What is the precision of cpp_dec_float_50? - c++

Looking at the name and the Boost Multiprecision documentation I would expect that the cpp_dec_float_50 datatype has a precision of 50 decimal digits:
Using typedef cpp_dec_float_50 hides the complexity of multiprecision to allow us to define variables with 50 decimal digit precision just like built-in double.
(Although I don't understand the comparison with double - I mean double usually implements binary floating point arithmetic, not decimal floating point arithmetic.)
This is also matched by the output of following code (except for the double part, but this is expected):
cout << std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10
<< '\n';
// -> 50
cout << std::numeric_limits<double>::digits10 << '\n';
// -> 15
But why does following code print 74 digits then?
#include <boost/multiprecision/cpp_dec_float.hpp>
// "12" repeated 50 times, decimal point after the 10th digit
boost::multiprecision::cpp_dec_float_50 d("1212121212.121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212");
cout << d.convert_to<string>() << '\n';
// Expected output: 50 digits
// Actual output: 74 digits
// -> 1212121212.1212121212121212121212121212121212121212121212121212121212121212
The str() member function works as expected, e.g.
cout << d.str(50) << '\n';
does only print 50 digits - where it is documented as:
Returns the number formatted as a string, with at least precision digits, and in scientific format if scientific is true.

What you are seeing is likely related to the guard digits used internally. The reason is that even decimal representation has limited accuracy (think ("100.0" / "3.0") * "3.0").
In order to get reasonable rounding errors during calculations, the stored precision will be more than the guaranteed precision.
In summary: always be specific about your expected precision. In your example d.str(50) would do.
(In realistic scenarios, you should want to track the precision of your inputs and deduce the precision on your outputs. Most often, people just reserve surplus precision and only print the part they're interested in)

Related

Is there a simple explanation to understand floating points representation and std::numeric_limits maxdigits() and digits10()? [duplicate]

I am confused about what max_digits10 represents. According to its documentation, it is 0 for all integral types. The formula for floating-point types for max_digits10 looks similar to int's digits10's.
To put it simple,
digits10 is the number of decimal digits guaranteed to survive text → float → text round-trip.
max_digits10 is the number of decimal digits needed to guarantee correct float → text → float round-trip.
There will be exceptions to both but these values give the minimum guarantee. Read the original proposal on max_digits10 for a clear example, Prof. W. Kahan's words and further details. Most C++ implementations follow IEEE 754 for their floating-point data types. For an IEEE 754 float, digits10 is 6 and max_digits10 is 9; for a double it is 15 and 17. Note that both these numbers should not be confused with the actual decimal precision of floating-point numbers.
Example digits10
char const *s1 = "8.589973e9";
char const *s2 = "0.100000001490116119384765625";
float const f1 = strtof(s1, nullptr);
float const f2 = strtof(s2, nullptr);
std::cout << "'" << s1 << "'" << '\t' << std::scientific << f1 << '\n';
std::cout << "'" << s2 << "'" << '\t' << std::fixed << std::setprecision(27) << f2 << '\n';
Prints
'8.589973e9' 8.589974e+009
'0.100000001490116119384765625' 0.100000001490116119384765625
All digits up to the 6th significant digit were preserved, while the 7th digit didn't survive for the first number. However, all 27 digits of the second survived; this is an exception. However, most numbers become different beyond 7 digits and all numbers would be the same within 6 digits.
In summary, digits10 gives the number of significant digits you can count on in a given float as being the same as the original real number in its decimal form from which it was created i.e. the digits that survived after the conversion into a float.
Example max_digits10
void f_s_f(float &f, int p) {
std::ostringstream oss;
oss << std::fixed << std::setprecision(p) << f;
f = strtof(oss.str().c_str(), nullptr);
}
float f3 = 3.145900f;
float f4 = std::nextafter(f3, 3.2f);
std::cout << std::hexfloat << std::showbase << f3 << '\t' << f4 << '\n';
f_s_f(f3, std::numeric_limits<float>::max_digits10);
f_s_f(f4, std::numeric_limits<float>::max_digits10);
std::cout << f3 << '\t' << f4 << '\n';
f_s_f(f3, 6);
f_s_f(f4, 6);
std::cout << f3 << '\t' << f4 << '\n';
Prints
0x1.92acdap+1 0x1.92acdcp+1
0x1.92acdap+1 0x1.92acdcp+1
0x1.92acdap+1 0x1.92acdap+1
Here two different floats, when printed with max_digits10 digits of precision, they give different strings and these strings when read back would give back the original floats they are from. When printed with lesser precision they give the same output due to rounding and hence when read back lead to the same float, when in reality they are from different values.
In summary, max_digits10 are at least required to disambiguate two floats in their decimal form, so that when converted back to a binary float, we get the original bits again and not of the one slightly before or after it due to rounding errors.
In my opinion, it is explained sufficiently at the linked site (and the site for digits10):
digits10 is the (max.) amount of "decimal" digits where numbers
can be represented by a type in any case, independent of their actual value.
A usual 4-byte unsigned integer as example: As everybody should know, it has exactly 32bit,
that is 32 digits of a binary number.
