Execute the same function multiple times in parallel in Clojure? - clojure

I have a function that I'd like to run multiple times, generating a list of the results:
(take 10 (repeatedly #(myfunc)))
I realized I could run them in parallel with pmap:
(pmap (fn [_] (myfunc)) (range 10))
But it is a bit untidy. Is there a standard function that lets me do this Something like:
(prun 10 #(myfunc))
?

You may also be interested in The Claypoole library for managing threadpools and parallel processing. Look at their version of pmap and pfor.

I don't think there's an existing function, but using pcalls rather than pmap seems a little closer to what you want:
(defn prun [n f]
(apply pcalls (repeat n f)))
You don't need to wrap myfunc with #() in the call torepeatedly, btw, nor calling prun as defined above:
(prun 10 myfunc)
You may find pvalues useful as well.

You can use dotimes
(dotimes [_ 10] (myfunc))
This will run your function 10 times. Be sure to run this in the same namespace as your function

Related

Functional alternative to "let"

I find myself writing a lot of clojure in this manner:
(defn my-fun [input]
(let [result1 (some-complicated-procedure input)
result2 (some-other-procedure result1)]
(do-something-with-results result1 result2)))
This let statement seems very... imperative. Which I don't like. In principal, I could be writing the same function like this:
(defn my-fun [input]
(do-something-with-results (some-complicated-procedure input)
(some-other-procedure (some-complicated-procedure input)))))
The problem with this is that it involves recomputation of some-complicated-procedure, which may be arbitrarily expensive. Also you can imagine that some-complicated-procedure is actually a series of nested function calls, and then I either have to write a whole new function, or risk that changes in the first invocation don't get applied to the second:
E.g. this works, but I have to have an extra shallow, top-level function that makes it hard to do a mental stack trace:
(defn some-complicated-procedure [input] (lots (of (nested (operations input)))))
(defn my-fun [input]
(do-something-with-results (some-complicated-procedure input)
(some-other-procedure (some-complicated-procedure input)))))
E.g. this is dangerous because refactoring is hard:
(defn my-fun [input]
(do-something-with-results (lots (of (nested (operations (mistake input))))) ; oops made a change here that wasn't applied to the other nested calls
(some-other-procedure (lots (of (nested (operations input))))))))
Given these tradeoffs, I feel like I don't have any alternatives to writing long, imperative let statements, but when I do, I cant shake the feeling that I'm not writing idiomatic clojure. Is there a way I can address the computation and code cleanliness problems raised above and write idiomatic clojure? Are imperitive-ish let statements idiomatic?
The kind of let statements you describe might remind you of imperative code, but there is nothing imperative about them. Haskell has similar statements for binding names to values within bodies, too.
If your situation really needs a bigger hammer, there are some bigger hammers that you can either use or take for inspiration. The following two libraries offer some kind of binding form (akin to let) with a localized memoization of results, so as to perform only the necessary steps and reuse their results if needed again: Plumatic Plumbing, specifically the Graph part; and Zach Tellman's Manifold, whose let-flow form furthermore orchestrates asynchronous steps to wait for the necessary inputs to become available, and to run in parallel when possible. Even if you decide to maintain your present course, their docs make good reading, and the code of Manifold itself is educational.
I recently had this same question when I looked at this code I wrote
(let [user-symbols (map :symbol states)
duplicates (for [[id freq] (frequencies user-symbols) :when (> freq 1)] id)]
(do-something-with duplicates))
You'll note that map and for are lazy and will not be executed until do-something-with is executed. It's also possible that not all (or even not any) of the states will be mapped or the frequencies calculated. It depends on what do-something-with actually requests of the sequence returned by for. This is very much functional and idiomatic functional programming.
i guess the simplest approach to keep it functional would be to have a pass-through state to accumulate the intermediate results. something like this:
(defn with-state [res-key f state]
(assoc state res-key (f state)))
user> (with-state :res (comp inc :init) {:init 10})
;;=> {:init 10, :res 11}
so you can move on to something like this:
(->> {:init 100}
(with-state :inc'd (comp inc :init))
(with-state :inc-doubled (comp (partial * 2) :inc'd))
(with-state :inc-doubled-squared (comp #(* % %) :inc-doubled))
(with-state :summarized (fn [st] (apply + (vals st)))))
;;=> {:init 100,
;; :inc'd 101,
;; :inc-doubled 202,
;; :inc-doubled-squared 40804,
;; :summarized 41207}
The let form is a perfectly functional construct and can be seen as syntactic sugar for calls to anonymous functions. We can easily write a recursive macro to implement our own version of let:
(defmacro my-let [bindings body]
(if (empty? bindings)
body
`((fn [~(first bindings)]
(my-let ~(rest (rest bindings)) ~body))
~(second bindings))))
Here is an example of calling it:
(my-let [a 3
b (+ a 1)]
(* a b))
;; => 12
And here is a macroexpand-all called on the above expression, that reveal how we implement my-let using anonymous functions:
(clojure.walk/macroexpand-all '(my-let [a 3
b (+ a 1)]
(* a b)))
;; => ((fn* ([a] ((fn* ([b] (* a b))) (+ a 1)))) 3)
Note that the expansion doesn't rely on let and that the bound symbols become parameter names in the anonymous functions.
As others write, let is actually perfectly functional, but at times it can feel imperative. It's better to become fully comfortable with it.
You might, however, want to kick the tires of my little library tl;dr that lets you write code like for example
(compute
(+ a b c)
where
a (f b)
c (+ 100 b))

