I have a method which writes a binary file from an int array. (it could be wrong too)
void bcdEncoder::writeBinaryFile(unsigned int packedBcdArray[], int size)
{
fstream binaryIo;
binaryIo.open("PridePrejudice.bin", ios::out| ios::binary | ios::trunc);
binaryIo.seekp(0);
binaryIo.write((char*)packedBcdArray, size * sizeof(packedBcdArray[0]));
binaryIo.seekp(0);
binaryIo.close();
}
I need to now read that binary file back. And preferably have it read it back into another array of unsigned ints without any information loss.
I have something like the following code, but I have no idea on how reading binary files really works, and no idea how to read it into an array of ints.
void bcdEncoder::readBinaryFile(string fileName)
{
// myArray = my dnynamic int array
fstream binaryIo;
binaryIo.open(fileName, ios::in | ios::binary | ios::trunc);
binaryIo.seekp(0);
binaryIo.seekg(0);
binaryIo.read((int*)myArray, size * sizeof(myFile));
binaryIo.close();
}
Question:
How to complete the implementation of the function that reads binary files?
If you're using C++, use the nice std library.
vector<unsigned int> bcdEncoder::readBinaryFile(string fileName)
{
vector<unsigned int> ret; //std::list may be preferable for large files
ifstream in{ fileName };
unsigned int current;
while (in.good()) {
in >> current;
ret.emplace_back(current);
}
return ret;
}
Writing is just as simple (for this we'll accept an int[] but an std library would be preferable):
void bcdEncoder::writeBinaryFile(string fileName, unsigned int arr[], size_t len)
{
ofstream f { fileName };
for (size_t i = 0; i < len; i++)
f << arr[i];
}
Here's the same thing but with an std::vector
void bcdEncoder::writeBinaryFile(string fileName, vector<unsigned int> arr)
{
ofstream f { fileName };
for (auto&& i : arr)
f << i;
}
To simplify read operation consider storing size (i.e the number of elements in the array) before the data:
void bcdEncoder::writeBinaryFile(unsigned int packedBcdArray[], int size)
{
fstream binaryIo;
binaryIo.open("PridePrejudice.bin", ios::out| ios::binary | ios::trunc);
binaryIo.seekp(0);
binaryIo.write(&size, sizeof(size));
binaryIo.write((char*)packedBcdArray, size * sizeof(packedBcdArray[0]));
binaryIo.close();
}
The read would look something like:
void bcdEncoder::readBinaryFile(string fileName)
{
std::vector<unsigned int> myData;
int size;
fstream binaryIo;
binaryIo.open(fileName, ios::in | ios::binary | ios::trunc);
binaryIo.read(&size, sizeof(size)); // read the number of elements
myData.resize(size); // allocate memory for an array
binaryIo.read(myData.data(), size * sizeof(myData.value_type));
binaryIo.close();
// todo: do something with myData
}
Modern alternative using std::array
Here's a code snippet that uses more modern C++ to read a binary file into an std::array.
const int arraySize = 9216; // Hard-coded
std::array<uint8_t, arraySize> fileArray;
std::ifstream binaryFile("<my-binary-file>", std::ios::in | std::ios::binary);
if (binaryFile.is_open()) {
binaryFile.read(reinterpret_cast<char*>(fileArray.data()), arraySize);
}
Because you're using an std::array you'll need to know the exact size of the file during compile-time. If you don't know the size of the file ahead of time (or rather, you'll need to know that the file has at least X bytes available), use a std::vector and look at this example here: https://stackoverflow.com/a/36661779/1576548
Thanks for the tips guys, looks like I worked it out!! A major part of my problem was that half the arguments and syntax I added to the methods were not required, and actually messed things up. Here are my working methods.