But in terms of decimal numbers?
Probably 9.
Because, it can store 100000000 as well as 999999999.
But if take numbers with 10 digits: 4000000000 can be stored, but 5000000000 not.
So, if we need a guarantee for minimum decimal digit capacity, it is 9.
And that is the result of digits10.
max_digits10 is only interesting for float/double... and gives the decimal digit count
which we need to output/save/process... to take the whole precision
the floating point type can offer.
Theoretical example: A variable with content 123.112233445566
If you show 123.11223344 to the user, it is not as precise as it can be.
If you show 123.1122334455660000000 to the user, it makes no sense because
you could omit the trailing zeros (because your variable can´t hold that much anyways)
Therefore, max_digits10 says how many digits precision you have available in a type.
Lets build some context
After going through lots of answers and reading stuff following is the simplest and layman answer i could reach upto for this.
Floating point numbers in computers (Single precision i.e float type in C/C++ etc. OR double precision i.e double in C/C++ etc.) have to be represented using fixed number of bits.
float is a 32-bit IEEE 754 single precision Floating Point Number – 1
bit for the sign, 8 bits for the exponent, and 23* for the value.
float has 7 decimal digits of precision.
And for double type
The C++ double should have a floating-point precision of up to 15
digits as it contains a precision that is twice the precision of the
float data type. When you declare a variable as double, you should
initialize it with a decimal value
What the heck above means to me?
Its possible that sometimes the floating point number which you have cannot fit into the number of bits available for that type. for eg. float value of 0.1 cannot FIT into available number of BITS in a computer. You may ask why. Try converting this value to binary and you will see that the binary representation is never ending and we have only finite number of bits so we need to stop at one point even though the binary conversion logic says keep going on.
If the given floating point number can be represented by the number of bits available, then we are good. If its not possible to represent the given floating point number in the available number of bits, then the bits are stored a value which is as close as possible to the actual value. This is also known as "Rounding the float value" OR "Rounding error". Now how this value is calculated depends of specific implementation but its safe to assume that given a specific implementation, the most closest value is chosen.
Now lets come to std::numeric_limits<T>::digits10
The value of std::numeric_limits::digits10 is the number of
base-10 digits that are necessary to uniquely represent all distinct
values of the type T, such as necessary for
serialization/deserialization to text. This constant is meaningful for
all floating-point types.
What this std::numeric_limits<T>::digits10 is saying is that whenever you fall into a scenario where rounding MUST happen then you can be assured that after given floating point value is rounded to its closest representable value by the computer, then its guarantied that the closest representable value's std::numeric_limits<T>::digits10 number of Decimal digits will be exactly same as your input floating point. For single precision floating point value this number is usually 6 and for double precision float value this number is usually 15.
Now you may ask why i used the word "guarantied". Well i used this because its possible that more number of digits may survive while conversion to float BUT if you ask me give me a guarantee that how many will survive in all the cases, then that number is std::numeric_limits<T>::digits10. Not convinced yet?
OK, consider example of unsigned char which has 8 bits of storage. When you convert a decimal value to unsigned char, then what's the guarantee that how many decimal digits will survive? I will say "2". Then you will say that even 145 will survive, so it should be 3. BUT i will say NO. Because if you take 256, then it won't survive. Of course 255 will survive, but since you are asking for guarantee so i can only guarantee that 2 digits will survive because answer 3 is not true if i am trying to use values higher than 255.
Now use the same analogy for floating number types when someone asks for a guarantee. That guarantee is given by std::numeric_limits<T>::digits10
Now what the heck is std::numeric_limits<T>::max_digits10
Here comes a bit of another level of complexity. BUT I will try to explain as simple as I can
As i mentioned previously that due to limited number of bits available to represent a floating type on a computer, its not possible to represent every float value exactly. Few can be represented exactly BUT not all values. Now lets consider a hypothetical situation. Someone asks you to write down all the possible float values which the computer can represent (ooohhh...i know what you are thinking). Luckily you don't have write all those :)
Just imagine that you started and reached the last float value which a computer can represent. The max float value which the computer can represent will have certain number of decimal digits. These are the number of decimal digits which std::numeric_limits<T>::max_digits10 tells us. BUT an actual explanation for std::numeric_limits<T>::max_digits10 is the maximum number of decimal digits you need to represent all possible representable values. Thats why i asked you to write all the value initially and you will see that you need maximum std::numeric_limits<T>::max_digits10 of decimal digits to write all representable values of type T.
Please note that this max float value is also the float value which can survive the text to float to text conversion but its number of decimal digits are NOT the guaranteed number of digits (remember the unsigned char example i gave where 3 digits of 255 doesn't mean all 3 digits values can be stored in unsigned char?)
Hope this attempt of mine gives people some understanding. I know i may have over simplified things BUT I have spent sleepless night thinking and reading stuff and this is the explanation which was able to give me some peace of mind.
Cheers !!!

Higher precision when parsing string to float

This is my first post here so sorry if it drags a little.
