Suppose i have
Message = [{"from_email",From_Email},{"name",Name},{"text",Text}],
To=[{"to_email",ToMail},{"to_name",ToName}],
Send_Mail=[{"to",To},{"subject",Subject},{"message",Message},{"from_email",From_Email},{"from_name",From_Name}].
I want to convert Send_Mail into binary to parse into jason format. I am using jsx for parsing and jsx takes binary inputs.
A quick brute-force approach: iterate the list, recursively entering tuples and lists, converting all string-like lists to binary.
%% First exclude things that should be left alone:
list_to_jsx(E) when is_integer(E); is_float(E); is_atom(E); is_binary(E) -> E;
%% If converting a list, see if it can be made neatly into a
%% binary, if so, done, if not recurse into the list.
list_to_jsx(L) when is_list(L) ->
case catch list_to_binary(L) of
B when is_binary(B) -> B;
_ -> [convert(E) || E <- L]
end;
%% If converting a tuple, convert each element:
list_to_jsx(T) when is_tuple(T) ->
list_to_tuple([convert(E) || E <- tuple_to_list(T)]).
If you are confident that only 2-tuples appear in the input list, the last clause can be simplified slightly to
list_to_jsx({F,V}) -> {convert(F),convert(V)}.
JSX has encode functions to encode Erlang terms to JSON. But note that the keys should be atoms (from_email without quotes or in single quotes) or binaries (<<"from_email">>), not Erlang strings. If you are somehow stuck with the form you have, you can convert the keys (and values if necessary) into binaries with
[{list_to_binary(Key), if is_list(Value) -> list_to_binary(Value); true -> Value end} || {Key, Value} <- ListOfTuples]
If values can be JSON objects themselves, you'll need recursion. See Joe's answer for one approach.
To answer the more general question in the title:
If you just want to convert into a binary in some way and back, use erlang:term_to_binary. Works on any terms.
If you want to get a binary containing the string representation of the term, use erlang:iolist_to_binary(io_lib:write(Term)).
However, neither of these methods produce JSON.
Related
I want to write a program which will read in a list of tuples, and in the tuple it will contain two elements. The first element can be an Object, and the second element will be the quantity of that Object. Just like: Mylist([{Object1,Numbers},{Object2, Numbers}]).
Then I want to read in the Numbers and print the related Object Numbers times and then store them in a list.
So if Mylist([{lol, 3},{lmao, 2}]), then I should get [lol, lol, lol, lmao, lmao] as the final result.
My thought is to first unzip those tuples (imagine if there are more than 2) into two tuples which the first one contains the Objects while the second one contains the quantity numbers.
After that read the numbers in second tuples and then print the related Object in first tuple with the exact times. But I don't know how to do this. THanks for any help!
A list comprehension can do that:
lists:flatten([lists:duplicate(N,A) || {A, N} <- L]).
If you really want printing too, use recursion:
p([]) -> [];
p([{A,N}|T]) ->
FmtString = string:join(lists:duplicate(N,"~p"), " ")++"\n",
D = lists:duplicate(N,A),
io:format(FmtString, D),
D++p(T).
This code creates a format string for io:format/2 using lists:duplicate/2 to replicate the "~p" format specifier N times, joins them with a space with string:join/2, and adds a newline. It then uses lists:duplicate/2 again to get a list of N copies of A, prints those N items using the format string, and then combines the list with the result of a recursive call to create the function result.
I have few command-line options (5 for example) and I want to convert them to tuple. The problem is that I expect them to appear in correct order, so tuple can be easily built from list using pattern-match, but in real life options can be provided in random order, so I don't know if head of the list contain Verbose option or log file name?
I tried to think how to do that using continuation-passing style, however nothing useful comes into my mind.
Is that ever possible?
I think that I can "sort" the list to have it in predicted order, but it does not look good.
Also I could get rid of the tuple and create data record - however that will still lead up to checking the type of attribute and set the correct field of the record. Still a lot of typing.
