I need to create a custom reading callback function that can read contents of a file in the form of a std::string into a uint8_t * buf. I tried multiple different methods found around the internet and on stackoverflow but sometimes it works and other the the program infinitely loops or stops execution half way.
I have no problems with amr/3gp files but all wav/pcm files are causing some problems for some reason. All I know its something to do with the reading function I have so far.
Ideally I would like to be able to give the program any type of file and then it converts it.
This is how I am calling the readCallback function from the code:
//create the buffer
uint8_t * avio_ctx_buffer = NULL;
//allocate space for the buffer using ffmpeg allocation method
avio_ctx_buffer = (uint8_t *) av_malloc(avio_ctx_buffer_size);
//Allocate and initialize an AVIOContext for buffered I/O.
//audio variable contains the contents of the audio file
avio_ctx = avio_alloc_context(avio_ctx_buffer, avio_ctx_buffer_size,0, &audio, &readCallback, NULL, NULL);
Here is the callback function that works on some types of files:
static int readCallback(void* opaque, uint8_t * buf, int buf_size){
std::string * file =static_cast<std::string *>(opaque);
if(file->length() == 0){
return AVERROR_EOF; //if we reach to the end of the string, return
// return End of file
}
// Creating a vector of the string size
std::vector<uint8_t> array(file->length());
//Copying the contents of the string into the vector
std::copy(file->begin(),file->end(),array.begin());
//Copying the vector into buf
std::copy(array.begin(),array.end(),buf);
return file->length();
}
After tyring some stuff for awhile, I got a solution using std::stringstream and it works well with several formats I tested with so far: 3gp/amr,wav/pcm,mp3.
Here a the snippet of code:
//Create a string stream that contains the audio
std::stringstream audio_stream(audio);
//create the buffer
uint8_t * avio_ctx_buffer = NULL;
//allocate space for the buffer using ffmpeg allocation method
avio_ctx_buffer = (uint8_t *) av_malloc(avio_ctx_buffer_size);
//Allocate and initialize an AVIOContext for buffered I/O.
//Pass the stringstream audio_stream
avio_ctx = avio_alloc_context(avio_ctx_buffer, avio_ctx_buffer_size,0,&audio_stream, &readCallback, NULL, NULL);
The callback function:
static int readFunction1(void* opaque, uint8_t * buf, int buf_size){
//Cast the opaque pointer to std::stringstream
std::stringstream * me =static_cast<std::stringstream *>(opaque);
//If we are at the end of the stream return FFmpeg's EOF
if(me->tellg() == buf_size){
return AVERROR_EOF;
}
// Read the stream into the buf and cast it to char *
me->read((char*)buf, buf_size);
//return how many characters extracted
return me->tellg();
}
Related
To read data from a file, I create heap memory then pass the variable pointer to a function so fread() will put the file data into the pointer. But when the function returns, there is no data in the new created memory.
int main(...) {
MyFile File;
File.Open(...);
int filesize = File.Tell();
char* buffer = new buffer[filesize]; // Create some memory for the data
File.Read((char**)&buffer);
// Now do something with the buffer. BUT there is trash in it.
File.Close();
delete [] buffer;
}
size_t File::Read(void* buf) {
...
::fseek(fStream, 0, SEEK_END);
int fileSize = ::ftell(fStream); // Get file size.
::fseek(fStream, 0, SEEK_SET);
::fread(buf, 1, fileSize, fStream);
return (fileSize);
}
Yes, I can put char * myBuffer = new char[fileSize]; inside of File::Read(...) before ::fread(myBuffer, 1, fileSize, fStream);,
but I should not have to do this because I already have heap memory
(buffer) in main().
You're reading your file contents into the pointer buffer, not the array it points to.
You're overcomplicating things anyway. You don't need a pointer to a pointer, or a void*. You can simply pass a char* to Read. You should really also pass the size of the buffer pointed to into Read as well. Otherwise you risk overflowing your buffer.
int main() {
MyFile File;
File.Open(/*.....*/);
int filesize = File.Tell()
char* buffer = new buffer[filesize]; // Create some memory for the data
File.Read(buffer, filesize);
// Now do something with the buffer. BUT there is trash in it.
File.Close();
delete [] buffer;
}
size_t File::Read(char* buf, size_t count) {
// ......
// No need to find the size of the file a second time
// Return the actual number of bytes read
return ::fread(buf, 1, count, fStream);
}
I changed my function to:
size_t nvFile::Read( char * pszBuffer, const size_t uiCount ) ...