I'm assisting in some research for my professor, and I'm having some trouble with precision when I'm parsing some numbers that need to be precise to the 12th decimal point. For example, here is a number that I'm parsing from a string into an integer, before it's parsed:
-82.636097527336
Here is the code I'm using to parse it, which I also found on this site (thanks for that!):
std::basic_string<char> str = prelim[i];
std::stringstream s_str( str );
float val;
s_str >> val;
degrees.push_back(val);
Where 'prelim[i]' is just the current number I'm on, and 'degrees' is my new vector that holds all of the numbers after they've been parsed to a float. My issue is that, after it's parsed and stored in 'degrees', I do an 'std::cout' command comparing both values side-by-side, and shows up like this (old value (string) on the left, new value (float) on the right):
-82.6361
Does anyone have any insight into how I could alleviate this issue and make my numbers more precise? I suppose I could go character by character and use a switch case, but I think that there's an easier way to do it with just a few lines of code.
Again, thank you in advance and any pointers would be appreciated!
(Edited for clarity regarding how I was outputting the value)
Change to a double to represent the value more accurately, and use std::setprecision(30) or more to show as much of the internal representation as is available.
Note that the internal storage isn't exact; using an Intel Core i7, I got the following values:
string: -82.636097527336
float: -82.63610076904296875
double: -82.63609752733600544161163270473480224609
So, as you can see, double correctly represents all of the digits of your original input string, but even so, it isn't quite exact, since there are a few extra digits than in your string.
There are two problems:
A 32-bit float does not have enough precision for 14 decimal digits. From a 32-bit float you can get about 7 decimal digits, because it has a 23-bit binary mantissa. A 64-bit float (double) has 52 bits of mantissa, which gives you about 16 decimal digits, just enough.
Printing with cout by default prints six decimal digits.
Here is a little program to illustrate the difference:
#include <iomanip>
#include <iostream>
#include <sstream>
int main(int, const char**)
{
float parsed_float;
double parsed_double;
std::stringstream input("-82.636097527336 -82.636097527336");
input >> parsed_float;
input >> parsed_double;
std::cout << "float printed with default precision: "
<< parsed_float << std::endl;
std::cout << "double printed with default precision: "
<< parsed_double << std::endl;
std::cout << "float printed with 14 digits precision: "
<< std::setprecision(14) << parsed_float << std::endl;
std::cout << "double printed with 14 digits precision: "
<< std::setprecision(14) << parsed_double << std::endl;
return 0;
}
Output:
float printed with default precision: -82.6361
double printed with default precision: -82.6361
float printed with 14 digits precision: -82.636100769043
double printed with 14 digits precision: -82.636097527336
So you need to use a 64-bit float to be able to represent the input, but also remember to print with the desired precision with std::setprecision.
You cannot have precision up to the 12th decimal using a simple float. The intuitive course of action would be to use double or long double... but your are not going to have the precision your need.
The reason is due to the representation of real numbers in memory. You have more information here.
For example. 0.02 is actually stored as 0.01999999...
You should use a dedicated library for arbitrary precision, instead.
Hope this helps.

c++ long double printing all digits with precision

Regarding my question I have seen a post on here but did not understand since i am new to C++. I wrote a small script which gets a number from user and script prints out the factorial of entered number.
Once I entered bigger numbers like 30, script does not print out all the digits.Output is like 2.652528598 E+32 however What I want is exact number 265252859812191058636308480000000. Could someone explain how to get all digits in long double.Thanks in advance
You can set the precision of the output stream to whatever you want in order to get your desired results.
http://www.cplusplus.com/reference/ios/ios_base/precision/
Here is an extract from the page, along with a code example.
Get/Set floating-point decimal precision
The floating-point precision determines the maximum number of digits to be written on insertion operations to express floating-point values. How this is interpreted depends on whether the floatfield format flag is set to a specific notation (either fixed or scientific) or it is unset (using the default notation, which is not necessarily equivalent to either fixed nor scientific).
Using the default floating-point notation, the precision field specifies the maximum number of meaningful digits to display in total counting both those before and those after the decimal point. Notice that it is not a minimum, and therefore it does not pad the displayed number with trailing zeros if the number can be displayed with less digits than the precision.
In both the fixed and scientific notations, the precision field specifies exactly how many digits to display after the decimal point, even if this includes trailing decimal zeros. The digits before the decimal point are not relevant for the precision in this case.
This decimal precision can also be modified using the parameterized manipulator setprecision.
// modify precision
#include <iostream> // std::cout, std::ios
int main () {
double f = 3.14159;
std::cout.unsetf ( std::ios::floatfield ); // floatfield not set
std::cout.precision(5);
std::cout << f << '\n';
std::cout.precision(10);
std::cout << f << '\n';
std::cout.setf( std::ios::fixed, std:: ios::floatfield ); // floatfield set to fixed
std::cout << f << '\n';
return 0;
}
Possible output:
3.1416
3.14159
3.1415900000
Notice how the first number written is just 5 digits long, while the second is 6, but not more, even though the stream's precision is now 10. That is because precision with the default floatfield only specifies the maximum number of digits to be displayed, but not the minimum.
The third number printed displays 10 digits after the decimal point because the floatfield format flag is in this case set to fixed.

