I am working on an assignment where I need to ray trace a sphere with a plane (floor). I have the sphere but I am having trouble with the plane. I use the ray-plane intersection formula:
t = -(o-p).n / d.n. I have this in Plane.h, however when I run my code I get errors from Ray.h. Could someone explain what I'm doing wrong? Any help would be appreciated.
Plane.h
`#include "..\..\raytrace\Ray.h"
class Plane
{
using Colour = cv::Vec3b; // RGB Value
private:
Vec3 normal_;
Vec3 distance_;
Colour color_;
public:
Plane();
Plane(Vec3 norm, Vec3 dis, Colour color) : normal_(norm), distance_(dis), color_(color) {}
Vec3 norm() const {
return normal_;
}
Vec3 dis() const {
return distance_;
}
Colour color() const {
return color_;
}
float findIntersection(Ray ray) {
Vec3 rayDirection = ray.mPosition();
float denominator = rayDirection.dot(normal_);
if (denominator == 0) {
return false;
}
else {
//mPosition() is origin in Ray.h
float t = -(((ray.mPosition() - distance_)).dot(normal_)) / denominator;
}
}
};
`
Ray.h
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <cmath>
#include "Image.h"
// Data types
typedef float Scalar; //**custom datatype: Scalar is float
typedef Eigen::Matrix<Scalar, 3, 1> Vec3; //***Vec3 is a custom datatype (specific kind)
typedef Eigen::Matrix<Scalar, 2, 1> Vec2;
typedef unsigned char uchar;
class Ray
{
private:
Vec3 mPosition_; //point
public:
Ray() {}
//constuctor, when we construct ray we get mPosition_
Ray(Vec3 mPosition) : mPosition_(mPosition) {
//
}
float t;
Vec3 mPosition() const {
return mPosition_;
}
public:
inline Vec3 generateRay(Vec3 const& pt) {
Vec3 origin = mPosition_;
Vec3 direction = pt - mPosition_; // d = s -e, pt is pixel Position
direction.normalize();
return pt + t * direction;
}
};
main.cpp
#include <cmath>
#include "Image.h"
#include "Ray.h"
#include "../build/raytrace/Plane.h"
//Color functions
using Colour = cv::Vec3b; // RGB Value
//Color is a Vec3b datatype, use Color instead of Vec3b, it has 3 vectors, hold 3 values b/w 0-255
Colour red() { return Colour(255, 0, 0); }
Colour green() { return Colour(0, 255,0); }
Colour blue() { return Colour(0, 0, 255); }
Colour white() { return Colour(255, 255, 255); }
Colour black() { return Colour(0, 0, 0); }
//bounding the channel wise pixel color between 0 to 255
//bounding the color value, if a value is beyond 255 clamp it to 255, and any value below 0 clamp to 0.
uchar Clamp(int color)
{
if (color < 0) return 0;
if (color >= 255) return 255;
return color;
}
int main(int, char**){
//Create an image object with 500 x 500 resolution.
Image image = Image(500, 500);
//Coordinates of image rectangle
Vec3 llc = Vec3(-1, -1, -1); //**llc - lower left corner
Vec3 urc = Vec3(1, 1, -1); //**urc - upper right corner
int width = urc(0) - llc(0);
int height = urc(1) - llc(1);
Vec2 pixelUV = Vec2((float)width / image.cols, (float)height / image.rows);
/// TODO: define camera position (view point), sphere center, sphere radius (Weightage: 5%)
Vec3 CameraPoint = Vec3(0, 0, 0); //**it is the origin
Vec3 SphereCenter = Vec3(0, 0, -5); //**it is the Sphere Position
float SphereRadius = 2.0;
Vec3 LightSource = Vec3(2.0, 0.0, 3.0); //**
Vec3 ambient = Vec3(0, 0, 0.5); //**
Vec3 diffuse = Vec3(224, 180, 255); //** 0, 255, 100 - green
Vec3 Origin = CameraPoint;
//end
for (int row = 0; row < image.rows; ++row) {
for (int col = 0; col < image.cols; ++col) {
//TODO: Build primary rays
//Find the pixel position (PixelPos) for each row and col and then construct the vector PixelPos-Origin
Vec3 pixelPos = Vec3(llc(0) + pixelUV(0) * (col + 0.5), llc(1) + pixelUV(1) * (row + 0.5), -1);
//create a ray object
Ray r; //**
//Vec3 rayDir = pixelPos - Origin; //**direction of the ray
Vec3 rayDir = r.generateRay(pixelPos); //**pixelPos-Origin
rayDir.normalize(); //**normalize the ray direction vector
//Ray-sphere intersection...(refer to the lecture slides and Section 4.4.1 of the textbook)
float a = rayDir.dot(rayDir);
Vec3 s0_r0 = Origin - SphereCenter; //***s0_r0 - sphere center - ray origin
float b = 2.0 * rayDir.dot(s0_r0);
float c = s0_r0.dot(s0_r0) - pow(SphereRadius, 2);
//compute the discriminant
float discriminant = pow(b, 2) - 4 * a * c;
//if the discriminant is greater than zero
if(discriminant > 0){
//find roots t1 and t2
float t1 = (-b - sqrt((pow(b, 2)) - 4.0 * a * c)) / (2.0 * a); //**
float t2 = (-b + sqrt((pow(b, 2)) - 4.0 * a * c)) / (2.0 * a); //**
//determine which one is the real intersection point
float t;
//Sphere s;
if (t1 < t2 && (t1 > 0 && t2 > 0)) {
t = t1;
//} //should this be after the if-statement below, so that it uses t = t1 and not just float t.????
