMENTS TEST PROC SOLUTION
[1,] 1 2 3
[2,] 2 1 3
[3,] NA 1 NA
Now it's just matching.

Extracting everything after first two words in R

I am trying to extract all the info, using a regular expression in R, after the first number and first word of an entry in a data frame.
For example:
Header =
c("2006 Volvo XC70",
"2012 Ford Econoline Cargo Van E-250 Commercial",
"2012 Nissan Frontier",
"2012 Kia Soul 5dr Wagon Automatic")
I want to write a pattern that will grab Volvo XC70, or Econoline Cargo Van E-250 Commercial (everything after the year and make) from an entry in my "header" column so that I may run the function on my data frame and create a new "model" column. I can't figure out a pattern that will allow me to skip the first string of integers, then a space, then the first string of characters, and then a space, and then grab everything proceeding.
Any help would be appreciated. Thanks!
Just use sub.
sub("^\\d+\\s+\\w+\\s+", "", df$x)
Example:
x <- "2012 Ford Econoline Cargo Van E-250 Commercial"
sub("^\\d+\\s+\\w+\\s+", "", x)
# [1] "Econoline Cargo Van E-250 Commercial"
For this task, I would fetch a basic list using the XML package:
library(XML)
doc <- xmlParse('http://www.fueleconomy.gov/ws/rest/ympg/shared/menu/make')
Now that we fetched the XML data we can create a vector with the car makes:
mk <- xpathSApply(doc, '//value', xmlValue)
Finally, I'll compile the pattern and play around with sprintf and sub:
df$Makes <- sub(sprintf('\\d+ (?:%s) ', paste(mk, collapse='|')), '', df$Header)
Output:
## Header
# 1 2006 Volvo XC70
# 2 2012 Ford Econoline Cargo Van E-250 Commercial
# 3 2012 Nissan Frontier
# 4 2012 Kia Soul 5dr Wagon Automatic
## Makes
# 1 XC70
# 2 Econoline Cargo Van E-250 Commercial
# 3 Frontier
# 4 Soul 5dr Wagon Automatic