What is the purpose of max_digits10 and how is it different from digits10?

I am confused about what max_digits10 represents. According to its documentation, it is 0 for all integral types. The formula for floating-point types for max_digits10 looks similar to int's digits10's.
To put it simple,
digits10 is the number of decimal digits guaranteed to survive text → float → text round-trip.
max_digits10 is the number of decimal digits needed to guarantee correct float → text → float round-trip.
There will be exceptions to both but these values give the minimum guarantee. Read the original proposal on max_digits10 for a clear example, Prof. W. Kahan's words and further details. Most C++ implementations follow IEEE 754 for their floating-point data types. For an IEEE 754 float, digits10 is 6 and max_digits10 is 9; for a double it is 15 and 17. Note that both these numbers should not be confused with the actual decimal precision of floating-point numbers.
Example digits10
char const *s1 = "8.589973e9";
char const *s2 = "0.100000001490116119384765625";
float const f1 = strtof(s1, nullptr);
float const f2 = strtof(s2, nullptr);
std::cout << "'" << s1 << "'" << '\t' << std::scientific << f1 << '\n';
std::cout << "'" << s2 << "'" << '\t' << std::fixed << std::setprecision(27) << f2 << '\n';
Prints
'8.589973e9' 8.589974e+009
'0.100000001490116119384765625' 0.100000001490116119384765625
All digits up to the 6th significant digit were preserved, while the 7th digit didn't survive for the first number. However, all 27 digits of the second survived; this is an exception. However, most numbers become different beyond 7 digits and all numbers would be the same within 6 digits.
In summary, digits10 gives the number of significant digits you can count on in a given float as being the same as the original real number in its decimal form from which it was created i.e. the digits that survived after the conversion into a float.
Example max_digits10
void f_s_f(float &f, int p) {
std::ostringstream oss;
oss << std::fixed << std::setprecision(p) << f;
f = strtof(oss.str().c_str(), nullptr);
}
float f3 = 3.145900f;
float f4 = std::nextafter(f3, 3.2f);
std::cout << std::hexfloat << std::showbase << f3 << '\t' << f4 << '\n';
f_s_f(f3, std::numeric_limits<float>::max_digits10);
f_s_f(f4, std::numeric_limits<float>::max_digits10);
std::cout << f3 << '\t' << f4 << '\n';
f_s_f(f3, 6);
f_s_f(f4, 6);
std::cout << f3 << '\t' << f4 << '\n';
Prints
0x1.92acdap+1 0x1.92acdcp+1
0x1.92acdap+1 0x1.92acdcp+1
0x1.92acdap+1 0x1.92acdap+1
Here two different floats, when printed with max_digits10 digits of precision, they give different strings and these strings when read back would give back the original floats they are from. When printed with lesser precision they give the same output due to rounding and hence when read back lead to the same float, when in reality they are from different values.
In summary, max_digits10 are at least required to disambiguate two floats in their decimal form, so that when converted back to a binary float, we get the original bits again and not of the one slightly before or after it due to rounding errors.
In my opinion, it is explained sufficiently at the linked site (and the site for digits10):
digits10 is the (max.) amount of "decimal" digits where numbers
can be represented by a type in any case, independent of their actual value.
A usual 4-byte unsigned integer as example: As everybody should know, it has exactly 32bit,
that is 32 digits of a binary number.
But in terms of decimal numbers?
Probably 9.
Because, it can store 100000000 as well as 999999999.
But if take numbers with 10 digits: 4000000000 can be stored, but 5000000000 not.
So, if we need a guarantee for minimum decimal digit capacity, it is 9.
And that is the result of digits10.
max_digits10 is only interesting for float/double... and gives the decimal digit count
which we need to output/save/process... to take the whole precision
the floating point type can offer.
Theoretical example: A variable with content 123.112233445566
If you show 123.11223344 to the user, it is not as precise as it can be.
If you show 123.1122334455660000000 to the user, it makes no sense because
you could omit the trailing zeros (because your variable can´t hold that much anyways)
Therefore, max_digits10 says how many digits precision you have available in a type.
Lets build some context
After going through lots of answers and reading stuff following is the simplest and layman answer i could reach upto for this.
Floating point numbers in computers (Single precision i.e float type in C/C++ etc. OR double precision i.e double in C/C++ etc.) have to be represented using fixed number of bits.
float is a 32-bit IEEE 754 single precision Floating Point Number – 1
bit for the sign, 8 bits for the exponent, and 23* for the value.
float has 7 decimal digits of precision.
And for double type
The C++ double should have a floating-point precision of up to 15
digits as it contains a precision that is twice the precision of the
float data type. When you declare a variable as double, you should
initialize it with a decimal value
What the heck above means to me?
Its possible that sometimes the floating point number which you have cannot fit into the number of bits available for that type. for eg. float value of 0.1 cannot FIT into available number of BITS in a computer. You may ask why. Try converting this value to binary and you will see that the binary representation is never ending and we have only finite number of bits so we need to stop at one point even though the binary conversion logic says keep going on.