if (t > 0) {
//Shade the pixel, normal is Intersection - SphereCenter, LightVector is LightSource- Intersection, make sure to normalize the vectors
Vec3 Intersection = Origin + (t * rayDir);
Vec3 Normal = Intersection - SphereCenter; //** normalize
Normal.normalize(); //**
Vec3 LightVector = LightSource - Intersection; //**normalize
LightVector.normalize(); //**
float diffuseTerm = LightVector.dot(Normal);
if (diffuseTerm < 0) diffuseTerm = 0;
Colour colour(0, 0, 0); //The ambient base
colour[0] = Clamp(ambient[0] + diffuse[0] * diffuseTerm);
colour[1] = Clamp(ambient[1] + diffuse[1] * diffuseTerm);
colour[2] = Clamp(ambient[2] + diffuse[2] * diffuseTerm);
image(row, col) = colour;
}
}//
else {
image(row, col) = black();
}
} else {
//No intersection, discriminant < 0
image(row, col) = red(); //**makes blue background colour
}
////**Plane intersection
//create a plane object
Plane plane(Vec3(-5, 0, -4), Vec3(0, 0, -1), black());
//Plane plane;
////if ray hits plane -> color black
//if (plane.findIntersection(rayDir) == 1) {
// image(row, col) = black();
//}
//else {
// image(row, col) = white();
//}
}
}
/// Required outputs: (1) Ray traced image of a sphere (2) Ray traced image when the camera is placed inside the sphere (complete black)
image.save("./result.png");
image.display();
return EXIT_SUCCESS;
}
Errors
enter image description here
#include is a shockingly simple directive. It literally just copy-pastes the content of the file.
main.cpp includes both Ray.h and Plane.h, and Plane.h includes Ray.h, so Ray.h ends up being included twice. That's why the compiler is complaining about a "class redefinition".
You can add #pragma once at the top of all your header files to let the compiler know know to skip the file if it was included already.
N.B. #pragma once is not officially part of the language, but it is supported by all compilers and has a few small advantages over the alternative.
I have a terrain with a specific length and width, which take the information from he file bmp. With Shade of grey i can modify my terrain. Fine, it works great.
Here comes the problem.
I need my terrain divided into physically smaller parts, joined together create the original terrain.
How can i do this? I know that its possible. Any sugestions? Where, why there?
