I understand how to calculate the hypotenuse a^2 + b^2 = c^2,
sqrt(c) = hypotenuse. And I am aware there are some relevant answers already on stackoverflow, but they are immersed in terminology I don't understand(yet) as a beginner programmer.
As this is more programming orientated I haven't been able to find anything relevant on math websites either.
If you have a right angle triangle
* |
7.07 * | 5
* |
* |
*_ _ _ _ _ |
5
How do I increment x and y (x,y) in cartesian format, so that I can draw
in pixels SetPixel(myDC, x, y, COLOUR);
I somehow understand the concept of sin, cos and tan and their inverses, but can not for the life of me figure out how to increment (x,y) together in relation to the size of the adjacent and opposite lengths.
Well they would be incremented relative to each other. So, if the legs of the triangle are of equal length, then the x and y increments should also be equal. Similarly, if one leg is, say, 3 and the other 4, then x and y should be incremented such that for each each x and y increment (x,y), x=4y/3 or y=4x/3.
You can draw the hypotenuse with graphic functions for drawing lines between two points. Otherwise you can calculate the straight line equation passing for two points: y=mx + n and you avoid trigonometry functions.
Related
I am currently looking to implement an algorithm that will be able to compute the arc midpoint. From here on out, I will be referring to the diagram below. What is known are the start and end nodes (A and B respectively), the center (point C) and point P which is the intersection point of the line AB and CM (I am able to find this point without knowing point M because line AB is perpendicular to line CM and thus, the slope is -1/m). I also know the arc angle and the radius of the arc. I am looking to find point M.
I have been looking at different sources. Some suggest converting coordinates to polar, computing the mid point from the polar coordinates then reverting back to Cartesian. This involves sin and cos (and arctan) which I am a little reluctant to do since trig functions take computing time.
I have been looking to directly computing point M by treating the arc as a circle and having Line CP as a line that intersects the circle at Point M. I would then get two values and the value closest to point P would be the correct intersection point. However, this method, the algebra becomes long and complex. Then I would need to create special cases for when P = C and for when the line AB is horizontal and vertical. This method is ok but I am wondering if there are any better methods out there that can compute this point that are simpler?
Also, as a side note, I will be creating this algorithm in C++.
A circumference in polar form is expressed by
x = Cx + R cos(alpha)
y = Cy + R sin(alpha)
Where alpha is the angle from center C to point x,y. The goal now is how to get alpha without trigonometry.
The arc-midpoint M, the point S in the middle of the segment AB, and your already-calculated point P, all of them have the same alpha, they are on the same line from C.
Let's get vector vx,vy as C to S. Also calculate its length:
vx = Sx - Cx = (Ax + Bx)/2 - Cx
vy = Sy - Cy = (Ay + By)/2 - Cy
leV = sqrt(vx * vx + vy * vy)
I prefer S to P because we can avoid some issues like infinite CP slope or sign to apply to slope (towards M or its inverse).
By defintions of sin and cos we know that:
sin(alpha) = vy / leV
cos(alpha) = vx / leV
and finally we get
Mx = Cx + R * vx / leV
My = Cy + R * vy / leV
Note: To calculate Ryou need another sqrt function, which is not quick, but it's faster than sin or cos.
For better accuracy use the average of Ra= dist(AC) and Rb= dist(BC)
I would then get two values
This is algebraically unavoidable.
and the value closest to point P would be the correct intersection point.
Only if the arc covers less than 180°.
Then I would need to create special cases for when P = C
This is indeed the most tricky case. If A, B, C lie on a line, you don't know which arc is the arc, and won't be able to answer the question. Unless you have some additional information to start with, e.g. know that the arc goes from A to B in a counter-clockwise direction. In this case, you know the orientation of the triangle ABM and can use that to decide which solition to pick, instead of using the distance.
and for when the line AB is horizontal and vertical
Express a line as ax + by + c = 0 and you can treat all slopes the same. THese are homogeneous coordinates of the line, you can compute them e.g. using the cross product (a, b, c) = (Ax, Ay, 1) × (Bx, By, 1). But more detailed questions on how best to compute these lines or intersect it with the circle should probably go to the Math Stack Exchange.
if there are any better methods out there that can compute this point that are simpler?
Projective geometry and homogeneous coordinates can avoid a lot of nasty corner cases, like circles of infinite radius (also known as lines) or the intersection of parallel lines. But the problem of deciding between two solutions remains, so it probably doesn't make things as simple as you'd like them to be.
Ok.... so I made a quick diagram to sorta explain what I'm hoping to accomplish. Sadly math is not my forte and I'm hoping one of you wizards can give me the correct formulas :) This is for a c++ program, but really I'm looking for the formulas rather than c++ code.
