C++ client/server application with single messages and broadcast - c++

I am trying to write a simple client-server application where a client can send or broadcast a message to one or all clients in the network. The server stores all IP addresses that are connected to it, and broadcasts a new IP if a new client connects itself.
I'm not quite sure how to implement the sending of a single message to another client. Would I just have to send a TCP message to the server and put the desired recipient as data in the TCP layer which is then extracted by the server so it knows where to send it?
I also want to add encryption to the messages which would then no longer allow the server to read the data, so I'm not sure how to solve that!?
I am using c++ and Qt5 for the implementation

I'm not quite sure how to implement the sending of a single message to
another client. Would I just have to send a TCP message to the server
and put the desired recipient as data in the TCP layer which is then
extracted by the server so it knows where to send it?
In an ideal world, the clients could talk to each other directly, since they could find out the IP addresses of the other clients from the server (either via its broadcast or by requesting a list of IP addresses from the server). If all of your clients are running on the same LAN, that can work well.
Assuming you want your system to run on the general Internet, however, that won't work so well, since many/most clients will be behind various firewalls and so they won't accept incoming TCP connections. (There are some ways around that, but they require a very advanced understanding of how TCP works, and even then they only work in certain situations, so I don't recommend attempting them in a first project)
Therefore, for a reliable client->client messaging mechanism, your best bet is indeed to have the sending client send the message to the server, along with some short header that tells the server which other client(s) the message ought to be forwarded to. My own client/server messaging system works along these lines, and I've found it to work well.
I also want to add encryption to the messages which would then no
longer allow the server to read the data, so I'm not sure how to solve
that!?
Don't worry about adding encryption until you've got the basic non-encrypted functionality working first, since encryption will make things much more difficult to debug. That said, it's perfectly possible to pass encrypted/opaque data to the server, as long as the aforementioned header data (which tells the server where to forward the message to) is not encrypted (since the server will need to be able to read the header to know what to do with the encrypted data). The trickier part will be when the receiving client gets the forwarded data from the server -- how will the receiving client know how to decrypt it? You'll need some external mechanism for clients to share keys (either symmetric keys or public/private keypairs), since if you sent the encryption keys themselves through the server, there wouldn't be much point in encrypting anything (since the server could retain a copy of any keys it forwarded, and use them to decrypt, if it wanted to)

Related

How to implement secure socket communication in c++ application using winsock?

I am trying to implement secure communication between a server and client in c++. The limitation is that both the client and server must run on windows and have to be in c++. This is for a research project I am working on at my university.
So far I have found that SChannel is the best option, but the documentation is extremely confusing and I can not find any guides/tutorials on how to use it. I have already looked at this link https://learn.microsoft.com/en-us/windows/desktop/secauthn/creating-a-secure-connection-using-schannel but still do not understand how to get it working. Could someone guide me through this if this is the best way?
I also looked into use SSLStream using the CLR to have .net run inside of a c++ application. However I can not use this because the client application is threaded and threads can't be used with CLR.
I already have a dummy client and server set up with communication between the two, I am just trying to secure and encrypt that communication.
Any help is greatly appreciated!
Whichever SSL library you choose to use there are a few things you need to know as a beginner in this field:
The server and client implementations will end up looking quite different in places.
Your server is absolutely going to need a certificate with a private key. During development you clearly don't want to get one from Verisign or something so you need to create a self-signed certificate. You can do this with openssl or other tools.
The certificate consists of a private part and a public part. The public part needs to go to the client, and will be used to validate the connection. When you are using something like SChannel the certificates (private and public) will need to be installed in the certificate stores of the server and client respectively.
SChannel does not send or receive data for you. So the core of your implementation is going to be: when the network has data: read ciphertext from socket and write to SChannel. Read clear text from SChannel (if any) and pass to application. When the application has data to send, get clear text from Application and pass to SChannel. Get the resulting ciphertext buffers from SChannel and write to the socket.
buffers from the internet may be partial, and negotiations and re-negotiations means there's no 1:1 mapping of passing data into SChannel and getting data out.
You therefore can't get away with a naive implementation that calls SChannel once to pass data in, and once again to get un/encrypted data. There will potentially be nothing available, or a whole lot of packets to send between the client and the server, before you'll get any application bytes. i.e. You will need some kind of state machine to keeptrack of this.
Obviously, don't write both the client and server at the same time: Start with your client against an https server.
That's the general outline of the process - the things that confused me when I first encountered SSL and why none of the samples were nearly as simple as I had hoped them to be.

