How Can I demonstrate this grammar is not ambiguous? - regex

I know I need to show that there is no string that I can get using only left most operation that will lead to two different parsing trees. But how can I do it? I know there is not a simple way of doing it, but since this exercise is on the compilers Dragon book, then I am pretty sure there is a way of showing (no need to be a formal proof, just justfy why) it.
The Gramar is:
S-> SS* | SS+ | a
What this grammar represents is another way of simple arithmetic(I do not remember the name if this technique of anyone knows, please tell me ) : normal sum arithmetic has the form a+a, and this just represents another way of summing and multiplying. So aa+ also mean a+a, aaa*+ is a*a+a and so on

The easiest way to prove that a CFG is unambiguous is to construct an unambiguous parser. If the grammar is LR(k) or LL(k) and you know the value of k, then that is straightforward.
This particular grammar is LR(0), so the parser construction is almost trivial; you should be able to do it on a single sheet of paper (which is worth doing before you try to look up the answer.
The intuition is simple: every production ends with a different terminal symbol, and those terminal symbols appear nowhere else in the grammar. So when you read a symbol, you know precisely which production to use to reduce; there is only one which can apply, and there is no left-hand side you can shift into.
If you invert the grammar to produce Polish (or Łukasiewicz) notation, then you get a trivial LL grammar. Again the parsing algorithm is obvious, since every right hand side starts with a unique terminal, so there is only one prediction which can be made:
S → * S S | + S S | a
So that's also unambiguous. But the infix grammar is ambiguous:
S → S * S | S + S | a
The easiest way to provide ambiguity is to find a sentence which has two parses; one such sentence in this case is:
a + a + a

I think the example string aa actually shows what you need. Can it not be parsed as:
S => SS* => aa OR S => SS+ => aa

Related

Haskell check if the regular expression r made up of the single symbol alphabet Σ = {a} defines language L(r) = a*

I have got to write an algorithm programatically using haskell. The program takes a regular expression r made up of the unary alphabet Σ = {a} and check if the regular expression r defines the language L(r) = a^* (Kleene star). I am looking for any kind of tip. I know that I can translate any regular expression to the corresponding NFA then to the DFA and at the very end minimize DFA then compare, but is there any other way to achieve my goal? I am asking because it is clearly said that this is the unary alphabet, so I suppose that I have to use this information somehow to make this exercise much easier.
This is how my regular expression data type looks like
data Reg = Epsilon | -- epsilon regex
Literal Char | -- a
Or Reg Reg | -- (a|a)
Then Reg Reg | -- (aa)
Star Reg -- (a)*
deriving Eq
Yes, there is another way. Every DFA for regular languages on the single-letter alphabet is a "lollipop"1: an initial string of nodes that each point to each other (some of which are marked as final and some not) followed by a loop of nodes (again, some of which are marked as final and some not). So instead of doing a full compilation pass, you can go directly to a DFA, where you simply store two [Bool] saying which nodes in the lead-in and in the loop are marked final (or perhaps two [Integer] giving the indices and two Integer giving the lengths may be easier, depending on your implementation plans). You don't need to ensure the compiled version is minimal; it's easy enough to check that all the Bools are True. The base cases for Epsilon and Literal are pretty straightforward, and with a bit of work and thought you should be able to work out how to implement the combining functions for "or", "then", and "star" (hint: think about gcd's and stuff).
1 You should try to prove this before you begin implementing, so you can be sure you believe me.
Edit 1: Hm, while on my afternoon walk today, I realized the idea I had in mind for "then" (and therefore "star") doesn't work. I'm not giving up on this idea (and deleting this answer) yet, but those operations may be trickier than I gave them credit for at first. This approach definitely isn't for the faint of heart!
Edit 2: Okay, I believe now that I have access to pencil and paper I've worked out how to do concatenation and iteration. Iteration is actually easier than concatenation. I'll give a hint for each -- though I have no idea whether the hint is a good one or not!
Suppose your two lollipops have a length m lead-in and a length n loop for the first one, and m'/n' for the second one. Then:
For iteration of the first lollipop, there's a fairly mechanical/simple way to produce a lollipop with a 2*m + 2*n-long lead-in and n-long loop.
For concatenation, you can produce a lollipop with m + n + m' + lcm(n, n')-long lead-in and n-long loop (yes, that short!).