Mys file:
HeightField.cpp
#include "HeightField.h"
HeightField::HeightField(Terrain terrain, PxPhysics& sdk, PxMaterial &material, int width, int height)
{
this->nrVertices = terrain.NumVertices;
this->terrain = terrain;
this->width = width;
this->height = height;
this->fillSamples();
this->fillDesc();
this->aHeightField = sdk.createHeightField(hfDesc);
this->hfGeom = new PxHeightFieldGeometry(aHeightField, PxMeshGeometryFlags(), this->terrain.dy / 255.0, this->terrain.dx, this->terrain.dz);
this->terrainPos = new PxTransform(PxVec3(-this->terrain.dx*(this->width - 1) / 2, 0.0f, this->terrain.dz*(this->height - 1) / 2), PxQuat(3.1415 / 2.0, PxVec3(0, 1, 0)));
this->g_pxHeightField = sdk.createRigidDynamic(*this->terrainPos);
this->g_pxHeightField->setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC, true);
PxShape* aHeightFieldShape = this->g_pxHeightField->createShape(*(this->hfGeom), material);
}
HeightField::~HeightField()
{
}
void HeightField::fillSamples()
{
this->samples = (PxHeightFieldSample*)malloc(sizeof(PxHeightFieldSample)*(this->nrVertices));
for (int i = 0; i < this->nrVertices; i++)
{
samples[i].height = this->terrain.hminfo.heightMap[i].y;
samples[i].clearTessFlag();
}
}
void HeightField::fillDesc()
{
this->hfDesc.format = PxHeightFieldFormat::eS16_TM;
this->hfDesc.nbColumns = this->width;
this->hfDesc.nbRows = this->height;
this->hfDesc.samples.data = this->samples;
this->hfDesc.samples.stride = sizeof(PxHeightFieldSample);
}
Terrain.cpp
#include "Terrain.h"
Terrain::Terrain(void)
{
v = NULL;
indices = NULL;
dx = dz = 1000; //odleg³oœæ miêdzy punktami grid'a
dy = 1000; //maksymalna wysokoϾ terenu
}
Terrain::~Terrain(void)
{
if (v != NULL) delete [] v;
if (indices != NULL) delete indices;
if (hminfo.heightMap != NULL) delete [] hminfo.heightMap;
}
bool Terrain::HeightMapLoad(char* filename, float sx, float sz, float maxy)
{
FILE *filePtr; // Point to the current position in the file
BITMAPFILEHEADER bitmapFileHeader; // Structure which stores information about file
BITMAPINFOHEADER bitmapInfoHeader; // Structure which stores information about image
int imageSize, index;
unsigned char height;
// Open the file
filePtr = fopen(filename,"rb");
if (filePtr == NULL)
return 0;
dx = sz;
dz = sz;
dy = maxy;
// Get the width and height (width and length) of the image
hminfo.terrainWidth = bitmapInfoHeader.biWidth;
hminfo.terrainHeight = bitmapInfoHeader.biHeight;
// Initialize the heightMap array (stores the vertices of our terrain)
hminfo.heightMap = new IntV3[hminfo.terrainWidth * hminfo.terrainHeight];
// We use a greyscale image, so all 3 rgb values are the same, but we only need one for the height
// So we use this counter to skip the next two components in the image data (we read R, then skip BG)
int k=0;
// Read the image data into our heightMap array
for(int j=0; j< hminfo.terrainHeight; j++)
{
for(int i=0; i< hminfo.terrainWidth; i++)
{
height = bitmapImage[k];
index = ( hminfo.terrainWidth * (hminfo.terrainHeight - 1 - j)) + i;
hminfo.heightMap[index].x = i - (hminfo.terrainWidth - 1)/2;
hminfo.heightMap[index].y = height;
hminfo.heightMap[index].z = j - (hminfo.terrainHeight - 1)/2;
k+=3;
}
k++;
}
int cols = hminfo.terrainWidth;
int rows = hminfo.terrainHeight;
//Create the grid
NumVertices = 2 * rows * cols;
NumFaces = (rows-1)*(cols-1)*2;
v = new struct HeightFieldVertex[NumVertices];
for(DWORD i = 0; i < rows; ++i)
{
for(DWORD j = 0; j < cols; ++j)
{
v[i*cols+j].pos.x = hminfo.heightMap[i*cols+j].x * dx;
v[i*cols+j].pos.y = (float(hminfo.heightMap[i*cols+j].y)/255.0) * dy;
v[i*cols+j].pos.z = hminfo.heightMap[i*cols+j].z * dz;
v[i*cols+j].texCoord = D3DXVECTOR2(j, i);