Is a TCP socket secure or should I always check the user

I have a C++ app that connects to a nodeJS server through a TCP socket.
On socket 'handshake' the client authenticates itself with a UUID known by the server, the server then associates the account to this recognised UUID
Once a TCP socket is open, the app sends requests and the server answers through the same socket.
Is it necessary to add passphrase to every request to be sure the request comes from the client? Or is a socket supposed to be in place and remain in place?
So should I be sure the client is the client:
Only when opening the socket?
Every time a request is made?
The UUID known to the server is normally called a token. And it can be used for your scenario. However it should never be done unencrypted.
What you need to make sure is the following:
An external party (not one of the 2 members of the communication) should not be able to read the token.
The client should not connect to anything but YOUR server.
This is typically accomplished using TLS. (This is what makes HTTPS secure.)
I suggest you do some research into token-based authentication/authorization and TLS/SSL.
One last advice: do not implement the encryption code yourself but use a well used library that has as a result had a lot of testing and has good maintenance.
No, it's not "secure". Your scheme is susceptible to, just off the top of my head, replay attacks, man-in-the-middle attacks, eavesdropping, subsequent impersonation ...
A socket isn't like an actual physical pipe or tunnel. A socket is just an agreement that data marked with a certain source and destination port pair (these are just numbers) are to be treated as belonging to a particular logical data channel. This is determined by handshake and trust. There is no verification.
What you're specifically asking is whether man-in-the-middle attacks exist. Yes, yes they do.
Will requiring a passphrase be given in each packet fix that problem? No, it won't. It will be trivial to intercept and then replay. You're just giving the man in the middle the passphrase.
This is why people use encryption and other clever security schemes. If you're concerned about message authenticity and integrity, you'll need a basic grounding in communications security principles; providing one is out of the scope of this answer.

0MQ - get message ip

First, I want to give thanks for that amazing lib! I love it. A client is connecting himself to a server. The server should save the IP and do stuff with it later on (I really need the IP). I found that answer: http://lists.zeromq.org/pipermail/zeromq-dev/2010-September/006381.html but I don't understand how I get the IP out of the message (a XREP)... I think I am only able to read the ID, but the IP is managed internally by 0MQ. His second solution suggests to send the IP as part of the message, but I don't understand how to get the "public"-IP. I found that post: Get TCP address information in ZeroMQ
is pass bind a service to an ephemeral port, get a full connection endpoint ("tcp://ipaddress:port")
I don't get how this works. Does he mean something like a web-service?
In my opinion, it would be best to get the IP out of 0MQ (it has the IP already). I would even adjust 0MQ for that, if somebody could point to the place where the IP is saved, couldn't find it. The socket types are not that important, at the moment. I would prefer smth REQ-REP like. Thank you!
Summary:
TL;DR answer to your question is: you can't get IP address of the peer that sent a message, using ZeroMQ API.
Explanation:
ZeroMQ does not expose peer IP address because it is irrelevant for the message based communication that ZeroMQ is designed for. When it is possible for ZeroMQ to get IP address of client that is connecting to server (in example using method described here), it is useless. For a longer explanation here is how it works inside ZeroMQ and any other server implementation.
Server side of the connection does not handle connected clients by the means of the hashtable that maps IP to client, but by keeping track of connected "sockets" (socket descriptors) - when a server accepts (using accept()) a connection, it receives from operating system socket descriptor to use to communicate with connected peer. All server has to do is keep that descriptor around to read() from and write() to that client. Another client that connects to server receives another socket descriptor.
To summarize: even if ZeroMQ would be able to provide you with IP of connected peer, you should not depend on it. ZeroMQ hides from you connection management so you can focus on messaging. Connection management includes reconnections, which may result in a change of IP without changing the actual ZeroMQ socket connected on the other side.
So here's an example of why you might want to get the ip address a message was delivered from: we have a server whose job it is to synchronize updates onto occasionally-connected clients (think mobile devices here, though this is an extreme example of a mobile deivce.)
When the mobile unit comes onto the network, it sends a list of it's firmware files to the server via a dealer-router connection. The server has a list of all applicable firmware files; if the client needs an update it will initiate an update via a separate mechanism.
Since the IPs for the devices can (and do) change, we need to know the IP address associated with the mobile device FOR THIS CONNECTION, i.e. right now.
Yes, we absolutely can have the client send it's IP address in the message, but that's a waste of another n bytes of valuable satellite air time, and while not pure evil, is sure annoying. Zmq already has this information, if it didn't have it, it wouldn't be able to generate replies. The address is in the socket data, there's no reason the message couldn't (optionally, for all you guys who use wired networks and think disconnects are the exception) include a reference to the socket structure so you can get the address out of it. Other than pedantic religiosity, which is far too common in zmq.
The way ZeroMQ is designed there's no information provided on the remote IP. As far as I know you have to manage this through your application by sending that information as a message of some sort.
The messages themselves use an IP-agnostic ID which has more to do with the instance of ZeroMQ running than any particular interface. This is because there may be more than one transport method and interface connecting the two instances.