Split one column into two columns and retaining the seperator

I have a very large data array:
'data.frame': 40525992 obs. of 14 variables:
$ INSTNM : Factor w/ 7050 levels "A W Healthcare Educators"
$ Total : Factor w/ 3212 levels "1","10","100",
$ Crime_Type : Factor w/ 72 levels "MURD11","NEG_M11",
$ Count : num 0 0 0 0 0 0 0 0 0 0 ...
The Crime_Type column contains the type of Crime and the Year, so "MURD11" is Murder in 2011. These are college campus crime statistics my kid is analyzing for her school project, I am helping when she is stuck. I am currently stuck at creating a clean data file she can analyze
Once i converted the wide file (all crime types '9' in columns) to a long file using 'gather' the file size is going from 300MB to 8 GB. The file I am working on is 8GB. do you that is the problem. How do i convert it to a data.table for faster processing?
What I want to do is to split this 'Crime_Type' column into two columns 'Crime_Type' and 'Year'. The data contains alphanumeric and numbers. There are also some special characters like NEG_M which is 'Negligent Manslaughter'.
We will replace the full names later but can some one suggest on how I separate
MURD11 --> MURD and 11 (in two columns)
NEG_M10 --> NEG_M and 10 (in two columns)
etc...
I have tried using,
df <- separate(totallong, Crime_Type, into = c("Crime", "Year"), sep = "[:digit:]", extra = "merge")
df <- separate(totallong, Crime_Type, into = c("Year", "Temp"), sep = "[:alpha:]", extra = "merge")
The first one separates the Crime as it looks for numbers. The second one does not work at all.
I also tried
df$Crime_Type<- apply (strsplit(as.character(df$Crime_Type), split="[:digit:]"))
That does not work at all. I have gone through many posts on stack-overflow and thats where I got these commands but I am now truly stuck and would appreciate your help.
Since you're using tidyr already (as evidenced by separate), try the extract function, which, given a regex, puts each captured group into a new column. The 'Crime_Type' is all the non-numeric stuff, and the 'Year' is the numeric stuff. Adjust the regex accordingly.
library(tidyr)
extract(df, 'Crime_Type', into=c('Crime', 'Year'), regex='^([^0-9]+)([0-9]+)$')
In base R, one option would be to create a unique delimiter between the non-numeric and numeric part. We can capture as a group the non-numeric ([^0-9]+) and numeric ([0-9]+) characters by wrapping it inside the parentheses ((..)) and in the replacement we use \\1 for the first capture group, followed by a , and the second group (\\2). This can be used as input vector to read.table with sep=',' to read as two columns.
df1 <- read.table(text=gsub('([^0-9]+)([0-9]+)', '\\1,\\2',
totallong$Crime_Type),sep=",", col.names=c('Crime', 'Year'))
df1
# Crime Year
#1 MURD 11
#2 NEG_M 11
If we need, we can cbind with the original dataset
cbind(totallong, df1)
Or in base R, we can use strsplit with split specifying the boundary between non-number ((?<=[^0-9])) and a number ((?=[0-9])). Here we use lookarounds to match the boundary. The output will be a list, we can rbind the list elements with do.call(rbind and convert it to data.frame
as.data.frame(do.call(rbind, strsplit(as.character(totallong$Crime_Type),
split="(?<=[^0-9])(?=[0-9])", perl=TRUE)))
# V1 V2
#1 MURD 11
#2 NEG_M 11
Or another option is tstrsplit from the devel version of data.table ie. v1.9.5. Here also, we use the same regex. In addition, there is option to convert the output columns into different class.
library(data.table)#v1.9.5+
setDT(totallong)[, c('Crime', 'Year') := tstrsplit(Crime_Type,
"(?<=[^0-9])(?=[0-9])", perl=TRUE, type.convert=TRUE)]
# Crime_Type Crime Year
#1: MURD11 MURD 11
#2: NEG_M11 NEG_M 11
If we don't need the 'Crime_Type' column in the output, it can be assigned to NULL
totallong[, Crime_Type:= NULL]
NOTE: Instructions to install the devel version are here
Or a faster option would be stri_extract_all from library(stringi) after collapsing the rows to a single string ('v2'). The alternate elements in 'v3' can be extracted by indexing with seq to create new data.frame
library(stringi)
v2 <- paste(totallong$Crime_Type, collapse='')
v3 <- stri_extract_all(v2, regex='\\d+|\\D+')[[1]]
ind1 <- seq(1, length(v3), by=2)
ind2 <- seq(2, length(v3), by=2)
d1 <- data.frame(Crime=v3[ind1], Year= v3[ind2])
Benchmarks
v1 <- do.call(paste, c(expand.grid(c('MURD', 'NEG_M'), 11:15), sep=''))
set.seed(24)
test <- data.frame(v1= sample(v1, 40525992, replace=TRUE ))
system.time({
v2 <- paste(test$v1, collapse='')
v3 <- stri_extract_all(v2, regex='\\d+|\\D+')[[1]]
ind1 <- seq(1, length(v3), by=2)
ind2 <- seq(2, length(v3), by=2)
d1 <- data.frame(Crime=v3[ind1], Year= v3[ind2])
})
#user system elapsed
#56.019 1.709 57.838
data
totallong <- data.frame(Crime_Type= c('MURD11', 'NEG_M11'))