Rules & Actions for Parser Generator, and

I am trying to wrap my head around an assignment question, therefore I would very highly appreciate any help in the right direction (and not necessarily a complete answer). I am being asked to write the grammar specification for this parser. The specification for the grammar that I must implement can be found here:
http://anoopsarkar.github.io/compilers-class/decafspec.html
Although the documentation is there, I do not understand a few things, such as how to write (in my .y file) things such as
{ identifier },+
I understand that this would mean a comma-separated list of 1 (or more) occurrences of an identifier, however when I write it as such, the compiler displays an error of unrecognized symbols '+' and ',', being mistaken as whitespace. I tried '{' identifier "},+", but I haven't the slightest clue whether that is correct or not.
I have written the lexical analyzer portion (as it was from the previous segment of the assignment) which returns tokens (T_ID, T_PLUS, etc.) accordingly, however there is this new notion that I must assign 'yylval' to be the value of the token itself. To my understanding, this is only necessary if I am in need of the actual value of the token, therefore I would need the value of an identifier token T_ID, but not necessarily the value of T_PLUS, being '+'. This is done by creating a %union in the parser generator file, which I have done, and have provided the tokens that I currently believe would require the literal token value with the proper yylval assignment.
Here is my lexical analysis code (I could not get it to format properly, I apologize): https://pastebin.com/XMZwvWCK
Here is my parser file decafast.y: https://pastebin.com/2jvaBFQh
And here is the final piece of code supplied to me, the C++ code to build an abstract syntax tree at the end:
https://pastebin.com/ELy53VrW?fbclid=IwAR2cFT_-pGKlVZ2liC-zAe3Fw0BWDlGjrrayqEGV4JuJq1_7nKoe9-TLTlA
To finalize my question, I do not know if I am creating my grammar rules correctly. I have tried my best to follow the specification in the above website, but I can't help but feel that what I am writing is completely wrong. My compiler is spitting out nothing but "warning: rule useless in grammar" for almost every (if not every) rule.
If anyone could help me out and point me in the right direction on how to make any progress, I would highly, highly appreciate it.
The decaf specification is written in (an) Extended Backus Naur Form (EBNF), which includes a number of convenience operators for repetition, optionality and grouping. These are not part of the bison/yacc syntax, which is pretty well limited to BNF. (Bison/yacc do allow the alternation operator |, but since there is no way to group subpatterns, alteration can only be used at the top-level, to combine two productions for the same non-terminal.)
The short section at the beginning of the specification which describes EBNF includes a grammar for the particular variety of EBNF that is being used. (Since this grammar is itself recursively written in the same EBNF, there is a need to apply a bit of inductive reasoning.) When it says, for example,
CommaList = "{" Expression "}+," .
it is not saying that "}+," is the peculiar spelling of a comma-repetition operator. What it is saying is that when you see something in the Decaf grammar surrounded by { and }+,, that should be interpreted as describing a comma-separated list.
For example, the Decaf grammar includes:
FieldDecl = var { identifier }+, Type ";" .
That means that a FieldDecl can be (amongst other possibilities) the token var followed by a comma-separated list of identifier tokens and then followed by a Type and finally a semicolon.
As I said, bison/yacc don't implement the EBNF operators, so you have to find an equivalent yourself. Since BNF doesn't allow any form of grouping -- and a list is a grouped subexpression -- we need to rewrite the subexpression of a production as a new non-terminal. Also, I suppose we need to use the tokens defined in spec (although bison allows a more readable syntax).
So to yacc-ify this EBNF production, we first introducing the new non-terminal and replace the token names:
FieldDecl: T_VAR IdentifierList Type T_SEMICOLON
Which leaves the definition of IdentifierList. Repetition in BNF is always produced with recursion, following a very simple model which uses two productions:
the base, which is the simplest possible repetition (usually either nothing or a single list item), and
the recursion, which describes a longer possibility by extending a shorter one.
In this case, the list must have at least one item, and we extend by adding a comma and another item:
IdentifierList
: T_ID /* base case */
| IdentifierList T_COMMA T_ID /* Recursive extension */
The point of this exercise is to develop your skills in thinking grammatically: that is, factoring out the syntax and semantics of the language. So you should try to understand the grammars presented, both for Decaf and for the author's version of EBNF, and avoid blindly copying code (including grammars). Good luck!