}
}
indices = new DWORD[NumFaces * 3];
k = 0;
for(DWORD i = 0; i < rows-1; i++)
{
for(DWORD j = 0; j < cols-1; j++)
{
indices[k] = i*cols+j; // Bottom left of quad
indices[k+1] = i*cols+j+1; // Bottom right of quad
indices[k+2] = (i+1)*cols+j; // Top left of quad
indices[k+3] = (i+1)*cols+j; // Top left of quad
indices[k+4] = i*cols+j+1; // Bottom right of quad
indices[k+5] = (i+1)*cols+j+1; // Top right of quad
k += 6; // next quad
}
}
//normals & tangents
std::vector<D3DXVECTOR3> tempNormal;
//normalized and unnormalized normals
D3DXVECTOR3 unnormalized(0.0f, 0.0f, 0.0f);
//tangent stuff
std::vector<D3DXVECTOR3> tempTangent;
D3DXVECTOR3 tangent(0.0f, 0.0f, 0.0f);
float tcU1, tcV1, tcU2, tcV2;
//Used to get vectors (sides) from the position of the verts
float vecX, vecY, vecZ;
//Two edges of our triangle
D3DXVECTOR3 edge1(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 edge2(0.0f, 0.0f, 0.0f);
//Compute face normals
//And Tangents
for(int i = 0; i < NumFaces; ++i)
{
//Get the vector describing one edge of our triangle (edge 0,2)
vecX = v[indices[(i*3)+1]].pos.x - v[indices[(i*3)]].pos.x;
vecY = v[indices[(i*3)+1]].pos.y - v[indices[(i*3)]].pos.y;
vecZ = v[indices[(i*3)+1]].pos.z - v[indices[(i*3)]].pos.z;
edge1 = D3DXVECTOR3(vecX, vecY, vecZ); //Create our first edge
//Get the vector describing another edge of our triangle (edge 2,1)
vecX = v[indices[(i*3)+2]].pos.x - v[indices[(i*3)]].pos.x;
vecY = v[indices[(i*3)+2]].pos.y - v[indices[(i*3)]].pos.y;
vecZ = v[indices[(i*3)+2]].pos.z - v[indices[(i*3)]].pos.z;
edge2 = D3DXVECTOR3(vecX, vecY, vecZ); //Create our second edge
//Cross multiply the two edge vectors to get the un-normalized face normal
D3DXVec3Cross(&unnormalized, &edge1, &edge2);
tempNormal.push_back(unnormalized);
//Find first texture coordinate edge 2d vector
tcU1 = v[indices[(i*3)+1]].texCoord.x - v[indices[(i*3)]].texCoord.x;
tcV1 = v[indices[(i*3)+1]].texCoord.y - v[indices[(i*3)]].texCoord.y;
//Find second texture coordinate edge 2d vector
tcU2 = v[indices[(i*3)+2]].texCoord.x - v[indices[(i*3)]].texCoord.x;
tcV2 = v[indices[(i*3)+2]].texCoord.y - v[indices[(i*3)]].texCoord.y;
//Find tangent using both tex coord edges and position edges
tangent.x = (tcV2 * edge1.x - tcV1 * edge2.x) / (tcU1 * tcV2 - tcU2 * tcV1);
tangent.y = (tcV2 * edge1.y - tcV1 * edge2.y) / (tcU1 * tcV2 - tcU2 * tcV1);
tangent.z = (tcV2 * edge1.z - tcV1 * edge2.z) / (tcU1 * tcV2 - tcU2 * tcV1);
tempTangent.push_back(tangent);
}
//Compute vertex normals (normal Averaging)
D3DXVECTOR4 normalSum(0.0f, 0.0f, 0.0f, 0.0f);
D3DXVECTOR4 tangentSum(0.0f, 0.0f, 0.0f, 0.0f);
int facesUsing = 0;
float tX, tY, tZ; //temp axis variables
//Go through each vertex
for(int i = 0; i < NumVertices; ++i)
{
//Check which triangles use this vertex
for(int j = 0; j < NumFaces; ++j)
{
if(indices[j*3] == i ||
indices[(j*3)+1] == i ||
indices[(j*3)+2] == i)
{
tX = normalSum.x + tempNormal[j].x;
tY = normalSum.y + tempNormal[j].y;
tZ = normalSum.z + tempNormal[j].z;
normalSum = D3DXVECTOR4(tX, tY, tZ, 0.0f); //If a face is using the vertex, add the unormalized face normal to the normalSum
facesUsing++;
}
}
//Get the actual normal by dividing the normalSum by the number of faces sharing the vertex
normalSum = normalSum / facesUsing;
facesUsing = 0;
//Check which triangles use this vertex
for(int j = 0; j < NumFaces; ++j)
{
if(indices[j*3] == i ||
indices[(j*3)+1] == i ||
indices[(j*3)+2] == i)
{
//We can reuse tX, tY, tZ to sum up tangents
tX = tangentSum.x + tempTangent[j].x;
tY = tangentSum.y + tempTangent[j].y;
tZ = tangentSum.z + tempTangent[j].z;
tangentSum = D3DXVECTOR4(tX, tY, tZ, 0.0f); //sum up face tangents using this vertex
