Results (slightly) different after vectorization is enabled - c++

One of our software is using Eigen (3.2.5) to perform some matric/vector related computations. The software was developed carefully in this regard, starting by disabling all options and optimizations (including using -DEIGEN_DONT_VECTORIZE), and setting accuracy tests in place.
Since we are now interested in faster numerical throughputs, we have started enabling vectorization inside Eigen. However, we have noticed that one of our tests now gives a slightly different output: the difference with the reference implementation is around 1e-4, while it was 1e-5 before.
We are going to let loose a bit the precision in this test (because we don't really know the accuracy of the reference data, and we have another test case with synthetic data for which we have an exact solution and that still passes), but out of curiosity: what can be a plausible cause for this variation?
In case it's relevant, this computation involves Euclidean norms.

This has to be expected because when you enable vectorization, floating point operations are not carried out in the exact same order. This typically occurs for expressions involving reductions such as sum, norms, matrix products, etc. For instance, let's consider the following simple sum:
float s = 0;
for(int i=0;i<n;i++)
s += v[i];
A vectorized version might look to something like (pseudo code):
Packet ps = {0,0,0,0};
for(int i=0;i<n;i+=4)
ps += load_packet(&v[i]);
float s = ps[0]+ps[1]+ps[2]+ps[3];
Owing to roundoff errors, each version will return a different value. In Eigen, this aspect even more tricky because reductions are implemented in a way to maximize instruction pipelining.

Related

What is the standard way to maintain accuracy when dealing with incredibly precise floating point calculations in C++?

I'm in the process of converting a program to C++ from Scilab (similar to Matlab) and I'm required to maintain the same level of precision that is kept by the previous code.
Note: Although maintaining the same level of precision would be ideal. It's acceptable if there is some error with the finished result. The problem I'm facing (as I'll show below) is due to looping, so the calculation error compounds rather quickly. But if the final result is only a thousandth or so off (e.g. 1/1000 vs 1/1001) it won't be a problem.
I've briefly looked into a number of different ways to do this including:
GMP (A Multiple Precision
Arithmetic Library)
Using integers instead of floats (see example below)
Int vs Float Example: Instead of using the float 12.45, store it as an integer being 124,500. Then simply convert everything back when appropriate to do so. Note: I'm not exactly sure how this will work with the code I'm working with (more detail below).
An example of how my program is producing incorrect results:
for (int i = 0; i <= 1000; i++)
{
for (int j = 0; j <= 10000; j++)
{
// This calculation will be computed with less precision than in Scilab
float1 = (1.0 / 100000.0);
// The above error of float2 will become significant by the end of the loop
float2 = (float1 + float2);
}
}
My question is:
Is there a generally accepted way to go about retaining accuracy in floating point arithmetic OR will one of the above methods suffice?
Maintaining precision when porting code like this is very difficult to do. Not because the languages have implicitly different perspectives on what a float is, but because of what the different algorithms or assumptions of accuracy limits are. For example, when performing numerical integration in Scilab, it may use a Gaussian quadrature method. Whereas you might try using a trapezoidal method. The two may both be working on identical IEEE754 single-precision floating point numbers, but you will get different answers due to the convergence characteristics of the two algorithms. So how do you get around this?
Well, you can go through the Scilab source code and look at all of the algorithms it uses for each thing you need. You can then replicate these algorithms taking care of any pre- or post-conditioning of the data that Scilab implicitly does (if any at all). That's a lot of work. And, frankly, probably not the best way to spend your time. Rather, I would look into using the Interfacing with Other Languages section from the developer's documentation to see how you can call the Scilab functions directly from your C, C++, Java, or Fortran code.
Of course, with the second option, you have to consider how you are going to distribute your code (if you need to).Scilab has a GPL-compatible license, so you can just bundle it with your code. However, it is quite big (~180MB) and you may want to just bundle the pieces you need (e.g., you don't need the whole interpreter system). This is more work in a different way, but guarantees numerical-compatibility with your current Scilab solutions.
Is there a generally accepted way to go about retaining accuracy in floating
point arithmetic
"Generally accepted" is too broad, so no.
will one of the above methods suffice?
Yes. Particularly gmp seems to be a standard choice. I would also have a look at the Boost Multiprecision library.
A hand-coded integer approach can work as well, but is surely not the method of choice: it requires much more coding, and more severe a means to store and process aritrarily precise integers.
If your compiler supports it use BCD (Binary-coded decimal)
Sam
Well, another alternative if you use GCC compilers is to go with quadmath/__float128 types.