boost::spirit::qi difference parser behavior

I'm trying to understand the behavior of Qi's Difference Parsers.
With something like this:
ruleA =
ruleAa
| ruleAb
| ruleAc
;
ruleB =
ruleA - ruleAc
;
I was imagining that the parser would match ruleB iff the input matches ruleAa or ruleAb. In other words, ruleB would subtract one alternative (ruleAc) from ruleA. Is this incorrect?
In my code, I'm doing something like the above and it compiles but does not seem to behave as I expected. My actual use-case involves other factors that are hard to unwind here.
In essence, what I'm trying to do is this:
I have a rule like ruleA, which contains a set of alternatives.
This rule gets used in a few different places in my grammar. But in one particular use, I need to avoid evoking just one of the alternatives. It seems like the difference parser is intended for that purpose, but maybe I'm misunderstanding?
Thanks in advance!
I was imagining that the parser would match ruleB iff the input matches ruleAa or ruleAb. In other words, ruleB would subtract one alternative (ruleAc) from ruleA. Is this incorrect?
(A|B|C) - C is only equivalent to (A|B) iff C never matches anything that (A|B) would match.
A a simple example, assume:
A = int_;
B = +space;
C = char_;
Because C always matches where A or B would match, it is clear that doing (A|B) - C always results in no match. Same for (A|B|C)-C.
In short any A or B that also matches C no longer matches with something - C.
This rule gets used in a few different places in my grammar. But in one particular use, I need to avoid evoking just one of the alternatives. It seems like the difference parser is intended for that purpose
As you've seen above, this is not the case. The difference parser doesn't /modify/ the left-hand-side parser at all. (It just discards some matches independent of the left-hand-side).
The best thing I can think of is to /just use/ (A|B) in one place, and (A|B|C) in the other. It's really that simple: Say What You Mean.