Thank you Miles Budnek! I did not think enought of my problem. I am opening a binary file and it is a byte (char), so it not have to be void *. (I put on my 'cone-of-shame' for not thinking.)
Thank you for help and makeing me think more. :)
Want to send image through RabbitMQ-C but the image file too big. Receiver cannot retrieve the image. So, I converted image to base64 then put it in JSON.
const char *msg;
FILE *image1;
if (image1 = fopen(path, "rb")) {
fseek(image1, 0, SEEK_END); //used to move file pointer to a specific position
// if fseek(0 success, return 0; not successful, return non-zero value
//SEEK_END: end of file
length = ftell(image1); //ftell(): used to get total size of file after moving the file pointer at the end of the file
sprintf(tmp, "size of file: %d bytes", length);
//convert image to base64
std::string line;
std::ifstream myfile;
myfile.open(path, std::ifstream::binary);
std::vector<char> data((std::istreambuf_iterator<char>(myfile)), std::istreambuf_iterator<char>() );
std::string base64_encode(unsigned char const* bytes_to_encode, unsigned int in_len);
std::string code = base64_encode((unsigned char*)&data[0], (unsigned int)data.size());
//convert std::string to const char
const char* base64_Image = code.c_str();
json j ;
j.push_back("Title");
j.push_back("content");
j.push_back(base64_Image);
std::string sa = j.dump();
msg = sa.c_str(); //convert std::string to const char*
}
else {
return;
}
Using RabbitMQ-C to send the message(msg) to receiver but failed
[error point to here]
is const char* cannot use amqp_cstring_bytes(msg) to convert to amqp_bytes_t??
respo = amqp_basic_publish(conn, 1, amqp_cstring_bytes(exchange), amqp_cstring_bytes(routing_key),0, 0, NULL, amqp_cstring_bytes(msg));
and get this error
If there is a handler for this exception, the program may be safely continued.```
Anyone know how to send image as JSON using RabbitMQ-C & C++ ?
amqp_cstring_bytes expects a C string, which is normally terminated by a NUL byte. Your PNG file is almost guaranteed to contain a NUL byte, so that explains why your message got cut off midway through.
As for the code in your paste: the pointer returned by sa.c_str() is only valid while sa is alive and unmodified. Once you exit the block containing sa's definition, the variable is dead and buried.
Instead, get a buffer of the appropriate size with amqp_bytes_alloc and return that:
amqp_bytes_t bytes = amqp_bytes_malloc(sa.length());
strncpy((char *)bytes.bytes, sa.c_str(), sa.length());
then pass the bytes object to amqp_basic_publish. Don't forget to ampqp_bytes_free it when you're done.
I am still learning Cpp, so please advise if I am misunderstanding here.
Using an ESP32, I am trying to read / write files to Flash / FFat. This is the method I have created which should read a file from flash and load it into PSRAM:
unsigned char* storage_read(char* path) {
File file = FFat.open(path);
if(!file) {
Serial.println("no file");
return 0x00;
}
int count = file.size();
unsigned char* buffer = (unsigned char*)ps_malloc(count);
Serial.printf("Bytes: %d\n", count);
Serial.printf("Count: %d\n", sizeof(buffer));
for (int i = 0; i < count; i++) {
buffer[i] = (unsigned char)file.read();
}
file.close();
return buffer;
}
The problem is that I get the contents of my b64 data file, with the addition of several extra bytes of data globbed on the end.
Calling the method with:
Serial.printf("Got: %s", storage_read("/frame/testframe-000.b64"));
I get the output:
Bytes: 684
Count: 4
Got: <myb64string> + <68B of garbage>
Why would sizeof not be returning the proper size?
What would be the proper way of loading this string into a buffer?
Why would sizeof not be returning the proper size?
That's because sizeof() has a very specific function (not very intuitive). It is used - compile time - to query the size of the data type passed to it. Calling sizeof(buffer) returns the size, in bytes, of the type of variable buffer. It's an unsigned char*, so a 4-byte memory address. So that's what you get.
What would be the proper way of loading this string into a buffer?
