OCaml Function that takes in functions - ocaml

I need to write a pipe function in OCaml such that pipe [f1;...;fn] (where f1,...,fn are functions!) returns a function f such that for any x, f x computes fn(...(f2(f1 x))).
I need to write it using List.fold_left and need to fill in the parameter of the function
let pipe fs =
let f a x = "fill in this part" in
let base = fun x ->x in
List.fold_left f base fs;;
I already filled in the base. If the first parameter to pipe is an empty list, it returns the second parameter. Ex: pipe [] 3 = 3.
i know for the let f a x part I want to perform function x of the accumulated functions a.
I'm just not sure how to write that. I wrote let f a x = x a but that gave me an error when i tested
pipe [(fun x -> x+x); (fun x -> x + 3)] 3
it should run x+x on 3 then run x+3 on the result and give me 9 but it gave it a type error when i tried to use let f a x = x a
for the fill in part
# let _ = pipe [(fun x -> x+x); (fun x -> x + 3)] 3;;
File "", line 1, characters 24-25:
Error: This expression has type 'a -> 'a
but an expression was expected of type int
What is the correct format to create a function that takes in 2 functions and runs them on each other. Ex: make a function that takes in functions a and b and runs b on the result of a.

To evaluate (fold_left g init fs) x:
when fs is empty, (fold_left g init fs) x = init x. In your case, you want it to be x.
when fs = fs' # [fn]: according to what you would like to be true, the expression should evaluate to
fn (fold_left g init fs' x) but using the definition of fold_left it evaluates also to (g (fold_left g init fs') fn) x.
Hence if the following equations are true:
init x = x
(g k f) x = f (k x)
the problem is solved. Hence, let us define init = fun x -> x and
g k f = fun x -> f (k x).

Well, base is a function like this fun x -> ....
Similarly, your function f needs to return a function, so assume it returns something that looks like this:
fun z -> ...
You have to figure out what this function should be doing with its argument z.

figured it out just needed that z in there for a and x to call

Related

Different ways of declaring a function

When declaring a function, I've 3 different ways:
let f x = ...
let f = (fun x -> ...)
let f = function
| ... -> (pattern matching)
It's this last one that I don't fully understand how it works.
I was doing a function that, considering a list (we'll assume it has integers in it but could be anything), reverses it, pretty basic, but with a complexity of O(n). After struggling for an hour at least I check the answer, and it is written like this:
let reverse lst =
let rec aux acc = function
| [] -> acc
| hd :: tl -> aux (hd :: acc) tl
in
aux [] lst
I thought that using the key word function was just another way of doing patter matching, but when I do this:
let reverse lst =
let rec aux acc =
match aux with
| [] -> acc
| hd :: tl -> aux (hd :: acc) tl
in
aux [] lst
It doesn't work, and idk why. On top of that, why can we add tl at the end of the first function? Isn't aux a single argument function?
There are a few problems with this question. First, the code you give as the solution for reverse is not valid OCaml. It matches aux (which is a function) against list patterns. Most likely aux was supposed to be acc. But even so it doesn't seem right because it should have two arguments (the accumulated result and the input that still needs to be processed).
Second, your two code examples are the same. You seem to be saying that one works and one doesn't work. That doesn't make sense since they're the same.
IMHO you need to rewrite the question if you want to get a helpful answer.
Ocaml uses currying, which means that a two-argument function is the same thing that a function whose return value is a function.
To define a two-argument function, you can combine all the ways you know of creating one-argument functions:
let f x y = x + y
let f x = (fun y -> x + y)
let f x = function
| y -> x + y
let f = (fun x -> (fun y -> x + y))
let f = function
| x -> function
| y -> x + y
let f x = (let g y = x + y in g)
etc, etc.
All these definitions for f lead to the same result:
val f : int -> int -> int = <fun>
# f 3 4;;
- : int = 7
Note that the signature of f is:
val f : int -> int -> int = <fun>
If we added parentheses to better understand this signature, it would be this:
val f : int -> (int -> int) = <fun>
Meaning that f is a one-argument function whose return value is a one-argument function whose return value is an int.
Indeed, if we partially apply f:
# f 3;;
- : int -> int = <fun>
# let add_three = f 3;;
val add_three : int -> int = <fun>
# add_three 4;;
- : int = 7
The code you give at the end of your question is wrong. It's most likely intended to be this:
let reverse lst =
let rec aux acc l =
match l with
| [] -> acc
| hd :: tl -> aux (hd :: acc) tl
in
aux [] lst;;
val reverse : 'a list -> 'a list = <fun>
# reverse [1;2;3;4;5];;
- : int list = [5; 4; 3; 2; 1]