How to implement a computer language translator using two separate grammars

I want to create a computer language translator between two languages LANG1 and LANG2. More specifically, I want to translate code written in LANG1 into source code in LANG2.
I have the BNF Grammar for both LANG1 and LANG2.
LANG1 is a small DSL I wrote by myself, and is essentially, an "easier" version of LANG2.
I want to be able to generate statements in LANG2, from input statements written in LANG1.
I am in the process of compiling a compiler for LANG1, but I don't know what to do next (in order to translate LANG1 statements to LANG2 statements).
My understanding of the steps involved are as follows:
1. BNF for my DSL (LANG1) DONE
2. Reverse engineered the BNF for LANG2 DONE
3. Learning how to generate a compiler for LANG1 TODO
4. Translate LANG1 statements to LANG2 statements ???
What are the steps involved in order to generate LANG2 statements from LANG1 statements?
My code base is in C++, so I can use Parser generated in either C or C++.
PS: I will be using ANTLR3 to generate the compiler for LANG1
In the most general case you have to translate each possible section of the grammar from LANG1 into something appropriate for LANG2, or you have to dumb down into the simplest possible primitives of both languages, like assembly or combinators. This is a little time consuming and not very fun.
However, if the grammars are equivalent or share a lot of common ground, you might just be able to get away with just parsing into the same tree for both grammars and having output functions that can take your standardized tree and convert it back into LANG1 or LANG2 source (which is mostly the same as the general case but takes a lot more short cuts).
EDIT: Since I've just reread your question realized that you only want to translate one way, you need only worry about making the form of the tree suit LANG1 and just have your translate function for LANG2. But I hope my example is helpful anyway.
Example Tree construction:
Here are two different ANTLR grammars that produce the same extremely simple AST:
Grammar 1
The first one is the standard way of expressing addition:
grammar simpleAdd;
options {output=AST;}
tokens {
PLUS = '+';
}
expression : addition EOF!;
addition : NUMBER (PLUS NUMBER)+ -> ^(PLUS NUMBER*);
NUMBER :'0'..'9'+;
WHITESPACE : ( '\t' | ' ' | '\r' | '\n')+ { $channel = HIDDEN; } ;
This will accept two or more integers and produce a tree with a PLUS node and all the numbers in a list to be added together. E.g.,
1 + 1 + 2 + 3 + 5
Grammar 2
The second grammar takes a less elegant form:
grammar horribleAdd;
options {output=AST;}
tokens {
PLUS = '+';
PLUS_FUNC = 'plus';
COMMA = ',';
LEFT_PARENS ='(';
RIGHT_PARENS=')';
}
expression : addition EOF!;
addition : PLUS_FUNC LEFT_PARENS NUMBER (COMMA NUMBER)+ RIGHT_PARENS -> ^(PLUS NUMBER*);
NUMBER :'0'..'9'+;
WHITESPACE : ( '\t' | ' ' | '\r' | '\n')+ { $channel = HIDDEN; } ;
This grammar expects numbers given to a function (yes, I know functions don't really work like this, I'm just trying to keep the example as clear as possible). E.g.,
plus(1, 1, 2, 3, 5)
It produces exactly the same tree as the first grammar (a PLUS node with the numbers as children).
Now you don't need to worry what language your instructions came from, you can output it in whatever form you like. All you need to do is write a function that can convert this AST back into a language of your choosing.

Is D's grammar really context-free?