void bcdEncoder::writeBinaryFile(unsigned int packedBcdArray[], int size, string fileName)
{
ofstream binaryIo;
binaryIo.open(fileName.substr(0, fileName.length() - 4) + ".bin", ios::binary);
if (binaryIo.is_open()) {
binaryIo.write((char*)packedBcdArray, size * sizeof(packedBcdArray[0]));
binaryIo.close();
// Send binary file to reader
readBinaryFile(fileName.substr(0, fileName.length() - 4) + ".bin", size);
}
else
cout << "Error writing bin file..." << endl;
}
And the read:
void bcdEncoder::readBinaryFile(string fileName, int size)
{
AllocateArray packedData(size);
unsigned int *packedArray = packedData.createIntArray();
ifstream binaryIo;
binaryIo.open(fileName, ios::binary);
if (binaryIo.is_open()) {
binaryIo.read((char*)packedArray, size * sizeof(packedArray[0]));
binaryIo.close();
decodeBCD(packedArray, size * 5, fileName);
}
else
cout << "Error reading bin file..." << endl;
}
With the AllocateArray being my class that creates dynamic arrays without vectors somewhat safely with destructors included.
Related
I am confused as to where in my code am I getting it wrong. Instead of resulting to 1,2,3 the output is 1,1,1. Any suggestions as to what I can do? I am guessing my error lies either in the writing data or when I use the variable value.
class Binary
{
public:
Binary(int num);
~Binary();
void createBinary();
void writeBinary();
void readBinary();
string binFile;
int value;
fstream binaryFile;
};
Binary::Binary(int num)
{
value = num;
binFile = "BinaryFile.bin";
}
Binary::~Binary()
{
}
void Binary::createBinary()
{
binaryFile.open(binFile, ios::out | ios::binary);
binaryFile.close();
}
void Binary::writeBinary()
{
if (!binaryFile) //if file does not exist
{
createBinary();
}
binaryFile.open(binFile, ios::app | ios::binary);
binaryFile.write((char*)&value, sizeof(value));
binaryFile.close();
}
void Binary::readBinary()
{
binaryFile.open(binFile, ios::in |ios::binary);
binaryFile.read((char*)&value, sizeof(value));
binaryFile.close();
cout << value << ", ";
}
int main()
{
Binary num1(1);
Binary num2(2);
Binary num3(3);
num1.writeBinary();
num2.writeBinary();
num3.writeBinary();
num1.readBinary();
num2.readBinary();
num3.readBinary();
return 0;
}
Since you use a single file and read from start at each Binary()::readBinary(), your result is as expected. Either use different files for each of your objects.
// In general we may need some random part in name but for this special case,
// since you are just writing / reading value, the following seems to work.
Binary::Binary(int num)
{
value = num;
binFile = "BinaryFile"; // common start
binFile += std::to_string(value); // differentiator
binFile += ".bin"; // extension
}
Or, if you want to use the same file, try to get help from a static variable for not to read the same line again and again.
I am trying to write a data structure as such:
struct dataEntry
{
std::list<int> listTiles;
char* pData;
int nSize;
}
to a binary file.
I used ofstream to write to a binary file:
Write(char* fileName, const dataEntry& dataStruct)
{
ofstream binFile("fileName, ios::out | ios::binary | ios::trunc);
if(binFile.open())
{
binFile.write((char*)&dataStruct, sizeof(dataStruct));
binFile.close();
}
}
I used the same method to read back the binary file:
Read(char* fileName, const dataEntry& dataStruct)
{
ifstream binFile("fileName, ios::in| ios::binary );
if(binFile.open())
{
binFile.read((char*)&dataStruct, sizeof(dataStruct));
binFile.close();
}
}
However, i cannot iterate through the list after i read the binary file. It gave me an exception saying that the "list iterator outside range".