If the given floating point number can be represented by the number of bits available, then we are good. If its not possible to represent the given floating point number in the available number of bits, then the bits are stored a value which is as close as possible to the actual value. This is also known as "Rounding the float value" OR "Rounding error". Now how this value is calculated depends of specific implementation but its safe to assume that given a specific implementation, the most closest value is chosen.
Now lets come to std::numeric_limits<T>::digits10
The value of std::numeric_limits::digits10 is the number of
base-10 digits that are necessary to uniquely represent all distinct
values of the type T, such as necessary for
serialization/deserialization to text. This constant is meaningful for
all floating-point types.
What this std::numeric_limits<T>::digits10 is saying is that whenever you fall into a scenario where rounding MUST happen then you can be assured that after given floating point value is rounded to its closest representable value by the computer, then its guarantied that the closest representable value's std::numeric_limits<T>::digits10 number of Decimal digits will be exactly same as your input floating point. For single precision floating point value this number is usually 6 and for double precision float value this number is usually 15.
Now you may ask why i used the word "guarantied". Well i used this because its possible that more number of digits may survive while conversion to float BUT if you ask me give me a guarantee that how many will survive in all the cases, then that number is std::numeric_limits<T>::digits10. Not convinced yet?
OK, consider example of unsigned char which has 8 bits of storage. When you convert a decimal value to unsigned char, then what's the guarantee that how many decimal digits will survive? I will say "2". Then you will say that even 145 will survive, so it should be 3. BUT i will say NO. Because if you take 256, then it won't survive. Of course 255 will survive, but since you are asking for guarantee so i can only guarantee that 2 digits will survive because answer 3 is not true if i am trying to use values higher than 255.
Now use the same analogy for floating number types when someone asks for a guarantee. That guarantee is given by std::numeric_limits<T>::digits10
Now what the heck is std::numeric_limits<T>::max_digits10
Here comes a bit of another level of complexity. BUT I will try to explain as simple as I can
As i mentioned previously that due to limited number of bits available to represent a floating type on a computer, its not possible to represent every float value exactly. Few can be represented exactly BUT not all values. Now lets consider a hypothetical situation. Someone asks you to write down all the possible float values which the computer can represent (ooohhh...i know what you are thinking). Luckily you don't have write all those :)
Just imagine that you started and reached the last float value which a computer can represent. The max float value which the computer can represent will have certain number of decimal digits. These are the number of decimal digits which std::numeric_limits<T>::max_digits10 tells us. BUT an actual explanation for std::numeric_limits<T>::max_digits10 is the maximum number of decimal digits you need to represent all possible representable values. Thats why i asked you to write all the value initially and you will see that you need maximum std::numeric_limits<T>::max_digits10 of decimal digits to write all representable values of type T.
Please note that this max float value is also the float value which can survive the text to float to text conversion but its number of decimal digits are NOT the guaranteed number of digits (remember the unsigned char example i gave where 3 digits of 255 doesn't mean all 3 digits values can be stored in unsigned char?)
Hope this attempt of mine gives people some understanding. I know i may have over simplified things BUT I have spent sleepless night thinking and reading stuff and this is the explanation which was able to give me some peace of mind.
Cheers !!!

Printing double without losing precision

How do you print a double to a stream so that when it is read in you don't lose precision?
I tried:
std::stringstream ss;
double v = 0.1 * 0.1;
ss << std::setprecision(std::numeric_limits<T>::digits10) << v << " ";
double u;
ss >> u;
std::cout << "precision " << ((u == v) ? "retained" : "lost") << std::endl;
This did not work as I expected.
But I can increase precision (which surprised me as I thought that digits10 was the maximum required).
ss << std::setprecision(std::numeric_limits<T>::digits10 + 2) << v << " ";
// ^^^^^^ +2
It has to do with the number of significant digits and the first two don't count in (0.01).
So has anybody looked at representing floating point numbers exactly?
What is the exact magical incantation on the stream I need to do?
After some experimentation:
The trouble was with my original version. There were non-significant digits in the string after the decimal point that affected the accuracy.
So to compensate for this we can use scientific notation to compensate:
ss << std::scientific
<< std::setprecision(std::numeric_limits<double>::digits10 + 1)
<< v;
This still does not explain the need for the +1 though.
Also if I print out the number with more precision I get more precision printed out!
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10) << v << "\n";
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10 + 1) << v << "\n";
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits) << v << "\n";
It results in:
1.000000000000000e-02
1.0000000000000002e-02
1.00000000000000019428902930940239457413554200000000000e-02
Based on #Stephen Canon answer below:
We can print out exactly by using the printf() formatter, "%a" or "%A". To achieve this in C++ we need to use the fixed and scientific manipulators (see n3225: 22.4.2.2.2p5 Table 88)
std::cout.flags(std::ios_base::fixed | std::ios_base::scientific);
std::cout << v;
For now I have defined:
template<typename T>
std::ostream& precise(std::ostream& stream)
{
std::cout.flags(std::ios_base::fixed | std::ios_base::scientific);
return stream;
}
std::ostream& preciselngd(std::ostream& stream){ return precise<long double>(stream);}
std::ostream& precisedbl(std::ostream& stream) { return precise<double>(stream);}
std::ostream& preciseflt(std::ostream& stream) { return precise<float>(stream);}
Next: How do we handle NaN/Inf?