Ok, now basically, the red circle is our 0,0 point, where I'm standing. The blue circle is 300 units above us and at what I would assume is a 0 degree's angle. I want to know, how I can find a find the x,y for a point in this chart using the angle of my choice as well as a certain distance of my choice.
I would want to know how to find the x,y of the green circle which is lets say 225 degrees and 500 units away.
So I assume I have to figure out a way to transpose a circle that is 500 units away from 0,0 at all points than pick a place on that circle based on the angle I want? But yeah no idea where to go from there.
A point on a plane can be expressed in two main mathematical representations, cartesian (thus x,y) and polar : using a distance from the center and an angle. Typically r and a greek letter, but let's use w.
Definitions
Under common conventions, r is the distance from the center (0,0) to your point, and
angles are measured going counterclockwise (for positive values, clockwise for negative), with the 0 being the horizontal on the right hand side.
Remarks
Note a few things about angles in polar representations :
angles can be expressed with radians as well, with π being the same angle as 180°, thus π/2 90° and so on. π=3.14 (approx.) is defined by 2π=the perimeter of a circle of radius 1.
angles can be represented modulo a full circle. A full circle is either 2π or 360°, thus +90° is the same as -270°, and +180° and -180° are the same, as well as 3π/4 and -5π/4, 2π and 0, 360° and 0°, etc. You can consider angles between [-π,π] (that is [-180,180]) or [0,2π] (i.e. [0,360]), or not restrain them at all, it doesn't matter.
when your point is in the center (r=0) then the angle w is not really defined.
r is by definition always positive. If r is negative, you can change its sign and add half a turn (π or 180°) to get coordinates for the same point.
Points on your graph
red : x=0, y=0 or r=0 w= any value
blue : x=0, y=300 or r=300 and w=90°
green : x=-400, y=-400 or r=-565 and w=225° (approximate values, I didn't do the actual measurements)
Note that for the blue point you can have w=-270°, and for the green w=-135°, etc.
Going from one representation to the other
Finally, you need trigonometry formulas to go back and forth between representations. The easier transformation is from polar to cartesian :
x=r*cos(w)
y=r*sin(w)
Since cos²+sin²=1, pythagoras, and so on, you can see that x² + y² = r²cos²(w) + r²sin²(w) = r², thus to get r, use :
r=sqrt(x²+y²)
And finally to get the angle, we use cos/sin = tan where tan is another trigonometry function. From y/x = r sin(w) / (r cos(w)) = tan(w), you get :
w = arctan(y/x) [mod π]
tan is a function modulo π, instead of 2π. arctan simply means the inverse of the function tan, and is sometimes written tan^-1 or atan.
By inverting the tangent, you get a result betweeen -π/2 and π/2 (or -90° and 90°) : you need to eventually add π to your result. This is done for angles between [π/2,π] and [-π,π/2] ([90,180] and [-180,-90]). These values are caracterized by the sign of the cos : since x = r cos(w) you know x is negative on all these angles. Try looking where these angles are on your graph, it's really straightforward. Thus :
w = arctan(y/x) + (π if x < 0)
Finally, you can not divide by x if it is 0. In that corner case, you have
if y > 0, w = π/2
if y < 0, w = -π/2
What is seems is that given polar coordinates, you want to obtain Cartesian coordinates from this. It's some simple mathematics and should be easy to do.
to convert polar(r, O) coordinates to cartesian(x, y) coordinates
x = r * cos(O)
y = r * sin(O)
where O is theta, not zero
reference: http://www.mathsisfun.com/polar-cartesian-coordinates.html
I know perspective division is done by dividing x,y, and z by w, to get normalized device coordinates. But I am not able to understand the purpose of doing that. Also, does it have anything to do with clipping?
Some details that complement the general answers:
The idea is to project a point (x,y,z) on screen to have (xs,ys,d).
The next figure shows this for the y coordinate.
We know from school that
tan(alpha) = ys / d = y / z
This means that the projection is computed as
ys = d*y/z = y /w
w = z / d
This is enough to apply a projection.
However in OpenGL, you want (xs,ys,zs) to be normalized device coordinates in [-1,1] and yes this has something to do with clipping.
The extrema values for (xs,ys,zs) represent the unit cube and everything outside it will be clipped.
So a projection matrix usually takes into consideration the clipping limits (Frustum) to make a single transformation that, with the perspective division, simultaneously apply a projection and transform the projected coordinates along with the z to normalized device coordinates.
I mean why do we need that?