Clojure: when to use memoize and when to use delay/force?

I've just started learning Clojure and trying to understand the difference between 2 approaches which at first sight seem very identical.
(def func0 (delay (do
(println "did some work")
100)))
so.core=> (force my-delay2)
did some work
100
so.core=> (force my-delay2)
100
(defn vanilla-func [] (println "did some work") 100)
(def func1 (memoize vanilla-func))
so.core=> (func1)
did some work
100
so.core=> (func1)
100
Both approaches do some sort of function memoization. What am I missing?
I've tried to find the explanation on https://clojuredocs.org/clojure.core/delay & https://clojuredocs.org/clojure.core/memoize but couldn't.
delay holds one result and you have to deref to get the result.
memoize is an unbound cache, that caches the result depending on the
input arguments. E.g.
user=> (def myinc (memoize (fn [x] (println x) (inc x))))
#'user/myinc
user=> (myinc 1)
1
2
user=> (myinc 1)
2
In your (argument-less) example the only difference is that you can use
the result directly (no deref needed)
Classic use-cases for delay are things needed later, that would block
or delay startup. Or if you want to "hide" top-level defs from
the compiler (e.g. they do side-effects).
memoize is a classic cache and is best used if the calculation is
expensive and the set of input arguments is not excessive. There are
other caching options in the clojure-verse, that allow better
configurations (e.g. they are not unbound).

Clojure : Defining a forv macro using for

I'm trying to write my second macro but I'm completely stuck here.
I would like to avoid writing everytime (vec (for [...])) so I'm trying to write a forv macro like filterv, mapv, etc.
I work mostly with vectors in my programs since I need to have access to the index because I use external buffers/descriptors to fasten matrix process.
I have written many ***v like functions (also adaptative functions like fmap )but I'm sticked with for.
So I wrote
(defmacro forv
[seq-exprs body-expr]
(vec (for (vec seq-exprs) body-expr)))
I tried with seq-exprs alone, it does not work. To be honest I tried also ~ and so on but I do not know how it works, I succeed in my first macro because it was far easier.
Clojure tell me that for requires a vector for binding.
Can someone help me and also explain what I am missing ? Thanks !
You could use the one built into the Tupelo Library. Source code is here: https://github.com/cloojure/tupelo/blob/master/src/tupelo/core.cljc#L181
(defmacro forv
"Like clojure.core/for but returns results in a vector. Equivalent to (into [] (for ...)). Not
lazy."
[& body]
`(vec (for ~#body)))
;;
;; you want something like that in the end: (forv [x (range 2)] x) => (vec (for [x (range 2)] x))
;;
(defmacro forv
[seq-exprs body-expr]
`(vec (for [~#seq-exprs] ~body-expr)))
;;
;; check quote and unquote
;; in particular, check the tricky bit is https://clojuredocs.org/clojure.core/unquote-splicing
;;
Edit: I based my answer to mimic the original code in the question, but Alan's answer is better than mine.