Given what you describe, I think you have two options. Of the two, I would say that converting to a dictionary would be easiest, but converting to a Tuple would work and only be a little clumsy
So, take this definition:
options :: [OptDescr (String, String)]
options = [Option ['a'] ["alpha"] (ReqArg (\a -> ("alpha", a)) "empty") "",
Option ['b'] ["beta"] (ReqArg (\a -> ("beta", a)) "empty") "",
Option ['g'] ["gamma"] (ReqArg (\a -> ("gamma", a)) "empty") ""]
main = do
args <- getArgs
let (opts, nonopts, errs) = getOpt Permute options args
putStrLn $ show opts
From this, a couple of my example outputs are:
[("beta","b"),("alpha","a")]
[("alpha","a"),("gamma","g"),("beta","b")]
and so on. Same order as on the command line. But, because of the way I set it up above, I basically have an association list, so... if I in particular want a Tuple that has the values (alpha, beta, gamma), then my best option is...
(lookup "alpha" opts, lookup "beta" opts, lookup "gamma" opts)
You resulting data type would be (Maybe String, Maybe String, Maybe String), in the order of "alpha", "beta", and "gamma".
I have a question about tuples and lists in Haskell. I know how to add input into a tuple a specific number of times. Now I want to add tuples into a list an unknown number of times; it's up to the user to decide how many tuples they want to add.
How do I add tuples into a list x number of times when I don't know X beforehand?
There's a lot of things you could possibly mean. For example, if you want a few copies of a single value, you can use replicate, defined in the Prelude:
replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n | n < 0 = undefined
| otherwise = x : replicate (n-1) x
In ghci:
Prelude> replicate 4 ("Haskell", 2)
[("Haskell",2),("Haskell",2),("Haskell",2),("Haskell",2)]
Alternately, perhaps you actually want to do some IO to determine the list. Then a simple loop will do:
getListFromUser = do
putStrLn "keep going?"
s <- getLine
case s of
'y':_ -> do
putStrLn "enter a value"
v <- readLn
vs <- getListFromUser
return (v:vs)
_ -> return []
In ghci:
*Main> getListFromUser :: IO [(String, Int)]
keep going?
y
enter a value
("Haskell",2)
keep going?
y
enter a value
("Prolog",4)
keep going?
n
[("Haskell",2),("Prolog",4)]
Of course, this is a particularly crappy user interface -- I'm sure you can come up with a dozen ways to improve it! But the pattern, at least, should shine through: you can use values like [] and functions like : to construct lists. There are many, many other higher-level functions for constructing and manipulating lists, as well.
P.S. There's nothing particularly special about lists of tuples (as compared to lists of other things); the above functions display that by never mentioning them. =)
Sorry, you can't1. There are fundamental differences between tuples and lists:
A tuple always have a finite amount of elements, that is known at compile time. Tuples with different amounts of elements are actually different types.
List an have as many elements as they want. The amount of elements in a list doesn't need to be known at compile time.
A tuple can have elements of arbitrary types. Since the way you can use tuples always ensures that there is no type mismatch, this is safe.
On the other hand, all elements of a list have to have the same type. Haskell is a statically-typed language; that basically means that all types are known at compile time.
Because of these reasons, you can't. If it's not known, how many elements will fit into the tuple, you can't give it a type.
I guess that the input you get from your user is actually a string like "(1,2,3)". Try to make this directly a list, whithout making it a tuple before. You can use pattern matching for this, but here is a slightly sneaky approach. I just remove the opening and closing paranthesis from the string and replace them with brackets -- and voila it becomes a list.
tuplishToList :: String -> [Int]
tuplishToList str = read ('[' : tail (init str) ++ "]")
Edit
Sorry, I did not see your latest comment. What you try to do is not that difficult. I use these simple functions for my task:
words str splits str into a list of words that where separated by whitespace before. The output is a list of Strings. Caution: This only works if the string inside your tuple contains no whitespace. Implementing a better solution is left as an excercise to the reader.
map f lst applies f to each element of lst
read is a magic function that makes a a data type from a String. It only works if you know before, what the output is supposed to be. If you really want to understand how that works, consider implementing read for your specific usecase.
And here you go:
tuplish2List :: String -> [(String,Int)]
tuplish2List str = map read (words str)
1 As some others may point out, it may be possible using templates and other hacks, but I don't consider that a real solution.
When doing functional programming, it is often better to think about composition of operations instead of individual steps. So instead of thinking about it like adding tuples one at a time to a list, we can approach it by first dividing the input into a list of strings, and then converting each string into a tuple.
Assuming the tuples are written each on one line, we can split the input using lines, and then use read to parse each tuple. To make it work on the entire list, we use map.
main = do input <- getContents
let tuples = map read (lines input) :: [(String, Integer)]
print tuples
Let's try it.
