Partial specializations of templatized alias declarations - c++

In this question I am led to a particular solution which involves partial specializations of templatized alias declarations. The generic case is described in this answer. Suppose I have a template class
template<typename T, ...>
class X {
// ....
};
Rather than leaving T free and specializing the other template parameters I am in a situation in which the other arguments depend on T, and on T alone. As a very concrete example (more manageable than the example in the other question) consider a template class
template<typename T, T absVal(T)>
class Number_impl {
private:
T _t;
public:
Number_impl(T t): _t(t) {}
T abs() const {return absVal(_t);}
};
Possible specializations are
Number_impl<int, std::abs>;
and
Number_impl<double, std::fabs>;
(I know there are overloaded abs versions, this is just for the sake of illustration. See my other example if you want).
Ideally I would like to define a template class Number depending on a single argument, the type, so that Number<int> is equal to
Number_impl<int, std::abs>;
and Number<double> is equal to
Number_impl<double, std::fabs>;
Something like the following (which doesn't work):
template<typename T>
using Number = Number_impl<T, nullptr>;
template<>
using Number<int> = Number_impl<int, std::abs>;
template<>
using Number<double> = Number_impl<double, std::fabs>;
Does anyone know if and how this can be made to work, or how the same can be achieved in a different way?

The normal way to do this kind of thing is the same way the standard library does it - with a traits class that you can specialise:
#include <iostream>
#include <cmath>
template<typename T> struct NumberTraits;
template<typename T, class Traits = NumberTraits<T>>
class Number {
private:
T _t;
public:
Number(T t): _t(t) {}
T abs() const {
return Traits::abs(_t);
}
};
template<> struct NumberTraits<int>
{
static int abs(int i) {
return std::abs(i);
}
};
template<> struct NumberTraits<double>
{
static double abs(double i) {
return std::fabs(i);
}
};
using namespace std;
auto main() -> int
{
Number<int> a(-6);
Number<double> b(-8.4);
cout << a.abs() << ", " << b.abs() << endl;
return 0;
}
expected output:
6, 8.4

You may add a layer:
template<typename T, T absVal(T)>
class Number_impl {
private:
T _t;
public:
Number_impl(T t): _t(t) {}
T abs() const {return absVal(_t);}
};
template<typename T> struct Number_helper;
template<> struct Number_helper<int> { using type = Number_impl<int, std::abs>; };
template<> struct Number_helper<double> { using type = Number_impl<double, std::fabs>; };
template<typename T>
using Number = typename Number_helper<T>::type;

Related

A compile time way to determine the least expensive argument type

I have a template that looks like this
template <typename T> class Foo
{
public:
Foo(const T& t) : _t(t) {}
private:
const T _t;
};
Is there a savvy template metaprogramming way to avoid using a const reference in cases where the argument type is trivial like a bool or char? like:
Foo(stl::smarter_argument<T>::type t) : _t(t) {}
I think the right type trait is is_scalar. This would work as follows:
template<class T, class = void>
struct smarter_argument{
using type = const T&;
};
template<class T>
struct smarter_argument<T, std::enable_if_t<std::is_scalar_v<T>>> {
using type = T;
};
Edit:
The above is still a bit old-school, thanks #HolyBlackCat for reminding me of this more terse version:
template<class T>
using smarter_argument_t = std::conditional_t<std::is_scalar_v<T>, T, const T&>;
I would suggest to use sizeof(size_t) (or sizeof(ptrdiff_t)) which returns a "typical" size related to your machine with the hope that any variable of this size fits into a register. In that case you can safely pass it by value. Moreover, as suggested by #n314159 (see comments at the end of this post) it is useful to ensure that the variable is also trivialy_copyable.
Here is a C++17 demo:
#include <array>
#include <ccomplex>
#include <iostream>
#include <type_traits>
template <typename T>
struct maybe_ref
{
using type = std::conditional_t<sizeof(T) <= sizeof(size_t) and
std::is_trivially_copyable_v<T>, T, const T&>;
};
template <typename T>
using maybe_ref_t = typename maybe_ref<T>::type;
template <typename T>
class Foo
{
public:
Foo(maybe_ref_t<T> t) : _t(t)
{
std::cout << "is reference ? " << std::boolalpha
<< std::is_reference_v<decltype(t)> << std::endl;
}
private:
const T _t;
};
int main()
{
// with my machine
Foo<std::array<double, 1>> a{std::array<double, 1>{}}; // <- by value
Foo<std::array<double, 2>> b{std::array<double, 2>{}}; // <- by ref
Foo<double> c{double{}}; // <- by value
Foo<std::complex<double>> d{std::complex<double>{}}; // <- by ref
}
I would make use of the C++20 keyword requires. Just like that:
#include <iostream>
template<typename T>
class Foo
{
public:
Foo(T t) requires std::is_scalar_v<T>: _t{t} { std::cout << "is scalar" <<std::endl; }
Foo(const T& t) requires (not std::is_scalar_v<T>): _t{t} { std::cout << "is not scalar" <<std::endl;}
private:
const T _t;
};
class cls {};
int main()
{
Foo{true};
Foo{'d'};
Foo{3.14159};
cls c;
Foo{c};
return 0;
}
You can run the code online to see the following output:
is scalar
is scalar
is scalar
is not scalar