It's not correct to say "floating point is inaccurate", although I admit that's a useful simplification. If we used base 8 or 16 in real life then people around here would be saying "base 10 decimal fraction packages are inaccurate, why did anyone ever cook those up?".
The problem is that integral values translate exactly from one base into another, but fractional values do not, because they represent fractions of the integral step and only a few of them are used.
Floating point arithmetic is technically perfectly accurate. Every calculation has one and only one possible result. There is a problem, and it is that most decimal fractions have base-2 representations that repeat. In fact, in the sequence 0.01, 0.02, ... 0.99, only a mere 3 values have exact binary representations. (0.25, 0.50, and 0.75.) There are 96 values that repeat and therefore are obviously not represented exactly.
Now, there are a number of ways to write and read back floating point numbers without losing a single bit. The idea is to avoid trying to express the binary number with a base 10 fraction.
Write them as binary. These days, everyone implements the IEEE-754 format so as long as you choose a byte order and write or read only that byte order, then the numbers will be portable.
Write them as 64-bit integer values. Here you can use the usual base 10. (Because you are representing the 64-bit aliased integer, not the 52-bit fraction.)
You can also just write more decimal fraction digits. Whether this is bit-for-bit accurate will depend on the quality of the conversion libraries and I'm not sure I would count on perfect accuracy (from the software) here. But any errors will be exceedingly small and your original data certainly has no information in the low bits. (None of the constants of physics and chemistry are known to 52 bits, nor has any distance on earth ever been measured to 52 bits of precision.) But for a backup or restore where bit-for-bit accuracy might be compared automatically, this obviously isn't ideal.
Don't print floating-point values in decimal if you don't want to lose precision. Even if you print enough digits to represent the number exactly, not all implementations have correctly-rounded conversions to/from decimal strings over the entire floating-point range, so you may still lose precision.
Use hexadecimal floating point instead. In C:
printf("%a\n", yourNumber);
C++0x provides the hexfloat manipulator for iostreams that does the same thing (on some platforms, using the std::hex modifier has the same result, but this is not a portable assumption).
Using hex floating point is preferred for several reasons.
First, the printed value is always exact. No rounding occurs in writing or reading a value formatted in this way. Beyond the accuracy benefits, this means that reading and writing such values can be faster with a well tuned I/O library. They also require fewer digits to represent values exactly.
I got interested in this question because I'm trying to (de)serialize my data to & from JSON.
I think I have a clearer explanation (with less hand waiving) for why 17 decimal digits are sufficient to reconstruct the original number losslessly:
Imagine 3 number lines:
1. for the original base 2 number
2. for the rounded base 10 representation
3. for the reconstructed number (same as #1 because both in base 2)
When you convert to base 10, graphically, you choose the tic on the 2nd number line closest to the tic on the 1st. Likewise when you reconstruct the original from the rounded base 10 value.
The critical observation I had was that in order to allow exact reconstruction, the base 10 step size (quantum) has to be < the base 2 quantum. Otherwise, you inevitably get the bad reconstruction shown in red.
Take the specific case of when the exponent is 0 for the base2 representation. Then the base2 quantum will be 2^-52 ~= 2.22 * 10^-16. The closest base 10 quantum that's less than this is 10^-16. Now that we know the required base 10 quantum, how many digits will be needed to encode all possible values? Given that we're only considering the case of exponent = 0, the dynamic range of values we need to represent is [1.0, 2.0). Therefore, 17 digits would be required (16 digits for fraction and 1 digit for integer part).
For exponents other than 0, we can use the same logic:
exponent base2 quant. base10 quant. dynamic range digits needed
---------------------------------------------------------------------
1 2^-51 10^-16 [2, 4) 17
2 2^-50 10^-16 [4, 8) 17
3 2^-49 10^-15 [8, 16) 17
...
32 2^-20 10^-7 [2^32, 2^33) 17
1022 9.98e291 1.0e291 [4.49e307,8.99e307) 17
While not exhaustive, the table shows the trend that 17 digits are sufficient.
Hope you like my explanation.
In C++20 you'll be able to use std::format to do this:
std::stringstream ss;
double v = 0.1 * 0.1;
ss << std::format("{}", v);
double u;
ss >> u;
assert(v == u);
The default floating-point format is the shortest decimal representation with a round-trip guarantee. The advantage of this method compared to using the precision of max_digits10 (not digits10 which is not suitable for round trip through decimal) from std::numeric_limits is that it doesn't print unnecessary digits.
In the meantime you can use the {fmt} library, std::format is based on. For example (godbolt):
fmt::print("{}", 0.1 * 0.1);
Output (assuming IEEE754 double):
0.010000000000000002
{fmt} uses the Dragonbox algorithm for fast binary floating point to decimal conversion. In addition to giving the shortest representation it is 20-30x faster than common standard library implementations of printf and iostreams.
Disclaimer: I'm the author of {fmt} and C++20 std::format.