facesUsing++;
}
}
//Get the actual normal by dividing the normalSum by the number of faces sharing the vertex
tangentSum = tangentSum / facesUsing;
//Normalize the normalSum vector and tangent
D3DXVec4Normalize(&normalSum, &normalSum);
D3DXVec4Normalize(&tangentSum, &tangentSum);
//Store the normal and tangent in our current vertex
v[i].normal.x = normalSum.x;
v[i].normal.y = normalSum.y;
v[i].normal.z = normalSum.z;
v[i].tangent.x = tangentSum.x;
v[i].tangent.y = tangentSum.y;
v[i].tangent.z = tangentSum.z;
D3DXVECTOR3 bit;
D3DXVec3Cross(&bit, &v[i].normal, &v[i].tangent);
v[i].bitangent = -1.0 * bit;
//Clear normalSum, tangentSum and facesUsing for next vertex
normalSum = D3DXVECTOR4(0.0f, 0.0f, 0.0f, 0.0f);
tangentSum = D3DXVECTOR4(0.0f, 0.0f, 0.0f, 0.0f);
facesUsing = 0;
}
////terrain AABB
//MinX = -1.0 * dx * (hminfo.terrainWidth - 1)/2;
//MinY = 0.0;
//MinZ = -1.0 * dz * (hminfo.terrainHeight - 1)/2;
//MaxX = dx * (hminfo.terrainWidth - 1)/2;
//MaxY = dy;
//MaxZ = dz * (hminfo.terrainHeight - 1)/2;
return true;
}
Fragment of Base.cpp
HeightField *hf = new HeightField(g_Terrain, *g_PhysicsSDK, *material, g_Terrain.hminfo.terrainWidth, g_Terrain.hminfo.terrainHeight);
g_PxScene->addActor(*(hf->g_pxHeightField));
I want to get something similar, but in order to work correctly
PVD - simulation Terrain
If you are familiar with the website rastertek for working with DirectX 10 or 11 in c++ within his updated DirectX 11 Terrain Series or version 2 a similar construct was created in tutorial 9 in which he calls Terrain Cells. The direct link to that tutorial can be found here: DirectX 11: Terrain Series2: Tutorial 9 - Terrain Cells. This should provide an excellent reference that I think is related toward the topic at hand and your initial question.
I have a ray tracer (from www.scratchapixel.com) that I use to write a image to memory that I then display at once using Opengl (glut). I use the width and height and divide the screen to get a Opengl point for every pixels. It kinda works.
My problem is that my width has to be between 500 and 799. It cannot be <= 499 of >= 800, witch doesn't make sense to me. The image becomes skew. I have tried it on 2 computers with the same result.
799x480
800x480
Here's the full code:
#define _USE_MATH_DEFINES
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <fstream>
#include <vector>
#include <iostream>
#include <cassert>
// OpenGl
#include "GL/glut.h"
GLuint width = 799, height = 480;
GLdouble width_step = 2.0f / width, height_step = 2.0f / height;
const int MAX_RAY_DEPTH = 3;
const double INFINITY = HUGE_VAL;
template<typename T>
class Vec3
{
public:
T x, y, z;
// Vector constructors.
Vec3() : x(T(0)), y(T(0)), z(T(0)) {}
Vec3(T xx) : x(xx), y(xx), z(xx) {}
Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
// Vector normalisation.
Vec3& normalize()
{
T nor = x * x + y * y + z * z;
if (nor > 1) {
T invNor = 1 / sqrt(nor);
x *= invNor, y *= invNor, z *= invNor;
}
return *this;
}
// Vector operators.
Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
Vec3<T>& operator += (const Vec3<T> &v) { x += v.x, y += v.y, z += v.z; return *this; }
Vec3<T>& operator *= (const Vec3<T> &v) { x *= v.x, y *= v.y, z *= v.z; return *this; }
Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
};
template<typename T>
class Sphere
{
public:
// Sphere variables.
Vec3<T> center; /// position of the sphere
T radius, radius2; /// sphere radius and radius^2
Vec3<T> surfaceColor, emissionColor; /// surface color and emission (light)
T transparency, reflection; /// surface transparency and reflectivity
// Sphere constructor.