Class template, member function definition if object is of type X?

Is it possible to create a class template with a member function definition only if the object created is of a specific type?
I've created a template class I will use for storing either int or doubles, but for doubles I would like to be able to set precision too (objects created with myclass < double> should have this functionality, but for myclass< int> there is no need for that to be present at all).
I know I can use a base class template, and create new classes "myInt", "myDouble" using that and implement the functionality only in the myDouble class, but I think it would be cleaner to define the functionality (both the function and a member variable) for doubles in the class template, if that's possible and preferable?
Let's add an example to show what I want to do:
#include <iostream>
#include <iomanip>
class commonBase{
public:
void setState(int state);
virtual void print() = 0;
private:
int _my_state;
};
template <typename T>
class generalObject : public commonBase {
public:
void value(T value);
void print(){ std::cout << "My value: " << _my_value << std::endl; }
private:
T _my_value;
};
template <typename T>
void generalObject<T>::value(T value){
_my_value = value;
}
// Is there any way do specialize only only whats different from the generalObject template?
// Here I thought I could specialize the case where a generalObject is created of <double>, but
// when I do, nothing is derived from generalObject (or at least not visible as far as I can tell)
template<>
class generalObject<double>{
public:
void setPrecision(int precision){ _my_precision = precision; }
// here I would like a special implementation of print(), which overrides the print() in generalObject
// and instead also prints according to the precision set when the object is of <double> type.
// Row below an example which doesn't work (compiler error, _my_value undefined)
void print(){ std::cout << "My value: " << std::setprecision(_my_precision) << _my_value << std::endl; }
private:
int _my_precision;
};
int main(int argc, char* argv[]){
generalObject<int> o1;
o1.value(1);
o1.print();
o1.setState(1); //inherited from the commonBase
generalObject<double> o2;
o2.setPrecision(2);
o2.value(2); //here value isn't available (compile error)
o2.print();
o2.setState(123); //also isn't available (compile error)
}
Sure.
template <typename T> class Poly;
void set_precision(Poly<double>* self, int a) {};
If you really want dot notation you can then add:
template <typename T> class Poly {
public: void set_precision(int a){::set_precision(this,a);}
...
However I think you should think about what you're trying to accomplish. If MyInt and MyDouble have different fields and different methods and different implementations, they should probably be different classes.
This can be solved using template specialization.
We first define a common template...
template< typename T >
struct myclass
{
// common stuff
};
... and specialize that for double:
template<>
struct myclass<double>
{
int precision = 10;
void setprecision( int p ){ precision = p; }
};
Now the setprecision() method can only be called for myclass<double>. The compiler will complain if we try to call it for anything else, like myclass<int>.
int main()
{
myclass<double> d;
d.setprecision( 42 ); // compiles
myclass<int> i;
i.setprecision( 42 ); // fails to compile, as expected
}
Demo.
The basic way to have a member function of a class template exist only for some template parameters is to create a specialization of the class template for those template parameters.