2nd problem is that when i tried to read the binary file the 2nd time, the "pData" is not what I have entered.
int Main()
{
char* name = "C:\\file.dat";
char* buf = "ABCDEFG";
dataEntry newData;
newData.listTiles.push_back(1);
newData.listTiles.push_back(2);
newData.nSize = 5;
newData.pData = buf;
Write(name, newData);
Read(name, newData);
buf = newData.pData; // wrong value when read 2nd time
newData.listTiles.remove(2); // crashed here
}
Check advanced c++ course on Udemy, the instructor said you cannot store pointers to binary files, because when you try to read them back the pointers (addresses) you used before writing them will not still be reserved for the list. So you have to save the data not the pointers
I'm trying to read an array object (Array is a class I've made using read and write functions to read and write from binary files. So far the write functions works but it won't read from the file properly for some reason. This is the write function :
void writeToBinFile(const char* path) const
{
ofstream ofs(path, ios_base::out | ios_base::app | ios_base::binary);
if (ofs.is_open())
{
ostringstream oss;
for (unsigned int i = 0; i < m_size; i++)
{
oss << ' ';
oss << m_data[i];
}
ofs.write(oss.str().c_str(), oss.str().size());
}
}
This is the read function :
void readFromBinFile(const char* path)
{
ifstream ifs(path, ios_base::in | ios_base::binary || ios_base::ate);
if (ifs.is_open())
{
stringstream ss;
int charCount = 0, spaceCount = 0;
ifs.unget();
while (spaceCount != m_size)
{
charCount++;
if (ifs.peek() == ' ')
{
spaceCount++;
}
ifs.unget();
}
ifs.get();
char* ch = new char[sizeof(char) * charCount];
ifs.read(ch, sizeof(char) * charCount);
ss << ch;
delete[] ch;
for (unsigned int i = 0; i < m_size; i++)
{
ss >> m_data[i];
m_elementCount++;
}
}
}
those are the class fields :
T* m_data;
unsigned int m_size;
unsigned int m_elementCount;
I'm using the following code to write and then read (1 execution for reading another for writing):
Array<int> arr3(5);
//arr3[0] = 38;
//arr3[1] = 22;
//arr3[2] = 55;
//arr3[3] = 7;
//arr3[4] = 94;
//arr3.writeToBinFile("binfile.bin");
arr3.readFromBinFile("binfile.bin");
for (unsigned int i = 0; i < arr3.elementCount(); i++)
{
cout << "arr3[" << i << "] = " << arr3[i] << endl;
}
The problem is now at the readFromBinFile function, it get stuck in an infinite loop and peek() returns -1 for some reason and I can't figure why.
Also note I'm writing to the binary file using spaces to make a barrier between each element so I would know to differentiate between objects in the array and also a space at the start of the writing to make a barrier between previous stored binary data in the file to the array binary data.
The major problem, in my mind, is that you write fixed-size binary data in variable-size textual form. It could be so much simpler if you just stick to pure binary form.
Instead of writing to a string stream and then writing that output to the actual file, just write the binary data directly to the file:
ofs.write(reinterpret_cast<char*>(m_data), sizeof(m_data[0]) * m_size);
Then do something similar when reading the data.
For this to work, you of course need to save the number of entries in the array/vector first before writing the actual data.
So the actual write function could be as simple as
void writeToBinFile(const char* path) const
{
ofstream ofs(path, ios_base::out | ios_base::binary);
if (ofs)
{
ofs.write(reinterpret_cast<const char*>(&m_size), sizeof(m_size));
ofs.write(reinterpret_cast<const char*>(&m_data[0]), sizeof(m_data[0]) * m_size);
}
}
And the read function
void readFromBinFile(const char* path)
{
ifstream ifs(path, ios_base::in | ios_base::binary);
if (ifs)
{
// Read the size
ifs.read(reinterpret_cast<char*>(&m_size), sizeof(m_size));
// Read all the data
ifs.read(reinterpret_cast<char*>(&m_data[0]), sizeof(m_data[0]) * m_size);
}
}
Depending on how you define m_data you might need to allocate memory for it before reading the actual data.
Oh, and if you want to append data at the end of the array (but why would you, in the current code you show, you rewrite the whole array anyway) you write the size at the beginning, seek to the end, and then write the new data.