I've posted this on the D newsgroup some months ago, but for some reason, the answer never really convinced me, so I thought I'd ask it here.
The grammar of D is apparently context-free.
The grammar of C++, however, isn't (even without macros). (Please read this carefully!)
Now granted, I know nothing (officially) about compilers, lexers, and parsers. All I know is from what I've learned on the web.
And here is what (I believe) I have understood regarding context, in not-so-technical lingo:
The grammar of a language is context-free if and only if you can always understand the meaning (though not necessarily the exact behavior) of a given piece of its code without needing to "look" anywhere else.
Or, in even less rigor:
The grammar cannot be context-free if I need I can't tell the type of an expression just by looking at it.
So, for example, C++ fails the context-free test because the meaning of confusing<sizeof(x)>::q < 3 > (2) depends on the value of q.
So far, so good.
Now my question is: Can the same thing be said of D?
In D, hashtables can be created through a Value[Key] declaration, for example
int[string] peoplesAges; // Maps names to ages
Static arrays can be defined in a similar syntax:
int[3] ages; // Array of 3 elements
And templates can be used to make them confusing:
template Test1(T...)
{
alias int[T[0]] Test;
}
template Test2(U...)
{
alias int[U] Test2; // LGTM
}
Test1!(5) foo;
Test1!(int) bar;
Test2!(int) baz; // Guess what? It's invalid code.
This means that I cannot tell the meaning of T[0] or U just by looking at it (i.e. it could be a number, it could be a data type, or it could be a tuple of God-knows-what). I can't even tell if the expression is grammatically valid (since int[U] certainly isn't -- you can't have a hashtable with tuples as keys or values).
Any parsing tree that I attempt to make for Test would fail to make any sense (since it would need to know whether the node contains a data type versus a literal or an identifier) unless it delays the result until the value of T is known (making it context-dependent).
Given this, is D actually context-free, or am I misunderstanding the concept?
Why/why not?
Update:
I just thought I'd comment: It's really interesting to see the answers, since:
Some answers claim that C++ and D can't be context-free
Some answers claim that C++ and D are both context-free
Some answers support the claim that C++ is context-sensitive while D isn't
No one has yet claimed that C++ is context-free while D is context-sensitive :-)
I can't tell if I'm learning or getting more confused, but either way, I'm kind of glad I asked this... thanks for taking the time to answer, everyone!
Being context free is first a property of generative grammars. It means that what a non-terminal can generate will not depend on the context in which the non-terminal appears (in non context-free generative grammar, the very notion of "string generated by a given non-terminal" is in general difficult to define). This doesn't prevent the same string of symbols to be generated by two non-terminals (so for the same strings of symbols to appear in two different contexts with a different meaning) and has nothing to do with type checking.
It is common to extend the context-free definition from grammars to language by stating that a language is context-free if there is at least one context free grammar describing it.
In practice, no programming language is context-free because things like "a variable must be declared before it is used" can't be checked by a context-free grammar (they can be checked by some other kinds of grammars). This isn't bad, in practice the rules to be checked are divided in two: those you want to check with the grammar and those you check in a semantic pass (and this division also allows for better error reporting and recovery, so you sometimes want to accept more in the grammar than what would be possible in order to give your users better diagnostics).
What people mean by stating that C++ isn't context-free is that doing this division isn't possible in a convenient way (with convenient including as criteria "follows nearly the official language description" and "my parser generator tool support that kind of division"; allowing the grammar to be ambiguous and the ambiguity to be resolved by the semantic check is an relatively easy way to do the cut for C++ and follow quite will the C++ standard, but it is inconvenient when you are relying on tools which don't allow ambiguous grammars, when you have such tools, it is convenient).
I don't know enough about D to know if there is or not a convenient cut of the language rules in a context-free grammar with semantic checks, but what you show is far from proving the case there isn't.
The property of being context free is a very formal concept; you can find a definition here. Note that it applies to grammars: a language is said to be context free if there is at least one context free grammar that recognizes it. Note that there may be other grammars, possibly non context free, that recognize the same language.
Basically what it means is that the definition of a language element cannot change according to which elements surround it. By language elements I mean concepts like expressions and identifiers and not specific instances of these concepts inside programs, like a + b or count.
Let's try and build a concrete example. Consider this simple COBOL statement:
01 my-field PICTURE 9.9 VALUE 9.9.
Here I'm defining a field, i.e. a variable, which is dimensioned to hold one integral digit, the decimal point, and one decimal digit, with initial value 9.9 . A very incomplete grammar for this could be:
field-declaration ::= level-number identifier 'PICTURE' expression 'VALUE' expression '.'
expression ::= digit+ ( '.' digit+ )
Unfortunately the valid expressions that can follow PICTURE are not the same valid expressions that can follow VALUE. I could rewrite the second production in my grammar as follows:
'PICTURE' expression ::= digit+ ( '.' digit+ ) | 'A'+ | 'X'+