$ runghc Tuples.hs
("Hello", 2)
("Haskell", 4)
Here, I press Ctrl+D to send EOF to the program, (or Ctrl+Z on Windows) and it prints the result.
[("Hello",2),("Haskell",4)]
If you want something more interactive, you will probably have to do your own recursion. See Daniel Wagner's answer for an example of that.
One simple solution to this would be to use a list comprehension, as so (done in GHCi):
Prelude> let fstMap tuplist = [fst x | x <- tuplist]
Prelude> fstMap [("String1",1),("String2",2),("String3",3)]
["String1","String2","String3"]
Prelude> :t fstMap
fstMap :: [(t, b)] -> [t]
This will work for an arbitrary number of tuples - as many as the user wants to use.
To use this in your code, you would just write:
fstMap :: Eq a => [(a,b)] -> [a]
fstMap tuplist = [fst x | x <- tuplist]
The example I gave is just one possible solution. As the name implies, of course, you can just write:
fstMap' :: Eq a => [(a,b)] -> [a]
fstMap' = map fst
This is an even simpler solution.
I'm guessing that, since this is for a class, and you've been studying Haskell for < 1 week, you don't actually need to do any input/output. That's a bit more advanced than you probably are, yet. So:
As others have said, map fst will take a list of tuples, of arbitrary length, and return the first elements. You say you know how to do that. Fine.
But how do the tuples get into the list in the first place? Well, if you have a list of tuples and want to add another, (:) does the trick. Like so:
oldList = [("first", 1), ("second", 2)]
newList = ("third", 2) : oldList
You can do that as many times as you like. And if you don't have a list of tuples yet, your list is [].
Does that do everything that you need? If not, what specifically is it missing?
Edit: With the corrected type:
Eq a => [(a, b)]
That's not the type of a function. It's the type of a list of tuples. Just have the user type yourFunctionName followed by [ ("String1", val1), ("String2", val2), ... ("LastString", lastVal)] at the prompt.
I have a question about tuples and lists in Haskell. I know how to add input into a tuple a specific number of times. Now I want to add tuples into a list an unknown number of times; it's up to the user to decide how many tuples they want to add.
How do I add tuples into a list x number of times when I don't know X beforehand?
There's a lot of things you could possibly mean. For example, if you want a few copies of a single value, you can use replicate, defined in the Prelude:
replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n | n < 0 = undefined
| otherwise = x : replicate (n-1) x
In ghci:
Prelude> replicate 4 ("Haskell", 2)
[("Haskell",2),("Haskell",2),("Haskell",2),("Haskell",2)]
Alternately, perhaps you actually want to do some IO to determine the list. Then a simple loop will do:
getListFromUser = do
putStrLn "keep going?"
s <- getLine
case s of
'y':_ -> do
putStrLn "enter a value"
v <- readLn
vs <- getListFromUser
return (v:vs)
_ -> return []
In ghci:
*Main> getListFromUser :: IO [(String, Int)]
keep going?
y
enter a value
("Haskell",2)
keep going?
y
enter a value
("Prolog",4)
keep going?
n
[("Haskell",2),("Prolog",4)]
Of course, this is a particularly crappy user interface -- I'm sure you can come up with a dozen ways to improve it! But the pattern, at least, should shine through: you can use values like [] and functions like : to construct lists. There are many, many other higher-level functions for constructing and manipulating lists, as well.
P.S. There's nothing particularly special about lists of tuples (as compared to lists of other things); the above functions display that by never mentioning them. =)
Sorry, you can't1. There are fundamental differences between tuples and lists:
A tuple always have a finite amount of elements, that is known at compile time. Tuples with different amounts of elements are actually different types.
List an have as many elements as they want. The amount of elements in a list doesn't need to be known at compile time.
A tuple can have elements of arbitrary types. Since the way you can use tuples always ensures that there is no type mismatch, this is safe.
On the other hand, all elements of a list have to have the same type. Haskell is a statically-typed language; that basically means that all types are known at compile time.
Because of these reasons, you can't. If it's not known, how many elements will fit into the tuple, you can't give it a type.