GLSL conditional penalties

I've written my first couple of GLSL programs for Processing (a visual language similar to Java that can load shaders) recently that make fractals. In the loop that handles the fractal code, I have an escape conditional that breaks if a point would tend to infinity.
It works fine and it is similar to how I generally write the code for non-GLSL. However someone told me that two paths are calculated every time a conditional is executed. I've had a hard time finding exactly how much of a penalty is caused by conditionals in GLSL.
Edit: To the best of my understanding in non-GLSL when an if is encountered a path is assumed. If the "correct" path was assumed everything is great. If the "wrong" path was assumed then "bad" work is discarded and instructions continue along the "correct" path. The penalty might be say 3 (or whatever number) of instructions. I want to know if there is some number (3 or whatever) of instructions that are the penalty or if both paths are calculated all the way through.
Here is the code if the explanation is not clear enough:
// Mandelbrot Set code
int i = 0;
float zr = x;
float zi = y;
for (; i < maxIterations; i++) {
float sqZr = zr*zr;
float sqZi = zi*zi;
float twoZri = 2.0*zr*zi;
zr = sqZr-sqZi+x;
zi = twoZri+y;
if (sqZr+sqZi > 16.0) break;
}
On old GPUs, both sides of an if() clause were executed and the correct result chosen at the end. On newer ones, this is only the case if the compiler thinks it would be more efficient. if() clauses are not free: the generic rule of thumb I have used for some time is: "if() costs 14 clock cycles" though the latest GPUs may be cheaper.
Why is this so? Because GPUs are stream processors, they want to have identical data-loading profiles for all pixels (especially for gradient values like texture colors or values from vertex registers). The principle of SIMD -- even when the devices are not strictly SIMD -- is usually the way to get the most performance from such devices.
When in doubt, see if you can use one of the NVIDIA perf analysis tools on your code, or just try writing the code (it's short!) a few different ways and comparing your performance for your specific GPU.
(BTW Processing is not Java-like: it's Java)

Efficient way to project vectors onto unit box

I am reimplementing a Matlab function in C for performance reasons. Now, I am looking for the most efficient way to compute the projection of a vector onto the unit-box.
In C terms, I want to compute
double i = somevalue;
i = (i > 1.) ? 1. : i;
i = (i < -1.) ? -1. : i;
and since I have to do this operation several millions of times I wonder what could be the most efficient way to achieve this.
If you're on 686, your compiler will likely transform the conditional into a CMOV instruction, which is probably fast enough.
See the question Fastest way to clamp a real (fixed/floating point) value? for experiments. #Spat also suggests the MINSS/MINSD and MAXSS/MAXSD instructions, which can be available as intrinsics for your compiler. They are SSE instructions, and may be your best choice, again, provided you're on 686.
If you/"the compiler" use(s) the IEEE 754 double format, I'd think reading the first bit (the sign bit) of the double's memory is probably the most direct way. Then you'd have no additional round or division operations needed.
Did you consider using SSE instructions to speed up your code?
Also you could use OpenMP to parallelize you code, and thus making it faster.