In layman terms: To make perspective distortion work. In a perspective projection matrix, the Z coordinate gets "mixed" into the W output component. So the smaller the value of the Z coordinate, i.e. the closer to the origin, the more things get scaled up, i.e. bigger on screen.
To really distill it to the basic concept, and why the op is division (instead of e.g. square root or some such), consider that an object twice as far should appear with dimensions exactly one half as large. Obtain 1/2 from 2 by... division.
There are many geometric ways to arrive at the same conclusion. A diagram serves as visual proof for this, really.
Dividing x, y, z by w is a "trick" you do with "homogeneous coordinates". To convert a R⁴ vector back to R³ by dividing by the 4th component (or w component as you said). A process called dehomogenizing.
Why you use homogeneous coordinate? That topic is a little bit more involved, I try to explain. I hope I do it justice.
However I will use the x1, x2, x3, x4 as the components of a vector instead of x, y, z, w:
Consider a 3x3 Matrix M and column vectors x, a, b, c of R³. x=(x1, x2, x3) and x1,x2,x3 being scalars or components of x.
With the 3x3 Matrix can do all linear transformations on a vector x you could do with the linear combination:
x' = x1*a + x2*b + x3*c (1).
(x' is the transformed vector that holds the result of transforming x).
Khan Academy on his Course Linear Algebra has a section explaining the fact that every linear transformation can be written as a matrix product with a vector.
You can try this out for example by putting the column vectors a, b, c in the columns of the Matrix M = [ a b c ].
So with the matrix product you essentially get the upper linear combination:
x' = M * x = [a b c] * x = a*x1 + b*x2 + c*x3 (2).
However this operation only accounts for rotation, scaling and shearing transformations. The origin (0, 0, 0) will always stay at (0, 0, 0).
For this you need another kind of transformation named "translation" (moving a vector or adding a vector to the vector).
Consider the translation column vector t = (t1, t2, t3) and the linear combination
x' = x1*a + x2*b + x3*c + t (3).
With this linear combination you can translate, rotate, scale and shear a vector. As you can see this Linear Combination does actually move the origin vector (0, 0, 0) to (0+t1, 0+t2, 0+t3).
However you can't put this translation into a 3x3 Matrix.
So what Graphics Programmers or Mathematicians came up with is adding another dimension to the Matrix and Vectors like this:
M is 4x4 Matrix, x~ vector in R⁴ with x~=(x1, x2, x3, x4). a, b, c, t also being column vectors of R⁴ (last components of a,b,c being 0 and last component for t being 1 - I keep the names the same to later show the similarity between homogeneous linear combination and (3) ). x~ is the homogeneous coordinate of x.
Now watch what happens if we take a vector x of R³ and put it into x~ of R⁴.
This vector will be in homogeneous coordinates in R⁴ x~=(x1, x2, x3, 1). The last component simply being 1 if it is a point and 0 if it's simply a direction (which couldn't be translated anyway).
So you have the linear combination:
x~' = M * x = [a b c t] * x = x1*a + x2*b + x3*c + x4*t (4).
(x~' is the result vector when transforming the homogeneous vector x~)
Since we took a vector from R³ and put it into R⁴ our x4 component is 1 we have:
x~' = x1*a + x2*b + x3*c + 1*t
<=> x~' = x1*a + x2*b + x3*c + t (5).
which is exactly the upper linear transformation (3) with the translation t. This is called an affine transformation (linear transf. + translation).
So with a 3x3 Matrix and a vector of R³ you couldn't do translations. However adding another dimension having a vector in R⁴ and a Matrix in R^4x4 you actually can do it.
However when you want to return to R³ you have to divide the first components with the last one. This is called "dehomogenizing". Which is the the x4 component or in your variable naming the w-component. So x is the original coordinate in R³. Be x~ in R⁴ and the homogenized vector of x. And x' in R³ of x~.
x' = (x1/x4, x2/x4, x3/x4) (6).
Then x' is the dehomogenized vector of the vector x~.
Coming back to perspective division:
(I will leave it out, because many here have explained the divide by z already. It's because of the relationship of a right triangle, being similar which leads you to simplify that with a given focal length f a z values with y coordinate lands at y' = f*y/z. Also since you stated [I hope I didn't misread that you already know why this is done I simply leave a link to a YT-Video here, I find it very well explained on the course lecture CMU 15-462/662 ).
When dehomogenizing the division by the w-component is a pretty handy property when returning to R³. When you apply homogeneous perspective Matrix of 4x4 on a vector you simply put the z component into the w component and let the dehomogenizing process (as in (6) ) perform the perspective divide. So you can setup the w-Component in a way that the division by w divides by z and also maps the values from 0 to 1 (basically you put the range of z-near to z-far values into a range floating points are precise at).
