Function object conversion to function pointer - c++

I am looking for a way to convert function object to function pointer.
Captureless lambda has implicit conversion that allows to:
using fptr_t = int (*)(int);
fptr_t ptr = nullptr;
ptr = [](int) { return 2; };
ptr = [](auto) { return 3; };
(*ptr)(42);
I try to do the same with old-fashioned, empty class function objects like:
struct Foo {
int operator()(int) const { return 5; }
} foo;
Or std predicates like std::less<int>.
One way I found is to wrap call of foo with lambda.
If I can assure that foo is stateless and const
I dont really need this ptr and lambda-capture:
template <typename R, typename... Args>
struct to_function_pointer<R(Args...)> {
private:
template <typename T, REQUIRES(std::is_empty<T>::value)>
static T const& stateless_const() {
return (*static_cast<T const*>(nullptr));
}
public:
using pointer = R (*)(Args...);
template <typename U>
pointer operator()(U) const {
return [](Args... args) {
return stateless_const<std::decay_t<U>>()(args...);
};
}
};
But here I do not know how to provide perfect forwarding,
cause [](Args&&...) or [](auto&&...) cannot convert to R(*)(Args...).
Such trick fails when args is noncopyable like std::unique_ptr<int>.
I know that I could use std::function, but it's kind of heavy-weight, while I am trying to get a light-weight solution.
Live example.
Any advice appreciated.

I believe you can simplify your to_function_pointer with just:
template <typename R, typename... Args>
struct to_function_pointer<R(Args...)> {
using pointer = R(*)(Args...);
template <typename U, REQUIRES(std::is_empty<U>::value && std::is_trivially_constructible<U>::value)>
pointer operator()(U ) const
{
return [](Args... args) {
return U{}(std::forward<Args>(args)...);
}
}
};
Few things to note. Args... will already be references or not, you're providing that signature. So forward<> will still do the same thing - the function just happens to not be a template here. Also, scrap the weird nullptr cast. That just looks bad - if we just require trivial constructibility we can just write U{} which seems way cleaner to me.

Related

C++ wrapper for bound member function on resource constrained MCU

I am trying to implement a pointer to member function wrapper where the return type and parameter types are known but the class type of the member function is not known. This is for a C++ project targeting resource constrained (No heap allocation/c++ standard library) microprocessor.
The following code seems to work (you can run it HERE) and it fulfills our general requirements, but it uses reinterpret_cast hackery.
//can't use any c++ std libs or heap allocation
#include <cstdio>
template<typename Ret,typename... Args>
struct member_cb
{
template<typename T>
void set_cb(T *obj_,Ret (T::*func)(Args...))
{
obj = reinterpret_cast<member_cb*>(obj_);
cb = reinterpret_cast<Ret (member_cb::*)(Args...)>(func);
}
Ret operator()(Args... num)
{
return (obj->*cb)(num...);
}
member_cb* obj;
Ret (member_cb::*cb)(Args...);
};
struct Bar{
void someFunc(int n2){
printf("someFunc called with parameter: %d\n",n2);
}
};
int main()
{
//class type of Bar is not known at wrapper creation
member_cb<void,int> foo;
Bar bar;
foo.set_cb(&bar, &Bar::someFunc);
foo(42);
}
I want to do this without the reinterpret_cast. I believe there is a solution using a lambda that is created by the set_cb() function something like this:
template<typename Ret,typename... Args>
struct member_cb
{
template<typename T>
void set_cb(T *obj_,Ret (T::*func)(Args...))
{
cb_func = [=](Args...num)
{
(obj_->*func)(num...);
};
}
Ret operator()(Args... args)
{
return cb_func(args...);
}
Ret (*cb_func)(Args...);
}
The above code will not compile (you can try it HERE). Problem is that the regular function pointers like cb_func can only point to lambdas that have no captures, and the lambda has to capture the obj_ and the func parameters. Any suggestions on making this work would be appreciated.
A simple, compiler-independent solution:
template <typename Signature>
struct member_cb;
template <typename Ret, typename... Args>
struct member_cb<Ret(Args...)>
{
template <typename T, Ret (T::*func)(Args...)>
static Ret wrapper(void *object, Args&&... args) {
T *o = reinterpret_cast<T *>(object);
return (o->*func)(std::forward<Args>(args)...);
}
template <typename T, Ret (T::*func)(Args...)>
void set_cb(T *obj_)
{
obj = obj_;
cb_func = wrapper<T, func>;
}
// since C++17:
template <auto func, typename T>
void set_cb(T *obj_)
{
obj = obj_;
cb_func = wrapper<T, func>;
}
Ret operator() (Args&& ...args)
{
return cb_func(obj, std::forward<Args>(args)...);
}
void *obj;
Ret (*cb_func)(void *, Args&&...);
};
...
member_cb<void(int)> foo;
foo.set_cb<Bar, &Bar::someFunc>(&bar);
foo.set_cb<&Bar::someFunc>(&bar); // since C++17
The key limitation is that someFunc must be known at compile-time at the place set_cb is called, so you can’t take arbitrary method pointer and convert it to a member_cb. It is possible to change the object keeping the method pointer intact, though (but that’s not type-safe).
Another possible problem is that the compiler may need to emit a wrapper instance for each and every method that is ever used as a callback.
The upside is that it should work on any C++11-compliant compiler (C++17 for nicer syntax), and member_cb itself is small.