Worse performance using Eigen than using my own class

A couple of weeks ago I asked a question about the performance of matrix multiplication.
I was told that in order to enhance the performance of my program I should use some specialised matrix classes rather than my own class.
StackOverflow users recommended:
uBLAS
EIGEN
BLAS
At first I wanted to use uBLAS however reading documentation it turned out that this library doesn't support matrix-matrix multiplication.
After all I decided to use EIGEN library. So I exchanged my matrix class to Eigen::MatrixXd - however it turned out that now my application works even slower than before.
Time before using EIGEN was 68 seconds and after exchanging my matrix class to EIGEN matrix program runs for 87 seconds.
Parts of program which take the most time looks like that
TemplateClusterBase* TemplateClusterBase::TransformTemplateOne( vector<Eigen::MatrixXd*>& pointVector, Eigen::MatrixXd& rotation ,Eigen::MatrixXd& scale,Eigen::MatrixXd& translation )
{
for (int i=0;i<pointVector.size();i++ )
{
//Eigen::MatrixXd outcome =
Eigen::MatrixXd outcome = (rotation*scale)* (*pointVector[i]) + translation;
//delete prototypePointVector[i]; // ((rotation*scale)* (*prototypePointVector[i]) + translation).ConvertToPoint();
MatrixHelper::SetX(*prototypePointVector[i],MatrixHelper::GetX(outcome));
MatrixHelper::SetY(*prototypePointVector[i],MatrixHelper::GetY(outcome));
//assosiatedPointIndexVector[i] = prototypePointVector[i]->associatedTemplateIndex = i;
}
return this;
}
and
Eigen::MatrixXd AlgorithmPointBased::UpdateTranslationMatrix( int clusterIndex )
{
double membershipSum = 0,outcome = 0;
double currentPower = 0;
Eigen::MatrixXd outcomePoint = Eigen::MatrixXd(2,1);
outcomePoint << 0,0;
Eigen::MatrixXd templatePoint;
for (int i=0;i< imageDataVector.size();i++)
{
currentPower =0;
membershipSum += currentPower = pow(membershipMatrix[clusterIndex][i],m);
outcomePoint.noalias() += (*imageDataVector[i] - (prototypeVector[clusterIndex]->rotationMatrix*prototypeVector[clusterIndex]->scalingMatrix* ( *templateCluster->templatePointVector[prototypeVector[clusterIndex]->assosiatedPointIndexVector[i]]) ))*currentPower ;
}
outcomePoint.noalias() = outcomePoint/=membershipSum;
return outcomePoint; //.ConvertToMatrix();
}
As You can see, these functions performs a lot of matrix operations. That is why I thought using Eigen would speed up my application. Unfortunately (as I mentioned above), the program works slower.
Is there any way to speed up these functions?
Maybe if I used DirectX matrix operations I would get better performance ?? (however I have a laptop with integrated graphic card).
If you're using Eigen's MatrixXd types, those are dynamically sized. You should get much better results from using the fixed size types e.g Matrix4d, Vector4d.
Also, make sure you're compiling such that the code can get vectorized; see the relevant Eigen documentation.
Re your thought on using the Direct3D extensions library stuff (D3DXMATRIX etc): it's OK (if a bit old fashioned) for graphics geometry (4x4 transforms etc), but it's certainly not GPU accelerated (just good old SSE, I think). Also, note that it's floating point precision only (you seem to be set on using doubles). Personally I'd much prefer to use Eigen unless I was actually coding a Direct3D app.
Make sure to have compiler optimization switched on (e.g. at least -O2 on gcc). Eigen is heavily templated and will not perform very well if you don't turn on optimization.
Which version of Eigen are you using? They recently released 3.0.1, which is supposed to be faster than 2.x. Also, make sure you play a bit with the compiler options. For example, make sure SSE is being used in Visual Studio:
C/C++ --> Code Generation --> Enable Enhanced Instruction Set
You should profile and then optimize first the algorithm, then the implementation. In particular, the posted code is quite innefficient:
for (int i=0;i<pointVector.size();i++ )
{
Eigen::MatrixXd outcome = (rotation*scale)* (*pointVector[i]) + translation;
I don't know the library, so I won't even try to guess the number of unnecessary temporaries that you are creating, but a simple refactor:
Eigen::MatrixXd tmp = rotation*scale;
for (int i=0;i<pointVector.size();i++ )
{
Eigen::MatrixXd outcome = tmp*(*pointVector[i]) + translation;
Can save you a good amount of expensive multiplications (and again, probably new temporary matrices that get discarded right away.
A couple of points.
Why are you multiplying rotation*scale inside of the loop when that product will have the same value each iteration? That is a lot of wasted effort.
You are using dynamically sized matrices rather than fixed sized matrices. Someone else mentioned this already, and you said you shaved off 2 sec.
You are passing arguments as a vector of pointers to matrices. This adds an extra pointer indirection and destroys any guarantee of data locality, which will give poor cache performance.
I hope this isn't insulting, but are you compiling in Release or Debug? Eigen is very slow in debug builds, because it uses lots of trivial templated functions that are optimized out of release but remain in debug.
Looking at your code, I am hesitant to blame Eigen for performance problems. However, most linear algebra libraries (including Eigen) are not really designed for your use case of lots of tiny matrices. In general, Eigen will be better optimized for 100x100 or larger matrices. You very well may be better off using your own matrix class or the DirectX math helper classes. The DirectX math classes are completely independent from your video card.
Looking back at your previous post and the code in there, my suggestion would be to use your old code, but improve its efficiency by moving things around. I'm posting on that previous question to keep the answers separate.