This is also described by Ravi Ramamoorthi in his Course CSE167 when he explains how to set up the perspective projection matrix.
I hope this helped to understand the rational of putting z into the w component. Sorry for my horrible formatting and lengthy text. Yet I hope it helped more than it confused.
Best of luck!
Actually, via standard notational convention from a 4x4 perspective matrix with sightline along a 'z' direction, 'w' differs by 1 from the distance ratio. Also that ratio, though interpreted correctly, is normally expressed as -z/d where 'z' is negative (therefore producing the correct ratio) because, again, in common notational convention, the camera is looking in the negative 'z' direction.
The reason for the offset by 1 needs to be explained. Many references put the origin at the image plane rather than the center of projection. With that convention (again with the camera looking along the negative 'z' direction) the distance labeled 'z' in the similar triangles diagram is thereby replaced by (d-z). Then substituting that for 'z' the expression for 'w' becomes, instead of 'z/d', (d-z)/d = [1-z/d]. To some these conventions may seem unorthodox but they are quite popular among analysts.
This is quite complicated to explain, so I will do my best, sorry if there is anything I missed out, let me know and I will rectify it.
My question is, I have been tasked to draw this shape,
(source: learnersdictionary.com)
This is to be done using C++ to write code that will calculate the points on this shape.
Important details.
User Input - Centre Point (X, Y), number of points to be shown, Font Size (influences radius)
Output - List of co-ordinates on the shape.
The overall aim once I have the points is to put them into a graph on Excel and it will hopefully draw it for me, at the user inputted size!
I know that the maximum Radius is 165mm and the minimum is 35mm. I have decided that my base Font Size shall be 20. I then did some thinking and came up with the equation.
Radius = (Chosen Font Size/20)*130. This is just an estimation, I realise it probably not right, but I thought it could work at least as a template.
I then decided that I should create two different circles, with two different centre points, then link them together to create the shape. I thought that the INSIDE line will have to have a larger Radius and a centre point further along the X-Axis (Y staying constant), as then it could cut into the outside line.
So I defined 2nd Centre point as (X+4, Y). (Again, just estimation, thought it doesn't really matter how far apart they are).
I then decided Radius 2 = (Chosen Font Size/20)*165 (max radius)
So, I have my 2 Radii, and two centre points.
Now to calculate the points on the circles, I am really struggling. I decided the best way to do it would be to create an increment (here is template)
for(int i=0; i<=n; i++) //where 'n' is users chosen number of points
{
//Equation for X point
//Equation for Y Point
cout<<"("<<X<<","<<Y<<")"<<endl;
}
Now, for the life of me, I cannot figure out an equation to calculate the points. I have found equations that involve angles, but as I do not have any, I'm struggling.
I am, in essence, trying to calculate Point 'P' here, except all the way round the circle.
(source: tutorvista.com)
Another point I am thinking may be a problem is imposing limits on the values calculated to only display the values that are on the shape.? Not sure how to chose limits exactly other than to make the outside line a full Half Circle so I have a maximum radius?
So. Does anyone have any hints/tips/links they can share with me on how to proceed exactly?
Thanks again, any problems with the question, sorry will do my best to rectify if you let me know.
Cheers
UPDATE;
R1 = (Font/20)*130;
R2 = (Font/20)*165;
for(X1=0; X1<=n; X1++)
{
Y1 = ((2*Y)+(pow(((4*((pow((X1-X), 2)))+(pow(R1, 2)))), 0.5)))/2;
Y2 = ((2*Y)-(pow(((4*((pow((X1-X), 2)))+(pow(R1, 2)))), 0.5)))/2;
cout<<"("<<X1<<","<<Y1<<")";
cout<<"("<<X1<<","<<Y2<<")";
}
Opinion?
As per Code-Guru's comments on the question, the inner circle looks more like a half circle than the outer. Use the equation in Code-Guru's answer to calculate the points for the inner circle. Then, have a look at this question for how to calculate the radius of a circle which intersects your circle, given the distance (which you can set arbitrarily) and the points of intersection (which you know, because it's a half circle). From this you can draw the outer arc for any given distance, and all you need to do is vary the distance until you produce a shape that you're happy with.
This question may help you to apply Code-Guru's equation.
The equation of a circle is
(x - h)^2 + (y - k)^2 = r^2
With a little bit of algebra, you can iterate x over the range from h to h+r incrementing by some appropriate delta and calculate the two corresponding values of y. This will draw a complete circle.
The next step is to find the x-coordinate for the intersection of the two circles (assuming that the moon shape is defined by two appropriate circles). Again, some algebra and a pencil and paper will help.