template<typename T>class X{
// general definition
};
template<>class X<double>{
// double-specific definition
};
The downside of this is that the specialization will need to duplicate anything that is common. One way to address this is to move the common things out to a base class template:
template<typename T>class Xcommon{
// common stuff
};
template<typename T>class X: public Xcommon<T>{
// general definition
};
template<>class X<double>: public Xcommon<double>{
// double-specific definition
};
Alternatively, you can do it the other way: put the common stuff in the derived class, and the extras in the base, and specialize the base:
template<typename T>class Xextras{
// empty by default
};
template<typename T>class X: public Xextras<T>{
// common definition
};
template<>class Xextras<double>{
// double-specific definition
};
Either way can work; which is better depends on the details.
Both these methods work for data members and member functions.
Alternatively, you can use enable_if to mean that member functions are not selected by overload resolution if the template parameter doesn't meet a required condition. This requires that the member function is itself a template.
template<typename T>class X{
template<typename U=T> // make it a template,
std::enable_if<std::is_same_v<U,double>> double_specific_function(){
// do stuff
}
};
I wouldn't recommend this option unless there is no other choice.
If the question is about a member function, then here is one of the ways to do it without class template specialization:
#include <iostream>
#include <type_traits>
template <typename T>
struct Type {
template <typename U = T,
typename = typename std::enable_if<std::is_same<U, double>::value>::type>
void only_for_double() {
std::cout << "a doubling" << std::endl;
}
};
int main() {
Type<int> n;
Type<double> d;
// n.only_for_double(); // does not compile.
d.only_for_double();
}
Example on ideone.com
If you require a data-member presence based on the template parameter, you will have to do some kind of specialization, in which case it is, probably, simpler to put the function into corresponding specialization.
EDIT: After OP made his question more specific
Here is one way to do it without extra class and getting rid of virtual functions. Hope it helps.
#include <iostream>
#include <iomanip>
template <typename T, typename Derived = void>
class commonBase {
public:
void setState(int state) {
_my_state = state;
}
void value(T value) {
_my_value = value;
}
template <typename U = Derived,
typename std::enable_if<std::is_same<U, void>::value,
void * >::type = nullptr>
void print() const {
std::cout << "My value: " << _my_value << std::endl;
}
template <typename U = Derived,
typename std::enable_if<!std::is_same<U, void>::value,
void * >::type = nullptr>
void print() const {
static_cast<Derived const *>(this)->_print();
}
protected:
T _my_value;
int _my_state;
};
template <typename T>
class generalObject : public commonBase<T> {
};
template<>
class generalObject<double> : public commonBase<double, generalObject<double>> {
private:
friend commonBase<double, generalObject<double>>;
void _print() const {
std::cout << "My value: " << std::setprecision(_my_precision) <<
_my_value << std::endl;
}
public:
void setPrecision(int precision){ _my_precision = precision; }
private:
int _my_precision;
};
int main(){
generalObject<int> o1;
o1.value(1);
o1.print();
o1.setState(1);
generalObject<double> o2;
o2.setPrecision(2);
o2.value(1.234);
o2.print();
o2.setState(123);
}
Same code on ideone.com

A better idiom for referring to base classes from derived classes?