A double has the precision of 52 binary digits or 15.95 decimal digits. See http://en.wikipedia.org/wiki/IEEE_754-2008. You need at least 16 decimal digits to record the full precision of a double in all cases. [But see fourth edit, below].
By the way, this means significant digits.
Answer to OP edits:
Your floating point to decimal string runtime is outputing way more digits than are significant. A double can only hold 52 bits of significand (actually, 53, if you count a "hidden" 1 that is not stored). That means the the resolution is not more than 2 ^ -53 = 1.11e-16.
For example: 1 + 2 ^ -52 = 1.0000000000000002220446049250313 . . . .
Those decimal digits, .0000000000000002220446049250313 . . . . are the smallest binary "step" in a double when converted to decimal.
The "step" inside the double is:
.0000000000000000000000000000000000000000000000000001 in binary.
Note that the binary step is exact, while the decimal step is inexact.
Hence the decimal representation above,
1.0000000000000002220446049250313 . . .
is an inexact representation of the exact binary number:
1.0000000000000000000000000000000000000000000000000001.
Third Edit:
The next possible value for a double, which in exact binary is:
1.0000000000000000000000000000000000000000000000000010
converts inexactly in decimal to
1.0000000000000004440892098500626 . . . .
So all of those extra digits in the decimal are not really significant, they are just base conversion artifacts.
Fourth Edit:
Though a double stores at most 16 significant decimal digits, sometimes 17 decimal digits are necessary to represent the number. The reason has to do with digit slicing.
As I mentioned above, there are 52 + 1 binary digits in the double. The "+ 1" is an assumed leading 1, and is neither stored nor significant. In the case of an integer, those 52 binary digits form a number between 0 and 2^53 - 1. How many decimal digits are necessary to store such a number? Well, log_10 (2^53 - 1) is about 15.95. So at most 16 decimal digits are necessary. Let's label these d_0 to d_15.
Now consider that IEEE floating point numbers also have an binary exponent. What happens when we increment the exponet by, say, 2? We have multiplied our 52-bit number, whatever it was, by 4. Now, instead of our 52 binary digits aligning perfectly with our decimal digits d_0 to d_15, we have some significant binary digits represented in d_16. However, since we multiplied by something less than 10, we still have significant binary digits represented in d_0. So our 15.95 decimal digits now occuply d_1 to d_15, plus some upper bits of d_0 and some lower bits of d_16. This is why 17 decimal digits are sometimes needed to represent a IEEE double.
Fifth Edit
Fixed numerical errors
The easiest way (for IEEE 754 double) to guarantee a round-trip conversion is to always use 17 significant digits. But that has the disadvantage of sometimes including unnecessary noise digits (0.1 → "0.10000000000000001").
An approach that's worked for me is to sprintf the number with 15 digits of precision, then check if atof gives you back the original value. If it doesn't, try 16 digits. If that doesn't work, use 17.
You might want to try David Gay's algorithm (used in Python 3.1 to implement float.__repr__).
Thanks to ThomasMcLeod for pointing out the error in my table computation
To guarantee round-trip conversion using 15 or 16 or 17 digits is only possible for a comparatively few cases. The number 15.95 comes from taking 2^53 (1 implicit bit + 52 bits in the significand/"mantissa") which comes out to an integer in the range 10^15 to 10^16 (closer to 10^16).
Consider a double precision value x with an exponent of 0, i.e. it falls into the floating point range range 1.0 <= x < 2.0. The implicit bit will mark the 2^0 component (part) of x. The highest explicit bit of the significand will denote the next lower exponent (from 0) <=> -1 => 2^-1 or the 0.5 component.
The next bit 0.25, the ones after 0.125, 0.0625, 0.03125, 0.015625 and so on (see table below). The value 1.5 will thus be represented by two components added together: the implicit bit denoting 1.0 and the highest explicit significand bit denoting 0.5.
This illustrates that from the implicit bit downward you have 52 additional, explicit bits to represent possible components where the smallest is 0 (exponent) - 52 (explicit bits in significand) = -52 => 2^-52 which according to the table below is ... well you can see for yourselves that it comes out to quite a bit more than 15.95 significant digits (37 to be exact). To put it another way the smallest number in the 2^0 range that is != 1.0 itself is 2^0+2^-52 which is 1.0 + the number next to 2^-52 (below) = (exactly) 1.0000000000000002220446049250313080847263336181640625, a value which I count as being 53 significant digits long. With 17 digit formatting "precision" the number will display as 1.0000000000000002 and this would depend on the library converting correctly.
So maybe "round-trip conversion in 17 digits" is not really a concept that is valid (enough).