Clojure thread sleep between map evaluation

I have a block of code I need to execute in Clojure that looks like:
(map function coll)
However, I need to delay the interval of time between each successive function call. That is, I want to call function with the first item, then sleep for 10 seconds, then call with the second item, etc.
How can this be accomplished?
Thanks in advance for your help.
Just for the sake of completeness, following the discussion in the comments, this is what an implementation using doseq would look like wrapped in a neat little function:
(defn doseq-interval
[f coll interval]
(doseq [x coll]
(Thread/sleep interval)
(f x)))
And here's how you would call it:
(doseq-interval prn (range 10) 1000)

Should not a tail-recursive function also be faster?

I have the following Clojure code to calculate a number with a certain "factorable" property. (what exactly the code does is secondary).
(defn factor-9
([]
(let [digits (take 9 (iterate #(inc %) 1))
nums (map (fn [x] ,(Integer. (apply str x))) (permutations digits))]
(some (fn [x] (and (factor-9 x) x)) nums)))
([n]
(or
(= 1 (count (str n)))
(and (divisible-by-length n) (factor-9 (quot n 10))))))
Now, I'm into TCO and realize that Clojure can only provide tail-recursion if explicitly told so using the recur keyword. So I've rewritten the code to do that (replacing factor-9 with recur being the only difference):
(defn factor-9
([]
(let [digits (take 9 (iterate #(inc %) 1))
nums (map (fn [x] ,(Integer. (apply str x))) (permutations digits))]
(some (fn [x] (and (factor-9 x) x)) nums)))
([n]
(or
(= 1 (count (str n)))
(and (divisible-by-length n) (recur (quot n 10))))))
To my knowledge, TCO has a double benefit. The first one is that it does not use the stack as heavily as a non tail-recursive call and thus does not blow it on larger recursions. The second, I think is that consequently it's faster since it can be converted to a loop.
Now, I've made a very rough benchmark and have not seen any difference between the two implementations although. Am I wrong in my second assumption or does this have something to do with running on the JVM (which does not have automatic TCO) and recur using a trick to achieve it?
Thank you.
The use of recur does speed things up, but only by about 3 nanoseconds (really) over a recursive call. When things get that small they can be hidden in the noise of the rest of the test. I wrote four tests (link below) that are able to illustrate the difference in performance.
I'd also suggest using something like criterium when benchmarking. (Stack Overflow won't let me post with more than 1 link since I've got no reputation to speak of, so you'll have to google it, maybe "clojure criterium")
For formatting reasons, I've put the tests and results in this gist.
Briefly, to compare relatively, if the recursive test is 1, then the looping test is about 0.45, and the TCO tests about 0.87 and the absolute difference between the recursive and TCO tests are around 3ns.
Of course, all the caveats about benchmarking apply.
When optimizing any code, it's good to start from potential or actual bottlenecks and optimize that first.
It seems to me that this particular piece of code is eating most of your CPU time:
(map (fn [x] ,(Integer. (apply str x))) (permutations digits))
And that doesn't depend on TCO in any way - it is executed in same way. So, tail call in this particular example will allow you not to use up all the stack, but to achieve better performance, try optimizing this.
just a gentile reminder that clojure has no TCO
After evaluating factor-9 (quot n 10) an and and an or has to be evaluated before the function can return. Thus it is not tail-recursive.