How to use std::bind with the standard library and save the return type?

I'm working on a class that schedules functions by binding them in a queue like this:
std::queue <void()> q;
template<typename R,typename... ArgsT>
void
schedule(R& fn, ArgsT&... args)
{
q.push(std::bind(fn, std::forward<ArgsT>(args)...) );
};
template<typename R,typename... ArgsT>
void
schedule(R&& fn, ArgsT&&... args)
{
q.push(std::bind(fn, std::forward<ArgsT>(args)...) );
};
As you see I made the type in the queue void() to make it hold any type of function objects but now I can't get the return when I execute it. What should I do to solve this?
Note: I don't want to use an external library like boost and I don't know what kind of function the user will pass it.
Note: I don't want to use an external library like boost and I don't
know what's the kind of function the user will pass it.
What I usually do in this case is I use a base class (from Command pattern) in my queue, and then have two implementations, the one wrapping the bind, and the other (also wrapping the bind) exposing a function that allows getting the return value.
Here is an example of the returning specialization (at last):
#include <iostream>
#include <functional>
#include <memory>
struct ACmd
{
virtual void exec() = 0;
virtual ~ACmd(){}
};
template <class F>
struct Cmd;
template <class R, class ... Args>
struct Cmd<R(Args...)> : ACmd
{
R result_;
std::function<R()> func_;
template <class F>
Cmd(F&& func, Args&&... args): result_(), func_()
{
auto f = std::bind(std::forward<F>(func), std::forward<Args>(args)...);
func_ = [f](){
return f();
};
}
virtual void exec(){
result_ = func_();
}
const R& getResult() const {return result_;}
};
// Make function for convenience, could return by value or ptr -
// - your choice
template <class R, class F, class ...Args>
Cmd<R(Args...)>* cmd(F&& func, Args&&... args)
{
return new Cmd<R(Args...)>(func, std::forward<Args>(args)...);
}
//... And overload for void...
int foo(int arg) {
return arg;
}
int main() {
auto x = cmd<int>(foo, 10);
x->exec();
std::cout << x->getResult() << std::endl;
return 0;
}
The result of the execution of each element in the queue, it is void, you have already defined it as such. If the functions passed in are required to return a value, then you would need to limit the type(s) returned to a fixed type, use utilities such as std::any, std::variant or some covariant types (possible with a std::unique_ptr or std::shared_ptr).
The simplest is to fix the return type (at compile time);
template <typename R>
using MQ = std::queue<std::function<R()>>;
MQ<int> q;
See the sample below.
The queue declaration needs to be a queue of objects, such as std::function objects. The return value from a bind can be assigned to a function and then used as expected.
std::function is a polymorphic function wrapper, it implements type erasure patterns akin to any, but is specifically designed for functions and other callable objects.
By way of example;
template <typename R>
using MQ = std::queue<std::function<R()>>;
MQ<int> q;
template<typename R,typename... ArgsT>
void
schedule(R&& fn, ArgsT&&... args)
{
q.push(std::bind(std::forward<R>(fn), std::forward<ArgsT>(args)...) );
};
int main()
{
schedule([](int a) { std::cout << "function called" << std::endl; return a; }, 42);
std::cout << q.front()() << std::endl;
}