How to extract sentences containing specific person names using R

I am using R to extract sentences containing specific person names from texts and here is a sample paragraph:
Opposed as a reformer at Tübingen, he accepted a call to the University of Wittenberg by Martin Luther, recommended by his great-uncle Johann Reuchlin. Melanchthon became professor of the Greek language in Wittenberg at the age of 21. He studied the Scripture, especially of Paul, and Evangelical doctrine. He was present at the disputation of Leipzig (1519) as a spectator, but participated by his comments. Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium.
In this short paragraph, there are several person names such as:
Johann Reuchlin, Melanchthon, Johann Eck. With the help of openNLP package, three person names Martin Luther, Paul and Melanchthon can be correctly extracted and recognized. Then I have two questions:
How could I extract sentences containing these names?
As the output of named entity recognizer is not so promising, if I add "[[ ]]" to each name such as [[Johann Reuchlin]], [[Melanchthon]], how could I extract sentences containing these name expressions [[A]], [[B]] ...?
Using `strsplit` and `grep`, first I set made an object `para` which was your paragraph.
toMatch <- c("Martin Luther", "Paul", "Melanchthon")
unlist(strsplit(para,split="\\."))[grep(paste(toMatch, collapse="|"),unlist(strsplit(para,split="\\.")))]
> unlist(strsplit(para,split="\\."))[grep(paste(toMatch, collapse="|"),unlist(strsplit(para,split="\\.")))]
[1] "Opposed as a reformer at Tübingen, he accepted a call to the University of Wittenberg by Martin Luther, recommended by his great-uncle Johann Reuchlin"
[2] " Melanchthon became professor of the Greek language in Wittenberg at the age of 21"
[3] " He studied the Scripture, especially of Paul, and Evangelical doctrine"
[4] " Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium"
Or a little cleaner:
sentences<-unlist(strsplit(para,split="\\."))
sentences[grep(paste(toMatch, collapse="|"),sentences)]
If you are looking for the sentences that each person is in as separate returns then:
toMatch <- c("Martin Luther", "Paul", "Melanchthon")
sentences<-unlist(strsplit(para,split="\\."))
foo<-function(Match){sentences[grep(Match,sentences)]}
lapply(toMatch,foo)
[[1]]
[1] "Opposed as a reformer at Tübingen, he accepted a call to the University of Wittenberg by Martin Luther, recommended by his great-uncle Johann Reuchlin"
[[2]]
[1] " He studied the Scripture, especially of Paul, and Evangelical doctrine"
[[3]]
[1] " Melanchthon became professor of the Greek language in Wittenberg at the age of 21"
[2] " Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium"
Edit 3: To add each persons name, do something simple such as:
foo<-function(Match){c(Match,sentences[grep(Match,sentences)])}
EDIT 4:
And if you wanted to find sentences that had multiple people/places/things (words), then just add an argument for those two such as:
toMatch <- c("Martin Luther", "Paul", "Melanchthon","(?=.*Melanchthon)(?=.*Scripture)")
and change perl to TRUE:
foo<-function(Match){c(Match,sentences[grep(Match,sentences,perl = T)])}
> lapply(toMatch,foo)
[[1]]
[1] "Martin Luther"
[2] "Opposed as a reformer at Tübingen, he accepted a call to the University of Wittenberg by Martin Luther, recommended by his great-uncle Johann Reuchlin"
[[2]]
[1] "Paul"
[2] " He studied the Scripture, especially of Paul, and Evangelical doctrine"
[[3]]
[1] "Melanchthon"
[2] " Melanchthon became professor of the Greek language in Wittenberg at the age of 21"
[3] " Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium"
[[4]]
[1] "(?=.*Melanchthon)(?=.*Scripture)"
[2] " Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium"
EDIT 5: Answering your other question:
Given:
sentenceR<-"Opposed as a reformer at [[Tübingen]], he accepted a call to the University of [[Wittenberg]] by [[Martin Luther]], recommended by his great-uncle [[Johann Reuchlin]]"
gsub("\\[\\[|\\]\\]", "", regmatches(sentenceR, gregexpr("\\[\\[.*?\\]\\]", sentenceR))[[1]])
Will give you the words inside the double brackets.
> gsub("\\[\\[|\\]\\]", "", regmatches(sentenceR, gregexpr("\\[\\[.*?\\]\\]", sentenceR))[[1]])
[1] "Tübingen" "Wittenberg" "Martin Luther" "Johann Reuchlin"
Here's a considerably simpler method using two packages quanteda and stringi:
sents <- unlist(quanteda::tokenize(txt, what = "sentence"))
namesToExtract <- c("Martin Luther", "Paul", "Melanchthon")
namesFound <- unlist(stringi::stri_extract_all_regex(sents, paste(namesToExtract, collapse = "|")))
sentList <- split(sents, list(namesFound))
sentList[["Melanchthon"]]
## [1] "Melanchthon became professor of the Greek language in Wittenberg at the age of 21."
## [2] "Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium."
sentList
## $`Martin Luther`
## [1] "Opposed as a reformer at Tübingen, he accepted a call to the University of Wittenberg by Martin Luther, recommended by his great-uncle Johann Reuchlin."
##
## $Melanchthon
## [1] "Melanchthon became professor of the Greek language in Wittenberg at the age of 21."
## [2] "Johann Eck having attacked his views, Melanchthon replied based on the authority of Scripture in his Defensio contra Johannem Eckium."
##
## $Paul
## [1] "He studied the Scripture, especially of Paul, and Evangelical doctrine."