I guess that the input you get from your user is actually a string like "(1,2,3)". Try to make this directly a list, whithout making it a tuple before. You can use pattern matching for this, but here is a slightly sneaky approach. I just remove the opening and closing paranthesis from the string and replace them with brackets -- and voila it becomes a list.
tuplishToList :: String -> [Int]
tuplishToList str = read ('[' : tail (init str) ++ "]")
Edit
Sorry, I did not see your latest comment. What you try to do is not that difficult. I use these simple functions for my task:
words str splits str into a list of words that where separated by whitespace before. The output is a list of Strings. Caution: This only works if the string inside your tuple contains no whitespace. Implementing a better solution is left as an excercise to the reader.
map f lst applies f to each element of lst
read is a magic function that makes a a data type from a String. It only works if you know before, what the output is supposed to be. If you really want to understand how that works, consider implementing read for your specific usecase.
And here you go:
tuplish2List :: String -> [(String,Int)]
tuplish2List str = map read (words str)
1 As some others may point out, it may be possible using templates and other hacks, but I don't consider that a real solution.
When doing functional programming, it is often better to think about composition of operations instead of individual steps. So instead of thinking about it like adding tuples one at a time to a list, we can approach it by first dividing the input into a list of strings, and then converting each string into a tuple.
Assuming the tuples are written each on one line, we can split the input using lines, and then use read to parse each tuple. To make it work on the entire list, we use map.
main = do input <- getContents
let tuples = map read (lines input) :: [(String, Integer)]
print tuples
Let's try it.
$ runghc Tuples.hs
("Hello", 2)
("Haskell", 4)
Here, I press Ctrl+D to send EOF to the program, (or Ctrl+Z on Windows) and it prints the result.
[("Hello",2),("Haskell",4)]
If you want something more interactive, you will probably have to do your own recursion. See Daniel Wagner's answer for an example of that.
One simple solution to this would be to use a list comprehension, as so (done in GHCi):
Prelude> let fstMap tuplist = [fst x | x <- tuplist]
Prelude> fstMap [("String1",1),("String2",2),("String3",3)]
["String1","String2","String3"]
Prelude> :t fstMap
fstMap :: [(t, b)] -> [t]
This will work for an arbitrary number of tuples - as many as the user wants to use.
To use this in your code, you would just write:
fstMap :: Eq a => [(a,b)] -> [a]
fstMap tuplist = [fst x | x <- tuplist]
The example I gave is just one possible solution. As the name implies, of course, you can just write:
fstMap' :: Eq a => [(a,b)] -> [a]
fstMap' = map fst
This is an even simpler solution.
I'm guessing that, since this is for a class, and you've been studying Haskell for < 1 week, you don't actually need to do any input/output. That's a bit more advanced than you probably are, yet. So:
As others have said, map fst will take a list of tuples, of arbitrary length, and return the first elements. You say you know how to do that. Fine.
But how do the tuples get into the list in the first place? Well, if you have a list of tuples and want to add another, (:) does the trick. Like so:
oldList = [("first", 1), ("second", 2)]
newList = ("third", 2) : oldList
You can do that as many times as you like. And if you don't have a list of tuples yet, your list is [].
Does that do everything that you need? If not, what specifically is it missing?
Edit: With the corrected type:
Eq a => [(a, b)]
That's not the type of a function. It's the type of a list of tuples. Just have the user type yourFunctionName followed by [ ("String1", val1), ("String2", val2), ... ("LastString", lastVal)] at the prompt.
I am trying:
import System.IO
saveArr = do
outh <- openFile "test.txt" WriteMode
hPutStrLn outh [1,2,3]
hClose outh
but it doesn't works... output:
No instance for (Num Char) arising from the literal `1'
EDIT
OK hPrint works with ints but what about float number in array? [1.0, 2.0, 3.0]?
hPutStrLn can only print strings. Perhaps you want hPrint?
hPrint outh [1,2,3]
Arrays, Lists and Strings exists only in imagination of programmer and as a term in some languages.
File is a sequence of bytes, so when you want to write something to it you should encode that imaginary String/List/Array into sequence of bytes (by show or by something from Storable etc).
As well terminal is a sequence of bytes which is encoded representation of actions needed to show something to user.
You have many ways to encode. You can make CSV representation of array by foldr (\a b -> a (',' : b)) "\n" (map shows [1,2,3]) or you may want to print it show [1,2,3]
derive Binary for your type, then write the data in binnary form using 'encodeFile' from the Data.Binary package. This is similar to writing the data out as a bytestring.