I've been bashing my head against trying to first divide up a file into chunks, for the purpose of sending over sockets. I can read / write a file easily without splitting it into chunks. The code below runs, works, kinda. It will write a textfile and has a garbage character. Which if this was just for txt, no problem. Jpegs aren't working with said garbage.
Been at it for a few days, so I've done my research, and it's time to get some help. I do want to stick strictly to binary readers, as this need to handle any file.
I've seen a lot of slick examples out there. (none of them worked for me with jpgs) Mostly something along the lines of while(file)... I subscribe to the, if you know the size, use a for-loop, not a while-loop camp.
Thank you for the help!!
vector<char*> readFile(const char* fn){
vector<char*> v;
ifstream::pos_type size;
char * memblock;
ifstream file;
file.open(fn,ios::in|ios::binary|ios::ate);
if (file.is_open()) {
size = fileS(fn);
file.seekg (0, ios::beg);
int bs = size/3; // arbitrary. Actual program will use the socket send size
int ws = 0;
int i = 0;
for(i = 0; i < size; i+=bs){
if(i+bs > size)
ws = size%bs;
else
ws = bs;
memblock = new char [ws];
file.read (memblock, ws);
v.push_back(memblock);
}
}
else{
exit(-4);
}
return v;
}
int main(int argc, char **argv) {
vector<char*> v = readFile("foo.txt");
ofstream myFile ("bar.txt", ios::out | ios::binary);
for(vector<char*>::iterator it = v.begin(); it!=v.end(); ++it ){
myFile.write(*it,strlen(*it));
}
}
The problem is that you are using a strlen to calculate the size of array to be written. A 0 to be a part of binary there you would not be writing the right size. Instead, use a pair of char*,int where int specifies the size that is to be written and you will be golden.
Like:
#include <iostream>
#include <vector>
#include <fstream>
#include <stdlib.h>
#include <string.h>
using namespace std;
ifstream::pos_type fileS(const char* fn)
{
ifstream file;
file.open(fn,ios::in|ios::binary);
file.seekg(0, ios::end);
ifstream::pos_type ret= file.tellg();
file.seekg(0,ios::beg);
ret=ret-file.tellg();
file.close();
return ret;
}
vector< pair<char*,int> > readFile(const char* fn){
vector< pair<char*,int> > v;
ifstream::pos_type size;
char * memblock;
ifstream file;
file.open(fn,ios::in|ios::binary|ios::ate);
if (file.is_open()) {
size = fileS(fn);
file.seekg (0, ios::beg);
int bs = size/3; // arbitrary. Actual program will use the socket send size
int ws = 0;
int i = 0;
cout<<"size:"<<size<<" bs:"<<bs<<endl;
for(i = 0; i < size; i+=bs){
if(i+bs > size)
ws = size%bs;
else
ws = bs;
cout<<"read:"<<ws<<endl;
memblock = new char [ws];
file.read (memblock, ws);
v.push_back(make_pair(memblock,ws));
}
}
else{
exit(-4);
}
return v;
}
int main(int argc, char **argv) {
vector< pair<char*,int> > v = readFile("a.png");
ofstream myFile ("out.png", ios::out | ios::binary);
for(vector< pair<char*,int> >::iterator it = v.begin(); it!=v.end(); ++it ){
pair<char*,int> p=*it;
myFile.write(p.first,p.second);
}
}
myFile.write(*it,strlen(*it));
Is using string length on binary data. I suspect that is your culprit. If not, it's certainly a code-smell.
You should never do this:
myFile.write(*it,strlen(*it));
on binary data. strlen counts bytes until it hits a byte which contains a 0 (NUL as we like to say, but it's an honest 0). If you read enough binary data, you will hit a NUL, and you'll get a short count. But actually the situation could be a lot worse, because nowhere do you store the NUL for strlen to find. You're just counting on there being one beyond the end of the datablock you acquire to read the file into.