How to use separate() properly?

I have some difficulties to extract an ID in the form:
27da12ce-85fe-3f28-92f9-e5235a5cf6ac
from a data frame:
a<-c("NAME_27da12ce-85fe-3f28-92f9-e5235a5cf6ac_THOMAS_MYR",
"NAME_94773a8c-b71d-3be6-b57e-db9d8740bb98_THIMO",
"NAME_1ed571b4-1aef-3fe2-8f85-b757da2436ee_ALEX",
"NAME_9fbeda37-0e4f-37aa-86ef-11f907812397_JOHN_TYA",
"NAME_83ef784f-3128-35a1-8ff9-daab1c5f944b_BISHOP",
"NAME_39de28ca-5eca-3e6c-b5ea-5b82784cc6f4_DUE_TO",
"NAME_0a52a024-9305-3bf1-a0a6-84b009cc5af4_WIS_MICHAL",
"NAME_2520ebbb-7900-32c9-9f2d-178cf04f7efc_Sarah_Lu_Van_Gar/Thomas")
Basically its the thing between the first and the second underscore.
Usually I approach that by:
library(tidyr)
df$a<-as.character(df$a)
df<-df[grep("_", df$a), ]
df<- separate(df, a, c("ID","Name") , sep = "_")
df$a<-as.numeric(df$ID)
However this time there a to many underscores...and my approach fails. Is there a way to extract that ID?
I think you should use extract instead of separate. You need to specify the patterns which you want to capture. I'm assuming here that ID is always starts with a number so I'm capturing everything after the first number until the next _ and then everything after it
df <- data.frame(a)
df <- df[grep("_", df$a),, drop = FALSE]
extract(df, a, c("ID", "NAME"), "[A-Za-z].*?(\\d.*?)_(.*)")
# ID NAME
# 1 27da12ce-85fe-3f28-92f9-e5235a5cf6ac THOMAS_MYR
# 2 94773a8c-b71d-3be6-b57e-db9d8740bb98 THIMO
# 3 1ed571b4-1aef-3fe2-8f85-b757da2436ee ALEX
# 4 9fbeda37-0e4f-37aa-86ef-11f907812397 JOHN_TYA
# 5 83ef784f-3128-35a1-8ff9-daab1c5f944b BISHOP
# 6 39de28ca-5eca-3e6c-b5ea-5b82784cc6f4 DUE_TO
# 7 0a52a024-9305-3bf1-a0a6-84b009cc5af4 WIS_MICHAL
# 8 2520ebbb-7900-32c9-9f2d-178cf04f7efc Sarah_Lu_Van_Gar/Thomas
try this (which assumes that the ID is always the part after the first unerscore):
sapply(strsplit(a, "_"), function(x) x[[2]])
which gives you "the middle part" which is your ID:
[1] "27da12ce-85fe-3f28-92f9-e5235a5cf6ac" "94773a8c-b71d-3be6-b57e-db9d8740bb98"
[3] "1ed571b4-1aef-3fe2-8f85-b757da2436ee" "9fbeda37-0e4f-37aa-86ef-11f907812397"
[5] "83ef784f-3128-35a1-8ff9-daab1c5f944b" "39de28ca-5eca-3e6c-b5ea-5b82784cc6f4"
[7] "0a52a024-9305-3bf1-a0a6-84b009cc5af4" "2520ebbb-7900-32c9-9f2d-178cf04f7efc"
if you want to get the Name as well a simple solution would be (which assumes that the Name is always after the second underscore):
Names <- sapply(strsplit(a, "_"), function(x) Reduce(paste, x[-c(1,2)]))
which gives you this:
[1] "THOMAS MYR" "THIMO" "ALEX" "JOHN TYA"
[5] "BISHOP" "DUE TO" "WIS MICHAL" "Sarah Lu Van Gar/Thomas"