std::function with static allocation in c++

I am working in a memory constrained embedded environment where malloc/free new/delete are not advisable, and I'm trying to use the std::function pattern to register callbacks. I do not have access to any of the STL methods in my target code so I'm in the unfortunate situation of having to replicate some of the STL functionality myself. Function pointers are not an option for me due to the necessity for callers to have captures.
For instance, I wish to declare a class Mailbox where an onChange event can be registered
class Mailbox {
std::function<void(int,int)> onChange;
};
That way, callers can register a lambda onChange handler that could capture this or other variables that matter for handling the event.
Since this is part of an API, I want to give the users of Mailbox maximim flexibility to either provide a function pointer, a lambda or a functor.
I have managed to find a great implementation of a std::function that appears to be exceptionally low-overhead and has exactly what I need except that it involves dynamic memory.
If you look at the following code, dynamic memory is used in exactly one place, and it appears fully scoped to the object being templated, suggesting to me that its size ought to be known at compile-time.
Can anyone help me understand how to refactor this implementation so that it is fully static and removes the use of new/malloc? I'm having trouble understanding why the size of CallableT wouldn't be calculable at compile-time.
Code below (not for the faint of heart). Note, it uses make_unique / unique_ptr but those can easily be substituted with new and * and I have tested that use case successfully.
#include <iostream>
#include <memory>
#include <cassert>
using namespace std;
template <typename T>
class naive_function;
template <typename ReturnValue, typename... Args>
class naive_function<ReturnValue(Args...)> {
public:
template <typename T>
naive_function& operator=(T t) {
callable_ = std::make_unique<CallableT<T>>(t);
return *this;
}
ReturnValue operator()(Args... args) const {
assert(callable_);
return callable_->Invoke(args...);
}
private:
class ICallable {
public:
virtual ~ICallable() = default;
virtual ReturnValue Invoke(Args...) = 0;
};
template <typename T>
class CallableT : public ICallable {
public:
CallableT(const T& t)
: t_(t) {
}
~CallableT() override = default;
ReturnValue Invoke(Args... args) override {
return t_(args...);
}
private:
T t_;
};
std::unique_ptr<ICallable> callable_;
};
void func() {
cout << "func" << endl;
}
struct functor {
void operator()() {
cout << "functor" << endl;
}
};
int main() {
naive_function<void()> f;
f = func;
f();
f = functor();
f();
f = []() { cout << "lambda" << endl; };
f();
}
Edit: added clarification on STL
The name for what you're looking for is "in-place function". At least one very good implementation exists today:
sg14::inplace_function<R(A...), Size, Align>
There is also tj::inplace_any<Size, Align>, if you need/want the semantics of any.
Let me preface this answer by saying that storing a general callable faces an interesting choice in terms of memory management. Yes, we can deduce the size of any callable at compile time but we can not store any callable into the same object without memory management. That's because our own object needs to have size independently of the callables its supposed to store but those can be arbitrarily big.
To put this reasoning into one sentence: The layout of our class (and its interface) needs to be compiled without knowledge about all of the callers.
This leaves us with essentially 3 choices
We embrace memory management. We dynamically copy the callable and properly manage that memory through means of unique pointer (std or boost), or through custom calls to new and delete. This is what the original code you found does and is also done by std::function.
We only allow certain callables. We create some custom storage inside our object to hold some forms of callables. This storage has a pre-determined size and we reject any callable given that can not adhere to this requirement (e.g. by a static_assert). Note that this does not necessarily restrict the set of possible callers. Instead, any user of the interface could set up a proxy-class holding merely a pointer but forwarding the call operator. We could even offer such a proxy class ourselves as part of the library. But this does nothing more than shifting the point of allocation from inside the function implementation to outside. It's still worth a try, and #radosław-cybulski comes closest to this in his answer.
