I have a numerical analysis assignment and I need to find some coefficients by multiplying matrices. We were given an example in Mathcad, but now we have to do it in another programming language so I chose Python.
The problem is, that I get different results by multiplying matrices in respective environments. Here's the function in Python:
from numpy import *
def matrica(C, n):
N = len(C) - 1
m = N - n
A = [[0] * (N + 1) for i in range(N+1)]
A[0][0] = 1
for i in range(0, n + 1):
A[i][i] = 1
for j in range(1, m + 1):
for i in range(0, N + 1):
if i + j <= N:
A[i+j][n+j] = A[i+j][n+j] - C[i]/2
A[int(abs(i - j))][n+j] = A[int(abs(i - j))][n+j] - C[i]/2
M = matrix(A)
x = matrix([[x] for x in C])
return [float(y) for y in M.I * x]
As you can see I am using numpy library. This function is consistent with its analog in Mathcad until return statement, the part where matrices are multiplied, to be more specific. One more observation: this function returns correct matrix if N = 1.
I'm not sure I understand exactly what your code do. Could you explain a little more, like what math stuff you're actually computing. But if you want a plain regular product and if you use a numpy.matrix, why don't you use the already written matrix product?
a = numpy.matrix(...)
b = numpy.matrix(...)
p = a * b #matrix product
Related
Example: let
M = Matrix([[1,2],[3,4]]) # and
p = Poly(x**3 + x + 1) # then
p.subs(x,M).expand()
gives the error :
TypeError: cannot add <class'sympy.matrices.immutable.ImmutableDenseMatrix'> and <class 'sympy.core.numbers.One'>
which is very plausible since the two first terms become matrices but the last term (the constant term) is not a matrix but a scalar. To remediate to this situation I changed the polynomial to
p = Poly(x**3 + x + x**0) # then
the same error persists. Am I obliged to type the expression by hand, replacing x by M? In this example the polynomial has only three terms but in reality I encounter (multivariate polynomials with) dozens of terms.
So I think the question is mainly revolving around the concept of Matrix polynomial:
(where P is a polynomial, and A is a matrix)
I think this is saying that the free term is a number, and it cannot be added with the rest which is a matrix, effectively the addition operation is undefined between those two types.
TypeError: cannot add <class'sympy.matrices.immutable.ImmutableDenseMatrix'> and <class 'sympy.core.numbers.One'>
However, this can be circumvented by defining a function that evaluates the matrix polynomial for a specific matrix. The difference here is that we're using matrix exponentiation, so we correctly compute the free term of the matrix polynomial a_0 * I where I=A^0 is the identity matrix of the required shape:
from sympy import *
x = symbols('x')
M = Matrix([[1,2],[3,4]])
p = Poly(x**3 + x + 1)
def eval_poly_matrix(P,A):
res = zeros(*A.shape)
for t in enumerate(P.all_coeffs()[::-1]):
i, a_i = t
res += a_i * (A**i)
return res
eval_poly_matrix(p,M)
Output:
In this example the polynomial has only three terms but in reality I encounter (multivariate polynomials with) dozens of terms.
The function eval_poly_matrix above can be extended to work for multivariate polynomials by using the .monoms() method to extract monomials with nonzero coefficients, like so:
from sympy import *
x,y = symbols('x y')
M = Matrix([[1,2],[3,4]])
p = poly( x**3 * y + x * y**2 + y )
def eval_poly_matrix(P,*M):
res = zeros(*M[0].shape)
for m in P.monoms():
term = eye(*M[0].shape)
for j in enumerate(m):
i,e = j
term *= M[i]**e
res += term
return res
eval_poly_matrix(p,M,eye(M.rows))
Note: Some sanity checks, edge cases handling and optimizations are possible:
The number of variables present in the polynomial relates to the number of matrices passed as parameters (the former should never be greater than the latter, and if it's lower than some logic needs to be present to handle that, I've only handled the case when the two are equal)
All matrices need to be square as per the definition of the matrix polynomial
A discussion about a multivariate version of the Horner's rule features in the comments of this question. This might be useful to minimize the number of matrix multiplications.