Suppose I have a
template <typename T>
class A :
class_with_long_name<T, and_many_other, template_arguments, oh_my_thats_long>,
anotherclass_with_long_name<and_many_other, template_arguments_that, are_also_annoying, including_also, T> { ... }
Now, in class A's definition, and/or in its methods, I need to refer to the two superclasses (e.g. to access members in the superclass, or types defined in it etc.) However, I want to avoid repeating the superclass names. At the moment, what I'm doing is something like:
template<typename T>
class A :
class_with_long_name<T, and_many_other, template_arguments, oh_my_thats_long>,
anotherclass_with_long_name<and_many_other, template_arguments_that, are_also_annoying, including_also, T>
{
using parent1 = class_with_long_name<T, and_many_other, template_arguments, oh_my_thats_long>;
using parent2 = anotherclass_with_long_name<and_many_other, template_arguments_that, are_also_annoying, including_also, T>;
...
}
which works, obviously, and reduces the number of repetitions to 2; but I would rather avoid even this repetition, if possible. Is there a reasonable way to do this?
Notes:
"Reasonable" e.g. no macros except with very very good justification.
Before A, you may do
namespace detail
{
template <typename T>
using parentA1 = class_with_long_name<T,
and_many_other,
template_arguments,
oh_my_thats_long>;
template <typename T>
using parentA2 = anotherclass_with_long_name<and_many_other,
template_arguments_that,
are_also_annoying,
including_also,
T>;
}
And then
template<typename T>
class A : detail::parentA1<T>, detail::parentA2<T>
{
};
If you inherit with the same access specifier for all classes you could use something like this:
template <typename...S>
struct Bases : public S... {
template <size_t I>
using super = typename std::tuple_element<I, std::tuple<S...>>::type;
};
This will give you access to all base classes in the order you inherit from them via super<index>.
Short example:
#include <iostream>
#include <tuple>
template <typename...S>
struct Bases : public S... {
template <size_t I>
using super = typename std::tuple_element<I, std::tuple<S...>>::type;
};
class Foo
{
public:
virtual void f()
{
std::cout << "Foo";
}
};
class Fii
{
public:
virtual void f()
{
std::cout << "Fii";
}
};
class Faa : private Bases<Foo, Fii>
{
public:
virtual void f()
{
std::cout << "Faa";
super<0>::f(); //Calls Foo::f()
super<1>::f(); //Calls Fii::f()
std::cout << std::endl;
}
};
int main()
{
Faa faa;
faa.f(); //Print "FaaFooFii"
return 0;
}
I think, the best option is what you are already doing. However, if you feel like you absoluletely can not tolerate this, here some funny code (if I would ever see anything like this during code review in production, I'd fight tooth and nail to get rid of it).
template<class... INHERIT_FROM>
struct inherit_publicly : public INHERIT_FROM... {
struct parent_types {
template <int N, class ARG, class... ARGS> struct get {
using type = typename get<N-1, ARGS...>::type;
};
template <class ARG, class... ARGS> struct get<0, ARG, ARGS...> {
using type = ARG;
};
};
template <int N> using parent = typename parent_types::template get<N, INHERIT_FROM...>::type;
};
// **example usage**
struct X { static constexpr const char* const name = "X"; };
struct Y { static constexpr const char* const name = "Y"; };
struct Z { static constexpr const char* const name = "Z"; };
#include <iostream>
struct A : inherit_publicly<X, Y, Z> {
void print_parents() {
std::cout << "First parent type: " << parent<0>::name << "; second: " << parent<1>::name << "; third: " <<parent<2>::name<< "\n";
}
};
int main() {
A a;
a.print_parents();
}
Live demo: http://coliru.stacked-crooked.com/a/37cacf70bed41463
You can just use A::class_with_long_name or A::anotherclass_with_long_name.
template<typename T>
class A
: class_with_long_name<T, and_many_other, template_arguments, oh_my_thats_long>
, anotherclass_with_long_name<and_many_other, template_arguments_that, are_also_annoying, including_also, T>
{
// If you still want the typedefs.
using parent1 = typename A::class_with_long_name;
using parent2 = typename A::anotherclass_with_long_name;
// If you don't.
void foo() { A::class_with_long_name::bar(); }
};
Based on #Jarod's solution: How about an inside-the-detail subnamespace?
namespace detail { namespace A {
template <typename T>
using parent1 = class_with_long_name<T,
and_many_other,
template_arguments,
oh_my_thats_long>;
template <typename T>
using parent2 = anotherclass_with_long_name<and_many_other,
template_arguments_that,
are_also_annoying,
including_also,
T>;
} // namespace A
} // namespace detail
And then
template<typename T>
class A : detail::A::parent1<T>, detail::A::parent2<T>
{
};