Speedup C++ code

I am writing a C++ number crunching application, where the bottleneck is a function that has to calculate for double:
template<class T> inline T sqr(const T& x){return x*x;}
and another one that calculates
Base dist2(const Point& p) const
{ return sqr(x-p.x) + sqr(y-p.y) + sqr(z-p.z); }
These operations take 80% of the computation time. I wonder if you can suggest approaches to make it faster, even if there is some sort of accuracy loss
Thanks
First, make sure dist2 can be inlined (it's not clear from your post whether or not this is the case), having it defined in a header file if necessary (generally you'll need to do this - but if your compiler generates code at link time, then that's not necessarily the case).
Assuming x86 architecture, be sure to allow your compiler to generate code using SSE2 instructions (an example of an SIMD instruction set) if they are available on the target architecture. To give the compiler the best opportunity to optimize these, you can try to batch your sqr operations together (SSE2 instructions should be able to do up to 4 float or 2 double operations at a time depending on the instruction.. but of course it can only do this if you have the inputs to more than one operation on the ready). I wouldn't be too optimistic about the compiler's ability to figure out that it can batch them.. but you can at least set up your code so that it would be possible in theory.
If you're still not satisfied with the speed and you don't trust that your compiler is doing it best, you should look into using compiler intrinsics which will allow you to write potential parallel instructions explicitly.. or alternatively, you can go right ahead and write architecture-specific assembly code to take advantage of SSE2 or whichever instructions are most appropriate on your architecture. (Warning: if you hand-code the assembly, either take extra care that it still gets inlined, or make it into a large batch operation)
To take it even further, (and as glowcoder has already mentioned) you could perform these operations on a GPU. For your specific case, bear in mind that GPU's often don't support double precision floating point.. though if it's a good fit for what you're doing, you'll get orders of magnitude better performance this way. Google for GPGPU or whatnot and see what's best for you.
What is Base?
Is it a class with a non-explicit constructor? It's possible that you're creating a fair amount of temporary Base objects. That could be a big CPU hog.
template<class T> inline T sqr(const T& x){return x*x;}
Base dist2(const Point& p) const {
return sqr(x-p.x) + sqr(y-p.y) + sqr(z-p.z);
}
If p's member variables are of type Base, you could be calling sqr on Base objects, which will be creating temporaries for the subtracted coordinates, in sqr, and then for each added component.
(We can't tell without the class definitions)
You could probably speed it up by forcing the sqr calls to be on primitves and not using Base until you get to the return type of dist2.
Other performance improvement opportunities are to:
Use non-floating point operations, if you're ok with less precision.
Use algorithms which don't need to call dist2 so much, possibly caching or using the transitive property.
(this is probably obvious, but) Make sure you're compiling with optimization turned on.
I think optimising these functions might be difficult, you might be better off optimising the code that calls these functions to call them less, or to do things differently.
You don't say whether the calls to dist2 can be parallelised or not. If they can, then you could build a thread pool and split this work up into smaller chunks per thread.
What does your profiler tell you is happening inside dist2. Are you actually using 100% CPU all the time or are you cache missing and waiting for data to load?
To be honest, we really need more details to give you a definitive answer.
If sqr() is being used only on primitive types, you might try taking the argument by value instead of reference. That would save you an indirection.
If you can organise your data suitably then you may well be able to use SIMD optimisation here. For an efficient implementation you would probably want to pad your Point struct so that it has 4 elements (i.e. add a fourth dummy element for padding).
If you have a number of these to do, and you're doing graphics or "graphic like" tasks (thermal modeling, almost any 3d modeling) you might consider using OpenGL and offloading the tasks to a GPU. This would allow the computations to run in parallel, with highly optimized operational capacity. After all, you would expect something like distance or distancesq to have its own opcode on a GPU.
A researcher at a local univeristy offload almost all of his 3d-calculations for AI work to the GPU and achieved much faster results.
There are a lot of answers mentioning SSE already… but since nobody has mentioned how to use it, I'll throw another in…
Your code has most everything a vectorizer needs to work, except two constraints: aliasing and alignment.
Aliasing is the problem of two names referring two the same object. For example, my_point.dist2( my_point ) would operate on two copies of my_point. This messes with the vectorizer.
C99 defines the keyword restrict for pointers to specify that the referenced object is referenced uniquely: there will be no other restrict pointer to that object in the current scope. Most decent C++ compilers implement C99 as well, and import this feature somehow.
GCC calls it __restrict__. It may be applied to references or this.
MSVC calls it __restrict. I'd be surprised if support were any different from GCC.
(It is not in C++0x, though.)
#ifdef __GCC__
#define restrict __restrict__
#elif defined _MSC_VER
#define restrict __restrict
#endif
 