Handle the fact that in a Matrix polynomial x*y is different from y*x because matrix multiplication is non-commutative . Apparently poly functions in sympy do not support non-commutative variables, but you can define symbols with commutative=False and there seems to be a way forward there
About the 4th point above, there is support for Matrix expressions in SymPy, and that can help here:
from sympy import *
from sympy.matrices import MatrixSymbol
A = Matrix([[1,2],[3,4]])
B = Matrix([[2,3],[3,4]])
X = MatrixSymbol('X',2,2)
Y = MatrixSymbol('Y',2,2)
I = eye(X.rows)
p = X**2 * Y + Y * X ** 2 + X ** 3 - I
display(p)
p = p.subs({X: A, Y: B}).doit()
display(p)
Output:
For more developments on this feature follow #18555
I am very new to Gurobi. I am trying to solve the following ILP
minimize \sum_i c_i y_i + \sum_i \sum_j D_{ij} x_{ij}
Here D is stored as a 2D numpy array.
My constraints are as follows
x_{ij} <= y_i
y_i + \sum_j x_{ij} = 1
Here's the image of the algebra :
My code so far is as follows,
from gurobipy import *
def gurobi(D,c):
n = D.shape[0]
m = Model()
X = m.addVars(n,n,vtype=GRB.BINARY)
y = m.addVars(n,vtype=GRB.BINARY)
m.update()
for j in range(D.shape[0]):
for i in range(D.shape[0]):
m.addConstr(X[i,j] <= y[i])
I am not sure about, how to implement the second constraint and specify the objective function, as objective terms includes a numpy array. Any help ?
Unfortunately I don't have GUROBI because it's really expensive...
but, according to this tutorial the second constraint should be implemented like this :
for i in range(n):
m.addConstr(y[i] + quicksum(X[i,j] for j in range(n), i) == 1)
while the objective function can be defined as :
m.setObjective(quicksum(c[i]*y[i] for i in range(n)) + quicksum(quicksum(D[i,j] * x[i,j]) for i in range(n) for j in range(n)), GRB.MINIMIZE)
N.B: I'm assuming D is a matrix n x n
This is a very simple case. You can write the first constraint this way. It is a good habit to name your constraints.
m.addConstrs((x[i,j] <= y[j] for i in range(D.shape[0]) for j in range(D.shape[0])), name='something')
If you want to add the second constraint, you can write it like this
m.addConstrs((y[i] + x.sum(i, '*') <= 1 for i in range(n)), name='something')
you could write the second equations ass well using quicksum as suggested by digEmAll.
The advantage of using quicksum is that you can add if condition so that you don't um over all values of j. Here is how you could do it
m.addConstrs((y[i] + quicksum(x[i, j] for j in range(n)) <= 1 for i in range(n)), name='something')
if you only needed some values of j to sum over then you could:
m.addConstrs((y[i] + quicksum(x[i, j] for j in range(n) if j condition) <= 1 for i in range(n)), name='something')
I hope this helps
I'm trying to use sympy to do some index gymnastics for me. I'm trying to calculate the derivatives of a cost function that looks like
cost = sumi (Mii)2
where M is given by a rotation
Mij = U*ki M0kl Ulj
I've written up a parametrization for the rotation matrix, from which I get the derivatives as products of Kronecker deltas. What I've got so far is
def Uder(p,q,r,s):
return KroneckerDelta(p,r)*KroneckerDelta(q,s) - KroneckerDelta(p,s)*KroneckerDelta(q,r)
from sympy import *
# Matrix size
n = symbols('n')
p = symbols('p');
i = Dummy('i')
k = Dummy('k')
l = Dummy('l')
# Matrix elements
M0 = IndexedBase('M')
U = IndexedBase('U')
# Indices
r, s = map(tensor.Idx, ['r', 's'])
# Derivative
cost_x = Sum(Sum(Sum(M0[i,i]*(Uder(k,i,r,s)*M0[k,l]*U[l,i] + U[k,i]*M0[k,l]*Uder(l,i,r,s)),(k,1,n)),(l,1,n)),(i,1,n))
print cost_x
but sympy is not evaluating the contractions for me, which should reduce to simple sums in terms of r and s, which are the rotation indices. Instead, what I get is
Sum(((-KroneckerDelta(_i, r)*KroneckerDelta(_k, s) + KroneckerDelta(_i, s)*KroneckerDelta(_k, r))*M[_k, _l]*U[_l, _i] + (-KroneckerDelta(_i, r)*KroneckerDelta(_l, s) + KroneckerDelta(_i, s)*KroneckerDelta(_l, r))*M[_k, _l]*U[_k, _i])*M[_i, _i], (_k, 1, n), (_l, 1, n), (_i, 1, n))
I'm using the latest git snapshot 4633fd5713c434c3286e3412a2399bd40fbd9569 of sympy.