How can you make a function that returns a function in ocaml

for an example, if a function receives a function as a factor and iterates it twice
func x = f(f(x))
I have totally no idea of how the code should be written
You just pass the function as a value. E.g.:
let apply_twice f x = f (f x)
should do what you expect. We can try it out by testing on the command line:
utop # apply_twice ((+) 1) 100
- : int = 102
The (+) 1 term is the function that adds one to a number (you could also write it as (fun x -> 1 + x)). Also remember that a function in OCaml does not need to be evaluated with all its parameters. If you evaluate apply_twice only with the function you receive a new function that can be evaluated on a number:
utop # let add_two = apply_twice ((+) 1) ;;
val add_two : int -> int = <fun>
utop # add_two 1000;;
- : int = 1002
To provide a better understanding: In OCaml, functions are first-class
values. Just like int is a value, 'a -> 'a -> 'a is a value (I
suppose you are familiar with function signatures). So, how do you
implement a function that returns a function? Well, let's rephrase it:
As functions = values in OCaml, we could phrase your question in three
different forms:
[1] a function that returns a function
[2] a function that returns a value
[3] a value that returns a value
Note that those are all equivalent; I just changed terms.
[2] is probably the most intuitive one for you.
First, let's look at how OCaml evaluates functions (concrete example):
let sum x y = x + y
(val sum: int -> int -> int = <fun>)
f takes in two int's and returns an int (Intuitively speaking, a
functional value is a value, that can evaluate further if you provide
values). This is the reason you can do stuff like this:
let partial_sum = sum 2
(int -> int = <fun>)
let total_sum = partial_sum 3 (equivalent to: let total_sum y = 3 + y)
(int = 5)
partial_sum is a function, that takes in only one int and returns
another int. So we already provided one argument of the function,
now one is still missing, so it's still a functional value. If that is
still not clear, look into it more. (Hint: f x = x is equivalent to
f = fun x -> x) Let's come back to your question. The simplest
function, that returns a function is the function itself:
let f x = x
(val f:'a -> 'a = <fun>)
f
('a -> 'a = <fun>)
let f x = x Calling f without arguments returns f itself. Say you
wanted to concatenate two functions, so f o g, or f(g(x)):
let g x = (* do something *)
(val g: 'a -> 'b)
let f x = (* do something *)
(val f: 'a -> 'b)
let f_g f g x = f (g x)
(val f_g: ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>)
('a -> 'b): that's f, ('c -> 'a): that's g, c: that's x.
Exercise: Think about why the particular signatures have to be like that. Because let f_g f g x = f (g x) is equivalent to let f_g = fun f -> fun g -> fun x -> f (g x), and we do not provide
the argument x, we have created a function concatenation. Play around
with providing partial arguments, look at the signature, and there
will be nothing magical about functions returning functions; or:
functions returning values.

When to use piping |> versus arguments

In Reason (and OCaml), there is a non-traditional way of passing arguments using the |> operator. What is the convention for when it should be used? I am currently using it all over the place just because of how novel I find it.
Using |> (forward pipe) is helpful for showing the order of executions.
For example, if you want to execute function f, then g like this:
g(f(x))
It's easier to see the order of executions (e.g., f and then g) this way:
x |> f |> g
Programming languages like OCaml or F# are used a lot to transform data from one form to another, so |> can be used that way to show how data got transformed.
let sqr = x => x * x;
[1,2,3]
|> List.map (x => x + 1)
|> List.map (sqr);
The reverse application operator (|>) can simply be defined as
let (|>) x f = f x
This infix operator takes a value x and a function f and apply the latter to the first (f x). This may not seem apparently useful at first, but the operator is powerful when used correctly because functions in Ocaml are curried.
For example, let's say we had a function wackymath: int -> int -> int -> int
let wackymath a b c = a + b - c
The type of wackymath is int -> int -> int -> int. This is because in a functional realm (specifically, lambda calculus), any function only applies to one argument at a time. Therefore, with the help of parentheses, the order of application of wackymath looks like this:
(((wackymath a) b) c)
Argument substitution could make this clearer.
let f1 = wackymath 10;; (* 10 + b - c *)
let f2 = f1 19;; (* 10 + 19 - c *)
f2 4;; (* 10 + 19 - 4 = 25 *)
This could be expressed with the |> operator as such:
4 |> (19 |> (10 |> wackymath));;
Now it's clear why it's called reverse application operator. The parentheses are there because |> is left-associative. Saying |> helps avoid parentheses are not exactly precise in all cases.
Usually the operator is useful in situations when you want to compose a series of sequential function applications
[1; 2; 3; 4; 5]
|> List.map (fun x -> x * 2)
|> List.filter (fun x -> x < 3)
|> fun l -> match l with
| [] -> 0
| l' -> l' |> List.fold_left ~init:0 ~f:(fun a b -> a + b)
;;