Partial function/method template specialization workarounds

I know partial template specialization isn't supported for functions and class methods, so my question is: What are common solutions or patterns to resolve this? Below Derived derives from Base, and both of these classes have virtual methods greet() and speak(). Foo's holds a std::array<unique_ptr<T>, N> and is used in do_something(). Foo has two template parameters: T (the class type) and N (number of elements of the std::array) If N = 2, there exists a highly optimized version of do_something(). Now assume that Foo's T parameter isn't always the base class Base. Ideally, I would like to write the following code, but it's illegal:
//ILLEGAL
template<typename T>
void Foo<T,2>::do_something()
{
arr_[0]->greet();
}
Below is the full code and my current (ugly) solution. I have to specialize do_something() twice, once for Base and once for Derived. This gets ugly if there exists multiple methods like do_something() that can be optimized on the special N=2 case, and if there exists many subclasses of Base.
#include <iostream>
#include <memory>
class Base
{
public:
virtual void speak()
{
std::cout << "base is speaking" << std::endl;
}
virtual void greet()
{
std::cout << "base is greeting" << std::endl;
}
};
class Derived : public Base
{
public:
void speak()
{
std::cout << "derived is speaking" << std::endl;
}
void greet()
{
std::cout << "derived is greeting" << std::endl;
}
};
template<typename T, int N>
class Foo
{
public:
Foo(std::array<std::unique_ptr<T>, N>&& arr) :
arr_(std::move(arr))
{
}
void do_something();
std::array<std::unique_ptr<T>, N> arr_;
};
template<typename T, int N>
void Foo<T,N>::do_something()
{
arr_[0]->speak();
}
//Want to avoid "copy-and_paste" of do_something() below
template<>
void Foo<Base,2>::do_something()
{
arr_[0]->greet();
}
template<>
void Foo<Derived,2>::do_something()
{
arr_[0]->greet();
}
int main()
{
constexpr int N = 2;
std::array<std::unique_ptr<Derived>, N> arr =
{
std::unique_ptr<Derived>(new Derived),
std::unique_ptr<Derived>(new Derived)
};
Foo<Derived, N> foo(std::move(arr));
foo.do_something();
return 0;
}
The trick is to forward implementation to an helper template class, and partial specialize that class and/or use tag dispatching:
namespace {
template<typename T, int N, bool isBase = std::is_base_of<Base, T>::value>
struct helper {
// general case:
void operator () (std::array<std::unique_ptr<T>, N>& arr_) const
{
arr_[0]->speak();
}
};
template<typename T>
struct helper<T, 2, true>
{
void operator () (std::array<std::unique_ptr<T>, 2>& arr_) const
{
arr_[0]->greet();
}
};
// You may add other specialization if required.
}
template<typename T, int N>
void Foo<T,N>::do_something()
{
helper<T, N>()(arr_);
}
There are different alternatives, depending on how other constrains in the problem one might be more appropriate than another.
The first one is to forward the request to a static function in a template class, which allows for partial specializations:
template <int N>
struct Helper {
template <typename T>
static void talk(T& t) { // Should be T const &, but that requires const members
t.speak();
}
};
template <>
struct Helper<2> {
template <typename T>
static void talk(T& t) {
t.greet();
}
}
;
Then the implementation of do_something would be:
template <typename T, int N>
void Foo<T,N>::do_something() {
Helper<N>::talk(*arr_[0]);
}
Alternatively, you can use tag dispatch to select one of multiple overloads:
template <int N> struct tag {};
template <typename T, int N>
template <int M>
void Foo<T,N>::do_something_impl(tag<M>) {
arr_[0]->speak();
}
template <typename T, int N>
void Foo<T,N>::do_something_impl(tag<2>) {
arr_[0]->greet();
}
template <typename T, int N>
void Foo<T,N>::do_something() {
do_something_impl(tag<N>());
}
Where I have created a tag-type that can be specialized for any possible N. You could also use existing tools in C++11.
Finally, if you need to do something like this for different functions, you can use inheritance, and push some of the functionality to a base that resolves the differences. This can be done by either pushing common code to a base, differences to an intermediate level and using a lower level front type that just inherits from the rest (base contains generic code, derived types specialize). Or alternatively with CRTP (base(s) contain differences, derived type generic code and pulls specific implementations from the bases.