Base dist2(const Point& restrict p) const restrict
Most SIMD units require alignment to the size of the vector. C++ and C99 leave alignment implementation-defined, but C++0x wins this race by introducing [[align(16)]]. As that's still a bit in the future, you probably want your compiler's semi-portable support, a la restrict:
#ifdef __GCC__
#define align16 __attribute__((aligned (16)))
#elif defined _MSC_VER
#define align16 __declspec(align (16))
#endif
 
struct Point {
double align16 xyz[ 3 ]; // separate x,y,z might work; dunno
…
};
This isn't guaranteed to produce results; both GCC and MSVC implement helpful feedback to tell you what wasn't vectorized and why. Google your vectorizer to learn more.
If you really need all the dist2 values, then you have to compute them. It's already low level and cannot imagine speedups apart from distributing on multiple cores.
On the other side, if you're searching for closeness, then you can supply to the dist2() function your current miminum value. This way, if sqr(x-p.x) is already larger than your current minimum, you can avoid computing the remaining 2 squares.
Furthermore, you can avoid the first square by going deeper in the double representation. Comparing directly on the exponent value with your current miminum can save even more cycles.
Are you using Visual Studio? If so you may want to look at specifying the floating point unit control using /fp fast as a compile switch. Have a look at The fp:fast Mode for Floating-Point Semantics. GCC has a host of -fOPTION floating point optimisations you might want to consider (if, as you say, accuracy is not a huge concern).
I suggest two techniques:
Move the structure members into
local variables at the beginning.
Perform like operations together.
These techniques may not make a difference, but they are worth trying. Before making any changes, print the assembly language first. This will give you a baseline for comparison.
Here's the code:
Base dist2(const Point& p) const
{
// Load the cache with data values.
register x1 = p.x;
register y1 = p.y;
register z1 = p.z;
// Perform subtraction together
x1 = x - x1;
y1 = y - y1;
z1 = z - z2;
// Perform multiplication together
x1 *= x1;
y1 *= y1;
z1 *= z1;
// Perform final sum
x1 += y1;
x1 += z1;
// Return the final value
return x1;
}
The other alternative is to group by dimension. For example, perform all 'X' operations first, then Y and followed by Z. This may show the compiler that pieces are independent and it can delegate to another core or processor.
If you can't get any more performance out of this function, you should look elsewhere as other people have suggested. Also read up on Data Driven Design. There are examples where reorganizing the loading of data can speed up performance over 25%.
Also, you may want to investigate using other processors in the system. For example, the BOINC Project can delegate calculations to a graphics processor.
Hope this helps.
From an operation count, I don't see how this can be sped up without delving into hardware optimizations (like SSE) as others have pointed out. An alternative is to use a different norm, like the 1-norm is just the sum of the absolute values of the terms. Then no multiplications are necessary. However, this changes the underlying geometry of your space by rearranging the apparent spacing of the objects, but it may not matter for your application.
Floating point operations are quite often slower, maybe you can think about modifying the code to use only integer arithmetic and see if this helps?
EDIT: After the point made by Paul R I reworded my advice not to claim that floating point operations are always slower. Thanks.
Your best hope is to double-check that every dist2 call is actually needed: maybe the algorithm that calls it can be refactored to be more efficient? If some distances are computed multiple times, maybe they can be cached?