'VALUE' expression ::= digit+ ( '.' digit+ )
This would make my grammar context-sensitive, because expression would be a different thing according to whether it was found after 'PICTURE' or after 'VALUE'. However, as it has been pointed out, this doesn't say anything about the underlying language. A better alternative would be:
field-declaration ::= level-number identifier 'PICTURE' format 'VALUE' expression '.'
format ::= digit+ ( '.' digit+ ) | 'A'+ | 'X'+
expression ::= digit+ ( '.' digit+ )
which is context-free.
As you can see this is very different from your understanding. Consider:
a = b + c;
There is very little you can say about this statement without looking up the declarations of a,b and c, in any of the languages for which this is a valid statement, however this by itself doesn't imply that any of those languages is not context free. Probably what is confusing you is the fact that context freedom is different from ambiguity. This a simplified version of your C++ example:
a < b > (c)
This is ambiguous in that by looking at it alone you cannot tell whether this is a function template call or a boolean expression. The previous example on the other hand is not ambiguous; From the point of view of grammars it can only be interpreted as:
identifier assignment identifier binary-operator identifier semi-colon
In some cases you can resolve ambiguities by introducing context sensitivity at the grammar level. I don't think this is the case with the ambiguous example above: in this case you cannot eliminate the ambiguity without knowing whether a is a template or not. Note that when such information is not available, for instance when it depends on a specific template specialization, the language provides ways to resolve ambiguities: that is why you sometimes have to use typename to refer to certain types within templates or to use template when you call member function templates.
There are already a lot of good answers, but since you are uninformed about grammars, parsers and compilers etc, let me demonstrate this by an example.
First, the concept of grammars are quite intuitive. Imagine a set of rules:
S -> a T
T -> b G t
T -> Y d
b G -> a Y b
Y -> c
Y -> lambda (nothing)
And imagine you start with S. The capital letters are non-terminals and the small letters are terminals. This means that if you get a sentence of all terminals, you can say the grammar generated that sentence as a "word" in the language. Imagine such substitutions with the above grammar (The phrase between *phrase* is the one being replaced):
*S* -> a *T* -> a *b G* t -> a a *Y* b t -> a a b t
So, I could create aabt with this grammar.
Ok, back to main line.
Let us assume a simple language. You have numbers, two types (int and string) and variables. You can do multiplication on integers and addition on strings but not the other way around.
First thing you need, is a lexer. That is usually a regular grammar (or equal to it, a DFA, or equally a regular expression) that matches the program tokens. It is common to express them in regular expressions. In our example:
(I'm making these syntaxes up)
number: [1-9][0-9]* // One digit from 1 to 9, followed by any number
// of digits from 0-9
variable: [a-zA-Z_][a-zA-Z_0-9]* // You get the idea. First a-z or A-Z or _
// then as many a-z or A-Z or _ or 0-9
// this is similar to C
int: 'i' 'n' 't'
string: 's' 't' 'r' 'i' 'n' 'g'
equal: '='
plus: '+'
multiply: '*'
whitespace: (' ' or '\n' or '\t' or '\r')* // to ignore this type of token
So, now you got a regular grammar, tokenizing your input, but it understands nothing of the structure.
Then you need a parser. The parser, is usually a context free grammar. A context free grammar means, in the grammar you only have single nonterminals on the left side of grammar rules. In the example in the beginning of this answer, the rule
b G -> a Y b
makes the grammar context-sensitive because on the left you have b G and not just G. What does this mean?
Well, when you write a grammar, each of the nonterminals have a meaning. Let's write a context-free grammar for our example (| means or. As if writing many rules in the same line):
program -> statement program | lambda
statement -> declaration | executable
declaration -> int variable | string variable
executable -> variable equal expression
expression -> integer_type | string_type
integer_type -> variable multiply variable |
variable multiply number |
number multiply variable |
number multiply number
string_type -> variable plus variable
Now this grammar can accept this code:
x = 1*y
int x
string y
z = x+y
Grammatically, this code is correct. So, let's get back to what context-free means. As you can see in the example above, when you expand executable, you generate one statement of the form variable = operand operator operand without any consideration which part of code you are at. Whether the very beginning or middle, whether the variables are defined or not, or whether the types match, you don't know and you don't care.
Next, you need semantics. This is were context-sensitive grammars come into play. First, let me tell you that in reality, no one actually writes a context sensitive grammar (because parsing it is too difficult), but rather bit pieces of code that the parser calls when parsing the input (called action routines. Although this is not the only way). Formally, however, you can define all you need. For example, to make sure you define a variable before using it, instead of this
executable -> variable equal expression
you have to have something like:
declaration some_code executable -> declaration some_code variable equal expression
more complex though, to make sure the variable in declaration matches the one being calculated.
Anyway, I just wanted to give you the idea. So, all these things are context-sensitive:
Type checking
Number of arguments to function
default value to function
if member exists in obj in code: obj.member
Almost anything that's not like: missing ; or }