2^ -1 = 0.5000000000000000000000000000000000000000000000000000
2^ -2 = 0.2500000000000000000000000000000000000000000000000000
2^ -3 = 0.1250000000000000000000000000000000000000000000000000
2^ -4 = 0.0625000000000000000000000000000000000000000000000000
2^ -5 = 0.0312500000000000000000000000000000000000000000000000
2^ -6 = 0.0156250000000000000000000000000000000000000000000000
2^ -7 = 0.0078125000000000000000000000000000000000000000000000
2^ -8 = 0.0039062500000000000000000000000000000000000000000000
2^ -9 = 0.0019531250000000000000000000000000000000000000000000
2^-10 = 0.0009765625000000000000000000000000000000000000000000
2^-11 = 0.0004882812500000000000000000000000000000000000000000
2^-12 = 0.0002441406250000000000000000000000000000000000000000
2^-13 = 0.0001220703125000000000000000000000000000000000000000
2^-14 = 0.0000610351562500000000000000000000000000000000000000
2^-15 = 0.0000305175781250000000000000000000000000000000000000
2^-16 = 0.0000152587890625000000000000000000000000000000000000
2^-17 = 0.0000076293945312500000000000000000000000000000000000
2^-18 = 0.0000038146972656250000000000000000000000000000000000
2^-19 = 0.0000019073486328125000000000000000000000000000000000
2^-20 = 0.0000009536743164062500000000000000000000000000000000
2^-21 = 0.0000004768371582031250000000000000000000000000000000
2^-22 = 0.0000002384185791015625000000000000000000000000000000
2^-23 = 0.0000001192092895507812500000000000000000000000000000
2^-24 = 0.0000000596046447753906250000000000000000000000000000
2^-25 = 0.0000000298023223876953125000000000000000000000000000
2^-26 = 0.0000000149011611938476562500000000000000000000000000
2^-27 = 0.0000000074505805969238281250000000000000000000000000
2^-28 = 0.0000000037252902984619140625000000000000000000000000
2^-29 = 0.0000000018626451492309570312500000000000000000000000
2^-30 = 0.0000000009313225746154785156250000000000000000000000
2^-31 = 0.0000000004656612873077392578125000000000000000000000
2^-32 = 0.0000000002328306436538696289062500000000000000000000
2^-33 = 0.0000000001164153218269348144531250000000000000000000
2^-34 = 0.0000000000582076609134674072265625000000000000000000
2^-35 = 0.0000000000291038304567337036132812500000000000000000
2^-36 = 0.0000000000145519152283668518066406250000000000000000
2^-37 = 0.0000000000072759576141834259033203125000000000000000
2^-38 = 0.0000000000036379788070917129516601562500000000000000
2^-39 = 0.0000000000018189894035458564758300781250000000000000
2^-40 = 0.0000000000009094947017729282379150390625000000000000
2^-41 = 0.0000000000004547473508864641189575195312500000000000
2^-42 = 0.0000000000002273736754432320594787597656250000000000
2^-43 = 0.0000000000001136868377216160297393798828125000000000
2^-44 = 0.0000000000000568434188608080148696899414062500000000
2^-45 = 0.0000000000000284217094304040074348449707031250000000
2^-46 = 0.0000000000000142108547152020037174224853515625000000
2^-47 = 0.0000000000000071054273576010018587112426757812500000
2^-48 = 0.0000000000000035527136788005009293556213378906250000
2^-49 = 0.0000000000000017763568394002504646778106689453125000
2^-50 = 0.0000000000000008881784197001252323389053344726562500
2^-51 = 0.0000000000000004440892098500626161694526672363281250
2^-52 = 0.0000000000000002220446049250313080847263336181640625
#ThomasMcLeod: I think the significant digit rule comes from my field, physics, and means something more subtle:
If you have a measurement that gets you the value 1.52 and you cannot read any more detail off the scale, and say you are supposed to add another number (for example of another measurement because this one's scale was too small) to it, say 2, then the result (obviously) has only 2 decimal places, i.e. 3.52.
But likewise, if you add 1.1111111111 to the value 1.52, you get the value 2.63 (and nothing more!).
The reason for the rule is to prevent you from kidding yourself into thinking you got more information out of a calculation than you put in by the measurement (which is impossible, but would seem that way by filling it with garbage, see above).
That said, this specific rule is for addition only (for addition: the error of the result is the sum of the two errors - so if you measure just one badly, though luck, there goes your precision...).
How to get the other rules:
Let's say a is the measured number and δa the error. Let's say your original formula was:
f:=m a
Let's say you also measure m with error δm (let that be the positive side).
Then the actual limit is:
f_up=(m+δm) (a+δa)
and
f_down=(m-δm) (a-δa)
So,
f_up =m a+δm δa+(δm a+m δa)
f_down=m a+δm δa-(δm a+m δa)
Hence, now the significant digits are even less:
f_up ~m a+(δm a+m δa)
f_down~m a-(δm a+m δa)
and so
δf=δm a+m δa
If you look at the relative error, you get:
δf/f=δm/m+δa/a
For division it is
δf/f=δm/m-δa/a
Hope that gets the gist across and hope I didn't make too many mistakes, it's late here :-)
tl,dr: Significant digits mean how many of the digits in the output actually come from the digits in your input (in the real world, not the distorted picture that floating point numbers have).
If your measurements were 1 with "no" error and 3 with "no" error and the function is supposed to be 1/3, then yes, all infinite digits are actual significant digits. Otherwise, the inverse operation would not work, so obviously they have to be.
If significant digit rule means something completely different in another field, carry on :-)