What I noticed is that you're expecting to load string data from your file, but you don't explicitly terminate it with a zero byte. As you probably know, all C strings must be terminated with a zero byte. Data that you load from the file most likely doesn't have one (unless you took extra care to add it while saving). So when you read a string from a file sized N bytes, allocate a buffer of N+1 bytes, load the file into it and terminate it with a zero. Something like this:
unsigned char* storage_read(char* path) {
File file = FFat.open(path);
if(!file) {
Serial.println("no file");
return 0x00;
}
int count = file.size();
unsigned char* buffer = (unsigned char*)ps_malloc(count + 1); //< Updated
Serial.printf("Bytes: %d\n", count);
Serial.printf("Count: %d\n", sizeof(buffer));
for (int i = 0; i < count; i++) {
buffer[i] = (unsigned char)file.read();
}
buffer[count] = 0; //< Added
file.close();
return buffer;
}
And since you're returning a heap-allocated buffer from your function, take extra care to remember to delete it in caller when finished. This line in your code will leak the memory:
Serial.printf("Got: %s", storage_read("/frame/testframe-000.b64"));
I am trying to get sound from simple tapping keyboard. Looks like a little drum machine.
If DirectSound is not a proper way to do this, please suggest something else.
In my code I don't know what's wrong. Here it is without error checking and with translations:
//Declaring the IDirectSound object
IDirectSound* device;
DirectSoundCreate(NULL, &device, NULL);
device->SetCooperativeLevel(hWnd, DSSCL_NORMAL );
/* Declaring secondary buffers */
IDirectSoundBuffer* kickbuf;
IDirectSoundBuffer* snarebuf;
/* Declaring .wav files pointers
And to structures for reading the information int the begining of the .wav file */
FILE* fkick;
FILE* fsnare;
sWaveHeader kickHdr;
sWaveHeader snareHdr;
The structure sWaveHeader is declared this way:
typedef struct sWaveHeader
{
char RiffSig[4]; // 'RIFF'
unsigned long WaveformChunkSize; // 8
char WaveSig[4]; // 'WAVE'
char FormatSig[4]; // 'fmt '
unsigned long FormatChunkSize; // 16
unsigned short FormatTag; // WAVE_FORMAT_PCM
unsigned short Channels; // Channels
unsigned long SampleRate;
unsigned long BytesPerSec;
unsigned short BlockAlign;
unsigned short BitsPerSample;
char DataSig[4]; // 'data'
unsigned long DataSize;
} sWaveHeader;
The .wav file opening
#define KICK "D:/muzic/kick.wav"
#define SNARE "D:/muzic/snare.wav"
fkick = fopen(KICK, "rb")
fsnare = fopen(SNARE, "rb")
Here I make a function that does the common work for snarebuf* and **kickbuf
int read_wav_to_WaveHeader (sWaveHeader* , FILE* , IDirectSoundBuffer* ); // The declaring
But I wil not write this function, just show the way it works with kickbuf, for instance.
fseek(fkick, 0, SEEK_SET); // Zero the position in file
fread(&kickHdr, 1, sizeof(sWaveHeader), fkick); // reading the sWaveHeader structure from file
Here goes a checking for fitting if sWaveHeader structure:
if(memcmp(pwvHdr.RiffSig, "RIFF", 4) ||
memcmp(pwvHdr.WaveSig, "WAVE", 4) ||
memcmp(pwvHdr.FormatSig, "fmt ", 4) ||
memcmp(pwvHdr.DataSig, "data", 4))
return 1;
Declaring the format and descriptor for a buffer and filling them:
DSBUFFERDESC bufDesc;
WAVEFORMATEX wvFormat;
ZeroMemory(&wvFormat, sizeof(WAVEFORMATEX));
wvFormat.wFormatTag = WAVE_FORMAT_PCM;
wvFormat.nChannels = kickHdr.Channels;
wvFormat.nSamplesPerSec = kickHdr.SampleRate;
wvFormat.wBitsPerSample = kickHdr.BitsPerSample;
wvFormat.nBlockAlign = wvFormat.wBitsPerSample / 8 * wvFormat.nChannels;
ZeroMemory(&bufDesc, sizeof(DSBUFFERDESC));
bufDesc.dwSize = sizeof(DSBUFFERDESC);
bufDesc.dwFlags = DSBCAPS_CTRLVOLUME |
DSBCAPS_CTRLPAN |
DSBCAPS_CTRLFREQUENCY;
bufDesc.dwBufferBytes = kickHdr.DataSize;
bufDesc.lpwfxFormat = &wvFormat;
Well, the creating of a buffer:
device->CreateSoundBuffer(&bufDesc, &kickbuf, NULL); // Any mistakes by this point?
Now locking the buffer and loading some data to it.
This data starts after sizeof(sWaveHeader) bytes in a WAVE file, am I wrong?