If you're sure all of the calls are necessary, you may be able to squeeze out a last drop of performance by using an architecture-aware compiler. I've had good results using Intel's compiler on x86s, for instance.
Just a few thoughts, however unlikely that I will add anything of value after 18 answers :)
If you are spending 80% time in these two functions I can imagine two typical scenarios:
Your algorithm is at least polynomial
As your data seem to be spatial maybe you can bring the O(n) down by introducing spatial indexes?
You are looping over certain set
If this set comes either from data on disk (sorted?) or from loop there might be possibility to cache, or use previous computations to calculate sqrt faster.
Also regarding the cache, you should define the required precision (and the input range) - maybe some sort of lookup/cache can be used?
(scratch that!!! sqr != sqrt )
See if the "Fast sqrt" is applicable in your case :
http://en.wikipedia.org/wiki/Fast_inverse_square_root
Look at the context. There's nothing you can do to optimize an operation as simple as x*x.
Instead you should look at a higher level: where is the function called from? How often? Why? Can you reduce the number of calls? Can you use SIMD instructions to perform the multiplication on multiple elements at a time?
Can you perhaps offload entire parts of the algorithm to the GPU?
Is the function defined so that it can be inlined? (basically, is its definition visible at the call sites)
Is the result needed immediately after the computation? If so, the latency of FP operations might hurt you. Try to arrange your code so dependency chains are broken up or interleaved with unrelated instructions.
And of course, examine the generated assembly and see if it's what you expect.
Is there a reason you are implementing your own sqr operator?
Have you tried the one in libm it should be highly optimized.
The first thing that occurs to me is memoization ( on-the-fly caching of function calls ), but both sqr and dist2 it would seem like they are too low level for the overhead associated with memoization to be made up for in savings due to memoization. However at a higher level, you may find it may work well for you.
I think a more detailed analysis of you data is called for. Saying that most of the time in the program is spent executing MOV and JUMp commands may be accurate, but it's not going to help yhou optimise much. The information is too low level. For example, if you know that integer arguments are good enough for dist2, and the values are between 0 and 9, then a pre-cached tabled would be 1000 elements--not to big. You can always use code to generate it.
Have you unrolled loops? Broken down matrix opration? Looked for places where you can get by with table lookup instead of actual calculation.
Most drastic would be to adopt the techniques described in:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.8660&rep=rep1&type=pdf
though it is admittedly a hard read and you should get some help from someone who knows Common Lisp if you don't.
I'm curious why you made this a template when you said the computation is done using doubles?
Why not write a standard method, function, or just 'x * x' ?
If your inputs can be predictably constrained and you really need speed create an array that contains all the outputs your function can produce. Use the input as the index into the array (A sparse hash). A function evaluation then becomes a comparison (to test for array bounds), an addition, and a memory reference. It won't get a lot faster than that.
See the SUBPD, MULPD and DPPD instructions. (DPPD required SSE4)
Depends on your code, but in some cases a stucture-of-arrays layout might be more friendly to vectorization than an array-of-structures layout.