We don't do memory management. We could design our interface in a way that it deliberately refuses to take ownership of the callable given to it. This way, we don't need to to memory management and this part is completely up to our caller. This is what I will give code for below. It is not a drop-in replacement for std::function but the only way I see to have a generic, allocation-free, copiable type for the purpose you inteded it.
And here is the code for possibility 3, completely without allocation and fully self-contained (does not need any library import)
template<typename>
class FunctionReference;
namespace detail {
template<typename T>
static T& forward(T& t) { return t; }
template<typename T>
static T&& forward(T&& t) { return static_cast<T&&>(t); }
template<typename C, typename R, typename... Args>
constexpr auto get_call(R (C::* o)(Args...)) // We take the argument for sfinae
-> typename FunctionReference<R(Args...)>::ptr_t {
return [](void* t, Args... args) { return (static_cast<C*>(t)->operator())(forward<Args>(args)...); };
}
template<typename C, typename R, typename... Args>
constexpr auto get_call(R (C::* o)(Args...) const) // We take the argument for sfinae
-> typename FunctionReference<R(Args...)>::ptr_t {
return [](void* t, Args... args) { return (static_cast<const C*>(t)->operator())(forward<Args>(args)...); };
}
template<typename R, typename... Args>
constexpr auto expand_call(R (*)(Args...))
-> typename FunctionReference<R(Args...)>::ptr_t {
return [](void* t, Args... args) { return (static_cast<R (*)(Args...)>(t))(forward<Args>(args)...); };
}
}
template<typename R, typename... Args>
class FunctionReference<R(Args...)> {
public:
using signature_t = R(Args...);
using ptr_t = R(*)(void*, Args...);
private:
void* self;
ptr_t function;
public:
template<typename C>
FunctionReference(C* c) : // Pointer to embrace that we do not manage this object
self(c),
function(detail::get_call(&C::operator()))
{ }
using rawfn_ptr_t = R (*)(Args...);
FunctionReference(rawfn_ptr_t fnptr) :
self(fnptr),
function(detail::expand_call(fnptr))
{ }
R operator()(Args... args) {
return function(self, detail::forward<Args>(args)...);
}
};
For seeing how this then works in action, go to https://godbolt.org/g/6mKoca
Try this:
template <class A> class naive_function;
template <typename ReturnValue, typename... Args>
class naive_function<ReturnValue(Args...)> {
public:
naive_function() { }
template <typename T>
naive_function(T t) : set_(true) {
assert(sizeof(CallableT<T>) <= sizeof(callable_));
new (_get()) CallableT<T>(t);
}
template <typename T>
naive_function(T *ptr, ReturnValue(T::*t)(Args...)) : set_(true) {
assert(sizeof(CallableT<T>) <= sizeof(callable_));
new (_get()) CallableT<T>(ptr, t);
}
naive_function(const naive_function &c) : set_(c.set_) {
if (c.set_) c._get()->Copy(&callable_);
}
~naive_function() {
if (set_) _get()->~ICallable();
}
naive_function &operator = (const naive_function &c) {
if (this != &c) {
if (set_) _get()->~ICallable();
if (c.set_) {
set_ = true;
c._get()->Copy(&callable_);
}
else
set_ = false;
}
return *this;
}
ReturnValue operator()(Args... args) const {
return _get()->Invoke(args...);
}
ReturnValue operator()(Args... args) {
return _get()->Invoke(args...);
}
private:
class ICallable {
public:
virtual ~ICallable() = default;
virtual ReturnValue Invoke(Args...) = 0;
virtual void Copy(void *dst) const = 0;
};
ICallable *_get() {
return ((ICallable*)&callable_);
}
const ICallable *_get() const { return ((const ICallable*)&callable_); }
template <typename T>
class CallableT : public ICallable {
public:
CallableT(const T& t)
: t_(t) {
}
~CallableT() override = default;
ReturnValue Invoke(Args... args) override {
return t_(std::forward<ARGS>(args)...);
}
void Copy(void *dst) const override {
new (dst) CallableT(*this);
}
private:
T t_;
};
template <typename T>
class CallableT<ReturnValue(T::*)(Args...)> : public ICallable {
public:
CallableT(T *ptr, ReturnValue(T::*)(Args...))
: ptr_(ptr), t_(t) {
}
~CallableT() override = default;