function returns list in reverse order in OCaml

I want to read some numbers from a file, take them to a list and finally display them on the screen.
numbers.txt currently has 2 3 5 7 11 however as output i'am getting 11 7 5 3 2 - : unit = ()
Why is this happening?
let rec int_list_from_sb sb n =
match n with
| 0 -> [];
| _ -> (bscanf sb " %d" (fun a -> a))::(int_list_from_sb sb (n - 1));;
let file_name = open_in "numbers.txt" in
let sb = Scanning.from_channel file_name in
let int_list = int_list_from_sb sb 5 in
List.iter (fun a -> print_int a) int_list;;
The order of evaluation of arguments is unspecified in OCaml. So when you do f x :: g y, it is unspecified whether f or g gets called first. In your case the recursive call is invoked before the call to bscanf, which is why you get the results in the wrong order.
The general way to fix evaluation-order issues is to put the arguments to a function into local variables when the order of their side effects matters. So instead of f x :: g y, you'd do let fx = f x in fx :: g y if you want the effects of f x to happen before g is called.
However in your case you can just make use of bscanf's continuation argument like this:
bscanf sb " %d" (fun a -> a :: int_list_from_sb sb (n - 1))

What does function return when "function times zero" in functional programming?

I am stuck with this SML assignment. I am trying to create a compound function (fun compound n f). It's supposed to apply the function f on itself for n times for example, compound 3 f will equal to f(f(f(x))). I got it to work except for case where n is zero. I asked the professor but he won't tell me a direct answer. He tried to give me an hint that "what's function times zero?" I still can't figure that out either. Can stackoverflow figure it out?
Thanks.
My code:
fun compound n f =
if n < 2 then
if n = 0 then fn x => f x else fn x => f x
else fn x => f(compound (n-1) f(x));
example:
val fnc = fn x => x + 1; (* example function to be used *)
compound 5 fnc(10); (* will return 15 which is correct*)
compound 0 fnc(10); (* returns 11, should be 10 *)
Answer:
fun compound n f =
if n < 2 then
if n = 0 then fn x => x else fn x => f x
else fn x => f(compound (n-1) f(x));
I won't give you the final answer because I don't like to upset teachers ;) However, I'll try a derivation that I believe you'll find easy to complete.
Let's start from a very simple case. Let's "reimplement" function application, i.e., let's write a function that takes a function and an argument and apply the first param to the second one:
fun apply f a = f a
Let's use a contrived function, that increments integers, for testing:
- fun inc n = n + 1;
val inc = fn : int -> int
- inc 1;
val it = 2 : int
- apply inc 1;
val it = 2 : int
Now, let's write apply2, a function which takes a function and an argument and applies the param function two times to the argument:
fun apply2 f a = f (f a)
Let's test it with inc:
- apply2 inc 1;
val it = 3 : int
Seems to be working. As you might expect, we'd now implement apply3, apply4 and so on. Let's see some of them at once:
fun apply f a = f a
fun apply2 f a = f (f a)
fun apply3 f a = f (f (f a))
fun apply4 f a = f (f (f (f a)))
It looks like we can rewrite later ones in terms of the earlier ones:
fun apply2 f a = f (apply f a)
fun apply3 f a = f (apply2 f a)
fun apply4 f a = f (apply3 f a)
We can even rewrite apply:
fun apply f a = f (apply0 f a)
Remember the previous definition of apply, they're equivalent:
fun apply f a = f a
So, what should apply0 be?
fun apply0 f a = ...
What is the base case for this algorithm? i.e. at what value of n does the recursion terminate? When it terminated what do you return? Think about what you would want to return if f is not applied to x. In the context of your example, if fnc is applied to 10 zero times, what should be returned?
fun compound n f =
(* If n equals the termination value, then return the base case*)
if n = ?
else fn x => f(compound (n-1) f(x));
There is a pattern here that exists in the base case for recursive algorithms. For example, what is the sum of a list with no elements? Or, what is the length of a list with no elements?