I haven't been able to find particular solutions to this differential equation.
from sympy import *
m = float(raw_input('Mass:\n> '))
g = 9.8
k = float(raw_input('Drag Coefficient:\n> '))
v = Function('v')
f1 = g * m
t = Symbol('t')
v = Function('v')
equation = dsolve(f1 - k * v(t) - m * Derivative(v(t)), 0)
print equation
for m = 1000 and k = .2 it returns
Eq(f(t), C1*exp(-0.0002*t) + 49000.0)
which is correct but I want the equation solved for when v(0) = 0 which should return
Eq(f(t), 49000*(1-exp(-0.0002*t))
I believe Sympy is not yet able to take into account initial conditions. Although dsolve has the option ics for entering initial conditions (see the documentation), it appears to be of limited use.
Therefore, you need to apply the initial conditions manually. For example:
C1 = Symbol('C1')
C1_ic = solve(equation.rhs.subs({t:0}),C1)[0]
print equation.subs({C1:C1_ic})
Eq(v(t), 49000.0 - 49000.0*exp(-0.0002*t))
Let std::vector<int> counts be a vector of positive integers and let N:=counts[0]+...+counts[counts.length()-1] be the the sum of vector components. Setting pi:=counts[i]/N, I compute the entropy using the classic formula H=p0*log2(p0)+...+pn*log2(pn).
The counts vector is changing --- counts are incremented --- and every 200 changes I recompute the entropy. After a quick google and stackoverflow search I couldn't find any method for incremental entropy computation. So the question: Is there an incremental method, like the ones for variance, for entropy computation?
EDIT: Motivation for this question was usage of such formulas for incremental information gain estimation in VFDT-like learners.
Resolved: See this mathoverflow post.
I derived update formulas and algorithms for entropy and Gini index and made the note available on arXiv. (The working version of the note is available here.) Also see this mathoverflow answer.
For the sake of convenience I am including simple Python code, demonstrating the derived formulas:
from math import log
from random import randint
# maps x to -x*log2(x) for x>0, and to 0 otherwise
h = lambda p: -p*log(p, 2) if p > 0 else 0
# update entropy if new example x comes in
def update(H, S, x):
new_S = S+x
return 1.0*H*S/new_S+h(1.0*x/new_S)+h(1.0*S/new_S)
# entropy of union of two samples with entropies H1 and H2
def update(H1, S1, H2, S2):
S = S1+S2
return 1.0*H1*S1/S+h(1.0*S1/S)+1.0*H2*S2/S+h(1.0*S2/S)
# compute entropy(L) using only `update' function
def test(L):
S = 0.0 # sum of the sample elements
H = 0.0 # sample entropy
for x in L:
H = update(H, S, x)
S = S+x
return H
# compute entropy using the classic equation
def entropy(L):
n = 1.0*sum(L)
return sum([h(x/n) for x in L])
# entry point
if __name__ == "__main__":
L = [randint(1,100) for k in range(100)]
M = [randint(100,1000) for k in range(100)]
L_ent = entropy(L)
L_sum = sum(L)
M_ent = entropy(M)
M_sum = sum(M)
T = L+M
print("Full = ", entropy(T))
print("Update = ", update(L_ent, L_sum, M_ent, M_sum))
You could re-compute the entropy by re-computing the counts and using some simple mathematical identity to simplify the entropy formula
K = count.size();
N = count[0] + ... + count[K - 1];
H = count[0]/N * log2(count[0]/N) + ... + count[K - 1]/N * log2(count[K - 1]/N)
= F * h
h = (count[0] * log2(count[0]) + ... + count[K - 1] * log2(count[K - 1]))
F = -1/(N * log2(N))
which holds because of log2(a / b) == log2(a) - log2(b)
Now given an old vector count of observations so far and another vector of new 200 observations called batch, you can do in C++11
void update_H(double& H, std::vector<int>& count, int& N, std::vector<int> const& batch)
{
N += batch.size();
auto F = -1/(N * log2(N));
for (auto b: batch)
++count[b];
H = F * std::accumulate(count.begin(), count.end(), 0.0, [](int elem) {
return elem * log2(elem);
});
}
Here I assume that you have encoded your observations as int. If you have some kind of symbol, you would need a symbol table std::map<Symbol, int>, and do a lookup for each symbol in batch before you update the count.
This seems the quickest way of writing some code for a general update. If you know that in every batch only few counts actually change, you can do as #migdal does and keep track of the changing counts, subtract their old contribution to the entropy and add the new contribution.