ReturnValue Invoke(Args... args) override {
return (ptr_->*t_)(std::forward<ARGS>(args)...);
}
void Copy(void *dst) const override {
new (dst) CallableT(*this);
}
private:
T *ptr_;
ReturnValue(T::*t_)(Args...);
};
static constexpr size_t size() {
auto f = []()->void {};
return std::max(
sizeof(CallableT<void(*)()>),
std::max(
sizeof(CallableT<decltype(f)>),
sizeof(CallableT<void (CallableT<void(*)()>::*)()>)
)
);
};
typedef unsigned char callable_array[size()];
typename std::aligned_union<0, callable_array, CallableT<void(*)()>, CallableT<void (CallableT<void(*)()>::*)()>>::type callable_;
bool set_ = false;
};
Keep in mind, that sort of tricks tend to be slightly fragile.
In this case to avoid memory allocation i used unsigned char[] array of assumed max size - max of CallableT with pointer to function, pointer to member function and lambda object. Types of pointer to function and member function dont matter, as standard guarantees, that for all types those pointers will have the same size. Lambda should be pointer to object, but if for some reason isnt and it's size will change depending on lambda types, then you're out of luck.
First callable_ is initialized with placement new and correct CallableT type. Then, when you try to call, i use beginning of callable_ as pointer to ICallable. This all is standard safe.
Keep in mind, that you copy naive_function object, it's template argument T's copy operator is NOT called.
UPDATE: some improvements (at least try to force alignment) + addition of copying constructor / copy assignment.
My attempt to run the solution given Here, encountered with some issues. After fixing them, seems to work fine.
Will be happy for any review as I am not a c++ expert!
Issues and fixes:
error: lambda expression in an unevaluated operand.
removed the decltype. ( was not present in original code so I guess its safe(???)
using aligned_t = detail::aligned_union<0,
CallableT<void(*)()>,
//CallableT<decltype([]()->void {})>,
CallableT<void (CallableT<void(*)()>::*)()>
>;
Under C++11, errors in code block:
error: fields must have a constant size: 'variable length array in structure' extension will never be supported
error: 'aligned' attribute requires integer constant
error: constexpr variable 'alignment_value' must be initialized by a constant expression
(Note: this code is replacing std::aligned_union)
namespace detail {
template <size_t Len, class... Types>
struct aligned_union {
static constexpr size_t alignment_value = std::max({alignof(Types)...}); // ERROR HERE C++11
struct type {
alignas(alignment_value) char _s[std::max({Len, sizeof(Types)...})]; // ERROR HERE C++11
};
};
}
Used 'external' help from ETLCPP - which has support for embedded, file: largest.h.
Error block was replaced with :
#include"etl/largest.h"
template<typename ...Types>
using largest_t = typename etl::largest_type<Types...>::type;
namespace detail {
template <size_t Len, class... Types>
struct aligned_union {
static constexpr size_t alignment_value = etl::largest_alignment<Types...>::value; //std::max({alignof(Types)...});
struct type {
alignas(alignment_value) char _s[sizeof(largest_t<Types...>)]; //[std::max({Len, sizeof(Types)...})];
};
};
}
Looked redundant, removed:
//static constexpr size_t size() {
// auto f = []()->void {};
// return std::max(
// sizeof(CallableT<void(*)()>),
// std::max(
// sizeof(CallableT<decltype(f)>),
// sizeof(CallableT<void (CallableT<void(*)()>::*)()>)
// )
// );
//};
replaced std::forward with etl::forward file: utility.h
Had anew ,and delete errors : Undefined symbol operator delete
(void)*
So added ( I never allocate.. ):
// Define placement new if no new header is available
inline void* operator new(size_t, void* p) { return p; }
inline void* operator new[](size_t, void* p) { return p; }
inline void operator delete(void*, void*) {}
inline void operator delete[](void*, void*) {}
inline void operator delete[](void*) {}
Still getting a warning thought (???):
: warning: replacement function 'operator delete' cannot be declared 'inline' [-Winline-new-delete]
inline void operator delete(void* ) {}
Linker error:
Error: L6218E: Undefined symbol __cxa_pure_virtual ).
Probably because of virtual distractor : (ref)
virtual ~ICallable() = default;
Had to add this : ( any other solution ???)
extern "C" void __cxa_pure_virtual() { while (1); }