More details:
To draw a circle without using polar coordinates and trig, you can do something like this:
for x in h-r to h+r increment by delta
calculate both y coordinates
To calculate the y-coordinates, you need to solve the equation of a circle for y. The easiest way to do this is to transform it into a quadratic equation of the form A*y^2+B*y+C=0 and use the quadratic equation:
(x - h)^2 + (y - k)^2 = r^2
(x - h)^2 + (y - k)^2 - r^2 = 0
(y^2 - 2*k*y + k^2) + (x - h)^2 - r^2 = 0
y^2 - 2*k*y + (k^2 + (x - h)^2 - r^2) = 0
So we have
A = 1
B = -2*k
C = k^2 + (x - h)^2 - r^2
Now plug these into the quadratic equation and chug out the two y-values for each x value in the for loop. (Most likely, you will want to do the calculations in a separate function -- or functions.)
As you can see this is pretty messy. Doing this with trigonometry and angles will be much cleaner.
More thoughts:
Even though there are no angles in the user input described in the question, there is no intrinsic reason why you cannot use them during calculations (unless you have a specific requirement otherwise, say because your teacher told you not to). With that said, using polar coordinates makes this much easier. For a complete circle you can do something like this:
for theta = 0 to 2*PI increment by delta
x = r * cos(theta)
y = r * sin(theta)
To draw an arc, rather than a full circle, you simply change the limits for theta in the for loop. For example, the left-half of the circle goes from PI/2 to 3*PI/2.
I'm not very good at math or geometry, but I want to draw some line segments at increasing angles. What I want to draw is something like when you hold your hand up and spread your fingers apart: lines that start at a common point and expand out at angles that have an equal difference between them.
I have tried this:
len = 300;
angle = 10;
for (i = 0; i <= 5; ++i) {
endPointX = 50 + len * Math.cos(angle);
endPointY = 50 + len * Math.tan(angle);
draw.Line(50, 50, endPointX, endPointY);
angle += 10;
}
However, that's totally wrong and produces something like this
http://i.stack.imgur.com/taX40.png
But I want something like this (bad mspaint, sorry):
http://i.stack.imgur.com/8xfpp.png
What's the right math for this?
There are two separate issues in your question, I will cover each.
Here's an ASCII picture of your situation:
B
+
/|
/ |
/ |
/ |
len / | y
/ |
/ |
/ |
/ __|
/ θ | |
+----------+
A x C
This is a right triangle. It has three sides:
The diagonal side in the picture opposite to the 90° angle is called the hypotenuse and has a length len. The hypotenuse is what you're trying to draw.
The vertical side is the side opposite to the angle θ and has a length y.
The horizontal side is the side adjacent to the angle θ and has a length x.
Given the above illustration the following equations are true:
cos(θ) = x/len
sin(θ) = y/len
These equations are another way of saying:
The cosine of an angle is equal to the length of the adjacent side divided by the length of the hypotenuse.
The sine of an angle is equal to the length of the opposite side divided by the length of the hypotenuse.
When solving the equation for x and y, you get:
x = len * cos(θ)
y = len * sin(θ)
So you want sin() and cos(), not cos() and tan(). If the point A is not at the origin, you would need to offset x and y by addition, like so:
x = len * cos(θ) + 50
y = len * sin(θ) + 50
With the values for x and y, you can find the coordinates for point B on the triangle, and thus be able to draw your lines.
Also, assuming you're programming in Java, the trigonometric functions in the Math class expect the angle in radians, not degrees. Lots of programming languages that provides trigonometric functions are like this.
Radians and degrees measure the same thing, but a complete rotation in degrees goes from 0 to 360° while a complete rotation in radians go from 0 to 2π.
To convert angles in degrees to radians, multiply the angle by π/180. In Java, the constant π is provided by Math.PI.
For example, an angle of 10° degrees is equivalent to 10 * π/180, or π/18 radians.
Firstly, you want cos and sin, not cos and tan.
Secondly, most maths libraries perform trigonometric functions in radians, not degrees. So 10 is a very large difference indeed! To convert from degrees to radians, multiply by (pi/180).
You shouldn't be using tan, but sin. If I remember correctly, it should be something like:
Math.cos(angle/180);
-Math.sin(angle/180);
The negative on sin is important.
The reason you are getting uneven looking angles is that every time you add 10 you're actually spinning the line around the circle 1.6 times.
The math functions expect angles to be in radians, not degrees.
360 degrees = 2*Math.PI radians.
Instead of 10, write "2*Math.PI/36.0"
Also, use sin instead of tan.