HTML Forwarding

So I've been playing around with some simple HTML forwarding with c++. Haven't accomplished much and I have some questions on the backbone.
First: Do I need to use any special libraries other than socket libraries to simply forward HTML data and connections?
Second: When a client connects to an HTML server, is the TCP connection kept open? Or is it closed once data is sent?
Third: When I forward data, from a client to the server, the packet includes the destination address. I should technically be able to read this address and connect to the server via port 80, keep it open, and send and receive on that newly opened port right? Is there anything I have to do? Any time constraints? If I directly forward every single packet directly between the client and server the website should show up correctly on the client, correct?
I would prefer to keep any external libs to a minimum. But if necessary I can expand the program to include any required libraries.
So far I've gotten data to and from both parties, however the website does not function.
[platform] :: windows.primary && posix_compliant.secondary
First: No you do not need other special libraries but not using any that are available would to some extent be reinventing the wheel.
Second: No, HTTP is a connectionless protocol.
Third: An HTTP session begins with a request header, which in your case sounds like a POST. A POST may take more than one package, during which time the connection remains open. The server may well time you out.
You might look at libCURL even if you do not intend using it. (The source for that is in C, and is rather monolithic but it is commonly used).
After doing quite a bit of research, the greatest help I've had in my endeavors has been this website.
This one also helped quite a bit.
LibCURL is certainly the way to go. It's kind of dated, and everything is in C, but it's much easier than redoing everything..
quote from second site:
Like most network protocols, HTTP uses the client-server model: An HTTP client opens a connection and sends a request message to an HTTP server; the server then returns a response message, usually containing the resource that was requested. After delivering the response, the server closes the connection (making HTTP a stateless protocol, i.e. not maintaining any connection information between transactions).

Best way to get data from text (char *)

Hey,
I'm sending messages via TCP and UDP from clients to the server while the server written in C++. I'm wondering what would be the best, must secure way to send, for example, if I want to send login data: email, password and IP. What would be the best way to send it in a message ang read the data in the server, while this data is stored in char *.
Thanks.
This doesn't really have anything to do with C++. You are asking a generic question about information security. You want to send information via TCP or UDP that includes sensitive information (email address, password, and IP). For this you need to use cryptography.
Cryptography is a complicated area where you should not try to roll your own protocols unless you know a lot about what you are doing. Instead, you should avoid UDP (because it is VERY hard to do crypto properly over UDP) and simply use SSL over TCP.
To do this from C++ you can use the OpenSSL sockets library. Both the client and the server link with the library. If you want a little help, you can debug using sslwrap, a command-line tool that allows you to use cleartext sockets from your client & server, but have the unencrypted data wrapped inside an SSL TCP connection.
As another poster stated, don't worry about C++; use SSL or TLS. This means you will need to acquire a certificate for the server, and that will cost you between $50 and $1500 dollars if you get a commercial one, or you can make your own from a intranet certificate authority that you establish yourself.
This measure will encrypt the communication, and ensure that your client is actually "talking" to the authentic server, not an imposter. However, if you need the client to also be authenticated, then you will need a second certificate (possibly one per client machine, to be precise). If that is too heavy-weight for your client needs, then consider using HMAC to help determine an authorized client from an imposter.