LPVOID Ptr1; // pointer on a pointer on a First block of data
LPVOID Ptr2; // pointer on a pointer on a Second block of data
DWORD Size1, Size2; // their sizes
Now calling the Lock() method:
kickbuf->Lock((DWORD)LockPos, (DWORD)Size,
&Ptr1, &Size1,
&Ptr2, &Size2, 0);
Loading data (is it ok?):
fseek(fkick, sizeof(sWaveHeader), SEEK_SET);
fread(Ptr1, 1, Size1, fkick);
if(Ptr2 != NULL)
fread(Ptr2, 1, Size2, fkick);
Unlocking the buffer:
kickbuf->Unlock(Ptr1, Size1, Ptr2, Size2);
Setting the volume:
kickbuf->SetVolume(-2500);
Then I make a wile(1) looping:
1. ask for a key pressing
2. if it is pressed:
kickbuf->SetCurrentPosition(0)
kickbuf->Play(0,0,0);
But there's no sound playing, please say, what is not proper in my code or maybe in the whole concept. Thank you.
When you initialize the WAVEFORMATEX, your are forgetting to set the nAvgBytesPerSec member. Add this line after the initialization of wvFormat.nBlockAlign:
wvFormat.nAvgBytesPerSec = wvFormat.nSamplesPerSec * wvFormat.nBlockAlign;
Also, I suspect this could be a problem:
kickbuf->SetVolume(-2500);
I suspect that will just attenuate your sample to absolute silence. Try taking that call out so that it plays at full volume.
But more likely, none of you sample code above shows validation of the return values from any of the DirectSound APIs, nor any of the file I/O values. Have you validated the HRESULTs returned by all the DSound APIs are returning S_OK? Have you tried printing or using OutputDebugString to print the values you computed for the members of WAVEFORMATEX?
Have you debugging the fread calls to validate that you are getting valid data into your buffers?
Hope this helps.
I am trying to constantly read data into a buffer of type unsigned char* from different files. However, I can't seem to set the buffer to NULL prior to reading in the next file.
Here is only the relevant code:
#include <stdio.h>
#include <fstream>
int
main (int argc, char** argv) {
FILE* dataFile = fopen("C:\\File1.txt", "rb");
unsigned char *buffer = NULL;
buffer = (unsigned char*)malloc(1000);
fread(buffer,1,1000,dataFile);
fclose(dataFile);
dataFile = fopen("C:\\File2.txt", "rb");
buffer = NULL;
fread(buffer,1,1000,dataFile);
fclose(dataFile);
system("pause");
return 0;
}
The error I run into is at the second occurrence of this line: fread(buffer,1,1000,dataFile);
The error I get is:
Debug Assertion Failed!
Expression: (buffer != NULL)
It points me to Line 147 of fread.c which is basically:
/* validation */
_VALIDATE_RETURN((buffer != NULL), EINVAL, 0);
if (stream == NULL || num > (SIZE_MAX / elementSize))
{
if (bufferSize != SIZE_MAX)
{
memset(buffer, _BUFFER_FILL_PATTERN, bufferSize);
}
_VALIDATE_RETURN((stream != NULL), EINVAL, 0);
_VALIDATE_RETURN(num <= (SIZE_MAX / elementSize), EINVAL, 0);
}
I did Google for ways to get the buffer pointer to NULL and tried the various suggestions, but none seem to work. Anyone can clarify what is the right way to set it to NULL?
Your buffer is a pointer.
When you do this:
buffer = (unsigned char*)malloc(1000);
you allocate some space in memory, and assign its starting position to buffer. Remember, buffer holds the address of the beginning of the space, that's all. When you do this:
buffer = NULL;
you have thrown away that address.
EDIT:
C++ style, without dynamic memory:
#include <fstream>
using std:: string;
using std:: ifstream;
void readFromFile(string fname)
{
char buffer[1000];
ifstream fin(fname.c_str());
fin.read(buffer, sizeof(buffer));
// maybe do things with the data
}
int main ()
{
readFromFile("File1.txt");
readFromFile("File2.txt");
return 0;
}
There's no need to erase the contents of the buffer. If the cost of allocating and deallocating the buffer with each call is too much, just add static:
static char buffer[1000];
It will be overwritten each time.
You can't say buffer = NULL because fread wil try to dereference it. Dereferencing NULL is one of the things that are certainly and completely illegal in C++. In effect you're losing what you got from malloc. Perhaps you're looking for memset and trying to zero the buffer:
memset(buffer, 0, 1000);
However, you don't need to do this before calling fread. There's simply no reason since fread will write the buffer anyway: it doesn't care if it's zeroed or not.
As a side note: you're writing very C-ish code in what I suspect is C++ (given your fstream header). There are better-suited I/O options for C++.