Specializing a method template for classes in a namespace

I'm using the following compile-time 'trick' (based on ADL) to create a function that is only valid/defined/callable by classes in the same namespace.
namespace Family1
{
struct ModelA{};
struct ModelB{};
template<typename T>
bool is_in_Family1(T const& t)
{
return true;
}
};
namespace Family2
{
struct ModelC{};
template<typename T>
bool is_in_Family2(T const& t)
{
return true;
}
};
Family1::ModelA mA;
Family2::ModelC mC;
is_in_Family1(mA); // VALID
is_in_Family1(mC); // ERROR
Now, I'd like to use this principle (or something similar) in order to produce a specialization of Foo::Bar (below) for classes belonging to each of the namespaces e.g. Family1.
// I would like to specialize the method template Bar for classes in Family1
// namespace; and another specialization for classes in Family2 namespace
struct Foo
{
template<typename T>
void Bar( T& _T ){}
};
For ease of maintenance and the large number of classes in each namespace, if possible, I'd like to perform this check without naming all the classes in a namespace.
Your "trick" has one big problem. Try calling is_in_Family1(make_pair(Family1::ModelA(), Family2::ModelC()) and you will see that return true, because ADL will look into both the namespaces of ModelA and ModelC (because of pair<ModelA, ModelC>).
Ignoring that problem, with using your functions it is straight forward.
template<typename T> struct int_ { typedef int type; };
struct Foo
{
template<typename T,
typename int_<decltype(is_in_Family1(*(T*)0))>::type = 0
>
void Bar( T& t ){}
template<typename T,
typename int_<decltype(is_in_Family2(*(T*)0))>::type = 0
>
void Bar( T& t ){}
};
That calls Bar depending on whether it is in family2 or family1.
struct Foo
{
template<typename T,
typename int_<decltype(is_in_Family1(*(T*)0))>::type = 0
>
void Bar( T& t, long){}
template<typename T,
typename int_<decltype(is_in_Family2(*(T*)0))>::type = 0
>
void Bar( T& t, long){}
template<typename T>
void Bar( T& t, int) {}
template<typename T>
void Bar( T& t ) { return Bar(t, 0); }
};
That one has also a generic fallback. And your code had undefined behavior because you used a reserved name. Don't use _T.
The quickest way I found to do this is using Boost Type Traits' is_base_of<>
I tried to use inheritence with template specialization but that didn't work because inheritance is ignored when template specialization is used so you'd have to specialize for each model. The answer to Partial specialization for a parent of multiple classes explains the problem.
Using type traits works provided you make Family1::ModelA and Family::ModelB subclasses of Family1:Family1Type and Family2::ModelC a subclass of Family2::Family2Type :
#include <iostream>
#include <boost/type_traits/is_base_of.hpp>
namespace Family1{
struct Family1Type{};
struct ModelA :public Family1Type{};
struct ModelB :public Family1Type{};
template<typename T>
bool is_in_Family1(const T& t){
return boost::is_base_of<Family1::Family1Type,T>::value;
}
};
namespace Family2{
struct Family2Type{};
struct ModelC :public Family2Type{};
template<typename T>
bool is_in_Family2(const T& t){
return boost::is_base_of<Family2::Family2Type,T>::value;
}
};
using namespace std;
int main(int argc, char *argv[]) {
Family1::ModelA mA;
Family2::ModelC mC;
std::cout << "mA is in Family1? " << is_in_Family1(mA) << std::endl;
std::cout << "mC is in Family2? " << is_in_Family2(mC) << std::endl;
//std::cout << "mC is in Family1? " << is_in_Family1(mC) << std::endl; //ERROR!
//std::cout << "mA is in Family2? " << is_in_Family2(mA) << std::endl; //ERROR!
return 0;
}
This results in the following output:
mA is in Family1? 1
mC is in Family2? 1
I don't think there is a way to declare Foo and specialize Foo::Bar<> in another namespace according to Specialization of 'template<class _Tp> struct std::less' in different namespace