So don't do that. Remember the number of bytes in each block (you could use a vector> but there are a lot of more C++-like possibilities) and use that to write the data.
I am having problems trying to serialise a vector (std::vector) into a binary format and then correctly deserialise it and be able to read the data. This is my first time using a binary format (I was using ASCII but that has become too hard to use now) so I am starting simple with just a vector of ints.
Whenever I read the data back the vector always has the right length but the data is either 0, undefined or random.
class Example
{
public:
std::vector<int> val;
};
WRITE:
Example example = Example();
example.val.push_back(10);
size_t size = sizeof BinaryExample + (sizeof(int) * example.val.size());
std::fstream file ("Levels/example.sld", std::ios::out | std::ios::binary);
if (file.is_open())
{
file.seekg(0);
file.write((char*)&example, size);
file.close();
}
READ:
BinaryExample example = BinaryExample();
std::ifstream::pos_type size;
std::ifstream file ("Levels/example.sld", std::ios::in | std::ios::binary | std::ios::ate);
if (file.is_open())
{
size = file.tellg();
file.seekg(0, std::ios::beg);
file.read((char*)&example, size);
file.close();
}
Does anyone know what I am doing wrong or what to do or be able to point me in the direction that I need to do?
You can't unserialise a non-POD class by overwriting an existing instance as you seem to be trying to do - you need to give the class a constructor that reads the data from the stream and constructs a new instance of the class with it.
In outline, given something like this:
class A {
A();
A( istream & is );
void serialise( ostream & os );
vector <int> v;
};
then serialise() would write the length of the vector followed by the vector contents. The constructor would read the vector length, resize the vector using the length, then read the vector contents:
void A :: serialise( ostream & os ) {
size_t vsize = v.size();
os.write((char*)&vsize, sizeof(vsize));
os.write((char*)&v[0], vsize * sizeof(int) );
}
A :: A( istream & is ) {
size_t vsize;
is.read((char*)&vsize, sizeof(vsize));
v.resize( vsize );
is.read((char*)&v[0], vsize * sizeof(int));
}
You're using the address of the vector. What you need/want is the address of the data being held by the vector. Writing, for example, would be something like:
size = example.size();
file.write((char *)&size, sizeof(size));
file.write((char *)&example[0], sizeof(example[0] * size));
I would write in network byte order to ensure file can be written&read on any platform. So:
#include <fstream>
#include <iostream>
#include <iomanip>
#include <vector>
#include <arpa/inet.h>
int main(void) {
std::vector<int32_t> v = std::vector<int32_t>();
v.push_back(111);
v.push_back(222);
v.push_back(333);
{
std::ofstream ofs;
ofs.open("vecdmp.bin", std::ios::out | std::ios::binary);
uint32_t sz = htonl(v.size());
ofs.write((const char*)&sz, sizeof(uint32_t));
for (uint32_t i = 0, end_i = v.size(); i < end_i; ++i) {
int32_t val = htonl(v[i]);
ofs.write((const char*)&val, sizeof(int32_t));
}
ofs.close();
}
{
std::ifstream ifs;
ifs.open("vecdmp.bin", std::ios::in | std::ios::binary);
uint32_t sz = 0;
ifs.read((char*)&sz, sizeof(uint32_t));
sz = ntohl(sz);
for (uint32_t i = 0; i < sz; ++i) {
int32_t val = 0;
ifs.read((char*)&val, sizeof(int32_t));
val = ntohl(val);
std::cout << i << '=' << val << '\n';
}
}
return 0;
}
Read the other's answer to see how you should read/write a binary structure.
I add this one because I believe your motivations for using a binary format are mistaken. A binary format won't be easier that an ASCII one, usually it's the other way around.
You have many options to save/read data for long term use (ORM, databases, structured formats, configuration files, etc). The flat binary file is usually the worst and the harder to maintain except for very simple structures.