I hope you got an idea what are the differences (If you didn't, I'd be more than happy to explain).
So in summary:
Lexer uses a regular grammar to tokenize input
Parser uses a context-free grammar to make sure the program is in correct structure
Semantic analyzer uses a context-sensitive grammar to do type-checking, parameter matching etc etc
It is not necessarily always like that though. This just shows you how each level needs to get more powerful to be able to do more stuff. However, each of the mentioned compiler levels could in fact be more powerful.
For example, one language that I don't remember, used array subscription and function call both with parentheses and therefore it required the parser to go look up the type (context-sensitive related stuff) of the variable and determine which rule (function_call or array_substitution) to take.
If you design a language with lexer that has regular expressions that overlap, then you would need to also look up the context to determine which type of token you are matching.
To get to your question! With the example you mentioned, it is clear that the c++ grammar is not context-free. The language D, I have absolutely no idea, but you should be able to reason about it now. Think of it this way: In a context free grammar, a nonterminal can expand without taking into consideration anything, BUT the structure of the language. Similar to what you said, it expands, without "looking" anywhere else.
A familiar example would be natural languages. For example in English, you say:
sentence -> subject verb object clause
clause -> .... | lambda
Well, sentence and clause are nonterminals here. With this grammar you can create these sentences:
I go there because I want to
or
I jump you that I is air
As you can see, the second one has the correct structure, but is meaningless. As long as a context free grammar is concerned, the meaning doesn't matter. It just expands verb to whatever verb without "looking" at the rest of the sentence.
So if you think D has to at some point check how something was defined elsewhere, just to say the program is structurally correct, then its grammar is not context-free. If you isolate any part of the code and it still can say that it is structurally correct, then it is context-free.
There is a construct in D's lexer:
string ::= q" Delim1 Chars newline Delim2 "
where Delim1 and Delim2 are matching identifiers, and Chars does not contain newline Delim2.
This construct is context sensitive, therefore D's lexer grammar is context sensitive.
It's been a few years since I've worked with D's grammar much, so I can't remember all the trouble spots off the top of my head, or even if any of them make D's parser grammar context sensitive, but I believe they do not. From recall, I would say D's grammar is context free, not LL(k) for any k, and it has an obnoxious amount of ambiguity.
The grammar cannot be context-free if I need I can't tell the type of
an expression just by looking at it.
No, that's flat out wrong. The grammar cannot be context-free if you can't tell if it is an expression just by looking at it and the parser's current state (am I in a function, in a namespace, etc).
The type of an expression, however, is a semantic meaning, not syntactic, and the parser and the grammar do not give a penny about types or semantic validity or whether or not you can have tuples as values or keys in hashmaps, or if you defined that identifier before using it.
The grammar doesn't care what it means, or if that makes sense. It only cares about what it is.
To answer the question of if a programming language is context free you must first decide where to draw the line between syntax and semantics. As an extreme example, it is illegal in C for a program to use the value of some kinds of integers after they have been allowed to overflow. Clearly this can't be checked at compile time, let alone parse time:
void Fn() {
int i = INT_MAX;
FnThatMightNotReturn(); // halting problem?
i++;
if(Test(i)) printf("Weeee!\n");
}
As a less extreme example that others have pointed out, deceleration before use rules can't be enforced in a context free syntax so if you wish to keep your syntax pass context free, then that must be deferred to the next pass.
As a practical definition, I would start with the question of: Can you correctly and unambiguously determine the parse tree of all correct programs using a context free grammar and, for all incorrect programs (that the language requires be rejected), either reject them as syntactically invalid or produce a parse tree that the later passes can identify as invalid and reject?
Given that the most correct spec for the D syntax is a parser (IIRC an LL parser) I strongly suspect that it is in fact context free by the definition I suggested.
Note: the above says nothing about what grammar the language documentation or a given parser uses, only if a context free grammar exists. Also, the only full documentation on the D language is the source code of the compiler DMD.
These answers are making my head hurt.
First of all, the complications with low level languages and figuring out whether they are context-free or not, is that the language you write in is often processed in many steps.
In C++ (order may be off, but that shouldn't invalidate my point):
it has to process macros and other preprocessor stuffs
it has to interpret templates
it finally interprets your code.
Because the first step can change the context of the second step and the second step can change the context of the third step, the language YOU write in (including all of these steps) is context sensitive.
The reason people will try and defend a language (stating it is context-free) is, because the only exceptions that adds context are the traceable preprocessor statements and template calls. You only have to follow two restricted exceptions to the rules to pretend the language is context-free.
Most languages are context-sensitive overall, but most languages only have these minor exceptions to being context-free.