Unpack function parameter types in the definition of another template function

I'm making a class template to encode function pointers. The function can have any result type and number / type of parameters. This is what I have:
LPVOID EncodePtr(LPVOID ptr) {
// Encode...
return ptr;
}
LPVOID DecodePtr(LPVOID ptr) {
// Decode...
return ptr;
}
template<class T>
class encoded_ptr {
public:
typedef encoded_ptr<T> _Myt;
encoded_ptr() {
ptr_ = (T*)EncodePtr(nullptr);
}
// Irresponsible?
template<class _OtherType>
encoded_ptr(_OtherType ptr) {
ptr_ = (T*)DecodePtr((LPVOID)ptr);
}
~encoded_ptr() {
ptr_ = (T*)EncodePtr(nullptr);
}
// Makes it possible to call the function directly
template<class... _Args>
typename std::result_of<T*(_Args...)>::type operator()(_Args... _Ax) {
T* fn = get();
return fn(_Ax...);
}
T* get() const {
return (T*)DecodePtr((LPVOID)ptr_);
}
bool is_set() {
return (get() != nullptr);
}
private:
T* ptr_;
};
It works as expected. Eg.:
encoded_ptr<decltype(MessageBoxA)> MsgBox;
MsgBox = &MessageBoxA; // Could also initialize in the constructor
// (HWND)0 is justified by the actual problem in the question
MsgBox((HWND)0, "Test message!", "Test", 0);
The first problem is that the way the parenthesis operator () is declared doesn't allow Visual Studio's IntelliSense to make its magic and give me hints about the function parameters:
template<class... _Args>
typename std::result_of<T*(_Args...)>::type operator()(_Args... _Ax) {
T* fn = get();
return fn(_Ax...);
}
Instead of using (_Args... _Ax), I'd like to unpack the actual function parameters so that IntelliSense can give hints correctly.
Current behaviour is:
Expected behaviour is:
The second problem is that calling the function this way, the compiler doesn't do basic casts, forcing me to cast NULL to (void*)NULL, 0 to (HWND)0, etc. This is annoying when using functions with a lot of parameters.
Maybe there are some mistakes in the implementation but I'm not a template expert. Also, I don't know if the title of the question fits properly.
I appreciate any help.
EDIT:
What I've tried so far (#OlegBogdanov's suggestion):
template<class T, class... Args>
class encoded_ptr;
template<class T, class... Args>
class encoded_ptr<T(Args...)> {
public:
typedef encoded_ptr<T> _Myt;
using Fptr = T(*)(Args...);
encoded_ptr(Fptr ptr) {
ptr_ = (Fptr)EncodePtr((LPVOID)ptr);
}
// Makes it possible to call the function directly
typename T operator()(Args... _Ax) {
Fptr fn = get();
return fn(std::forward<Args>(_Ax)...);
}
Fptr get() const {
return (T*)DecodePtr((LPVOID)ptr_);
}
bool is_set() {
return (get() != nullptr);
}
private:
Fptr ptr_;
};
Result: Cannot instantiate / use the constructor: Incomplete type is not allowed.
EDIT:
That was the right direction, the problem was the calling convention.
Changed:
class encoded_ptr<T(Args...)> to class encoded_ptr<T(__stdcall)(Args...)>, and
using Fptr = T(*)(Args...) to using Fptr = T(__stdcall*)(Args...)
I'm trying to detect the calling convention instead of having it hardcoded.
I think your expectations of
template<class... _Args>
typename std::result_of<T*(_Args...)>::type operator()(_Args... _Ax) {
T* fn = get();
return fn(_Ax...);
}
are wrong. It completely ignore's your target functions argument list (you have used poor mans type erasure) and passes (I wanted to use word 'forwards' but that would be inaccurate) whatever caller gives in. Thus 0 in
MsgBox(0, "Test message!", "Test", 0);
is deduced as int and you have to cast it to HWND, there's no way compiler would guess it otherwise.
What you are really doing is re-inventing the std::function or sort of wrapper above it.
If you really think that std::function is not enough for your needs you will have to copy parts of its implementation, namely you would need to have at least
template<class R, class... Args>
class encoded_ptr; // leaving this undefined
template<class R, class... Args>
class encoded_ptr<R(Args...)> {
using Fptr = R(*)(Args...);
encoded_ptr(Fptr ptr) {
ptr_ = (T*)DecodePtr((LPVOID)ptr);
}
...
to capture argument list in your type
and call operator would re-use it instead of randomly typed passed arguments:
// this must not be here -> template<class... _Args>
R operator()(Args... _Ax) {
T* fn = get()
return fn(std::forward<Args>(_Ax)...);
}
Edit:
You can't store but T* anymore, T is just a return type, store by Fptr

Being smart with smart pointers: avoiding shared_ptr overuse

I have come across code like
bool open_resource(..., shared_ptr<resource> & res)
{
...
shared_ptr<resource> newResource(new resource(...));
res = move(newResource);
return true;
}
which is then called with
shared_ptr<resource> res;
open_resource(..., res);
and then, as far as I saw, res is NOT used in ways that require sharing the pointer.
Of course I immediately thought of changing
shared_ptr<resource> newResource(new resource(...));
res = move(newResource);
with
res = make_shared<resource>(...)
...but then I hit a roadblock. Now I can no longer advise to change the shared_ptr reference to something more basic; at least not if I want to ensure that, if the caller actually needs a shared_ptr later, the control block efficiently resides on the same allocation as the object. For this to work, it must be a shared_ptr from the beginning.
On the other side, shared_ptr is a "heavy" type; it has two counters and aliasing and all kinds of features that really seem unneeded in most calling sites. And yet if it is shared_ptr in the signature, that they have to use.
The best solution I see is to move the body of the function to a helper function, and then overload.
bool get_resource_parameters(Param1& param1,..., ParamN& paramN)
{
...
}
bool open_resource(..., shared_ptr<resource> & res)
{
Param1 param1;
...
ParamN paramN;
if(!get_resource_parameters(param1,...,paramN))
return false;
res = make_shared<resource>(param1,...,paramN);
return true;
}
bool open_resource(..., unique_ptr<resource> & res)
{
Param1 param1;
...
ParamN paramN;
if(!get_resource_parameters(param1,...,paramN))
return false;
res = unique_ptr<resource>(new resource(param1,...,paramN));
return true;
}
But it's really not satisfying.
Does anyone see a better, more C++ solution?
Edit
Yes, the C++ way would be to return the pointer rather than a bool (and check for null). I cannot overload for shared_ptr in this case, but I can then assign the unique_ptr temporary returned to a shared_ptr varaible, and the appropriate constructor will convert it.
However, this way I lose the single allocation of make_shared. can I save it?
std::shared_ptr has a converting constructor from std::unique_ptr. Why don't you make the function return a std::unique_ptr by value:
unique_ptr<resource> open_resource(...);
This also serves as documentation that this is a factory function that transfers the ownership of the resource to the caller.
And let the caller decide how they want it:
auto x = open_resource(...);
// or
std::shared_ptr<resource> x{open_resource(...)};
To allow unique_ptr/shared_ptr, you may use template:
// Dispatcher for make_unique/make_shared
template <template <typename...> class Ptr, typename T>
struct make_helper;
template <typename T>
struct make_helper<std::unique_ptr, T>
{
template <typename ...Ts>
std::unique_ptr<T> operator() (Ts&&... args) const {
return std::make_unique<T>(std::forward<Ts>(args)...);
}
};
template <typename T>
struct make_helper<std::shared_ptr, T>
{
template <typename ...Ts>
std::shared_ptr<T> operator() (Ts&&... args) const {
return std::make_shared<T>(std::forward<Ts>(args)...);
}
};
template <template <typename...> class Ptr, typename T, typename ... Ts>
auto make(Ts&&... args)
{
return make_helper<Ptr, T>{}(std::forward<Ts>(args)...);
}
And then
bool get_resource_parameters(Param1& param1,..., ParamN& paramN)
{
//...
}
template <template <typename...> class Ptr>
Ptr<resource> open_resource(...)
{
Param1 param1;
...
ParamN paramN;
if(!get_resource_parameters(param1, ..., paramN))
return nullptr;
return = make<Ptr, resource>(param1, ..., paramN);
}
And check for nullptr instead of split bool and smart_pointer.