// position(c), radius(r), surface color(sc), reflectivity(refl), transparency(transp), emission color(ec)
Sphere(const Vec3<T> &c, const T &r, const Vec3<T> &sc,
const T &refl = 0, const T &transp = 0, const Vec3<T> &ec = 0) :
center(c), radius(r), surfaceColor(sc), reflection(refl),
transparency(transp), emissionColor(ec), radius2(r * r)
{}
// compute a ray-sphere intersection using the geometric solution
bool intersect(const Vec3<T> &rayorig, const Vec3<T> &raydir, T *t0 = NULL, T *t1 = NULL) const
{
// we start with a vector (l) from the ray origin (rayorig) to the center of the curent sphere.
Vec3<T> l = center - rayorig;
// tca is a vector length in the direction of the normalise raydir.
// its length is streched using dot until it forms a perfect right angle triangle with the l vector.
T tca = l.dot(raydir);
// if tca is < 0, the raydir is going in the opposite direction. No need to go further. Return false.
if (tca < 0) return false;
// if we keep on into the code, it's because the raydir may still hit the sphere.
// l.dot(l) gives us the l vector length to the power of 2. Then we use Pythagoras' theorem.
// remove the length tca to the power of two (tca * tca) and we get a distance from the center of the sphere to the power of 2 (d2).
T d2 = l.dot(l) - (tca * tca);
// if this distance to the center (d2) is greater than the radius to the power of 2 (radius2), the raydir direction is missing the sphere.
// No need to go further. Return false.
if (d2 > radius2) return false;
// Pythagoras' theorem again: radius2 is the hypotenuse and d2 is one of the side. Substraction gives the third side to the power of 2.
// Using sqrt, we obtain the length thc. thc is how deep tca goes into the sphere.
T thc = sqrt(radius2 - d2);
if (t0 != NULL && t1 != NULL) {
// remove thc to tca and you get the length from the ray origin to the surface hit point of the sphere.
*t0 = tca - thc;
// add thc to tca and you get the length from the ray origin to the surface hit point of the back side of the sphere.
*t1 = tca + thc;
}
// There is a intersection with a sphere, t0 and t1 have surface distances values. Return true.
return true;
}
};
std::vector<Sphere<double> *> spheres;
// function to mix 2 T varables.
template<typename T>
T mix(const T &a, const T &b, const T &mix)
{
return b * mix + a * (T(1) - mix);
}
// This is the main trace function. It takes a ray as argument (defined by its origin
// and direction). We test if this ray intersects any of the geometry in the scene.
// If the ray intersects an object, we compute the intersection point, the normal
// at the intersection point, and shade this point using this information.
// Shading depends on the surface property (is it transparent, reflective, diffuse).
// The function returns a color for the ray. If the ray intersects an object, it
// returns the color of the object at the intersection point, otherwise it returns
// the background color.
template<typename T>
Vec3<T> trace(const Vec3<T> &rayorig, const Vec3<T> &raydir,
const std::vector<Sphere<T> *> &spheres, const int &depth)
{
T tnear = INFINITY;
const Sphere<T> *sphere = NULL;
// Try to find intersection of this raydir with the spheres in the scene
for (unsigned i = 0; i < spheres.size(); ++i) {
T t0 = INFINITY, t1 = INFINITY;
if (spheres[i]->intersect(rayorig, raydir, &t0, &t1)) {
// is the rayorig inside the sphere (t0 < 0)? If so, use the second hit (t0 = t1)
if (t0 < 0) t0 = t1;
// tnear is the last sphere intersection (or infinity). Is t0 in front of tnear?
if (t0 < tnear) {
// if so, update tnear to this closer t0 and update the closest sphere
tnear = t0;
sphere = spheres[i];
}
}
}
// At this moment in the program, we have the closest sphere (sphere) and the closest hit position (tnear)
// For this pixel, if there's no intersection with a sphere, return a Vec3 with the background color.
if (!sphere) return Vec3<T>(.5); // Grey background color.
// if we keep on with the code, it is because we had an intersection with at least one sphere.
Vec3<T> surfaceColor = 0; // initialisation of the color of the ray/surface of the object intersected by the ray.
Vec3<T> phit = rayorig + (raydir * tnear); // point of intersection.
Vec3<T> nhit = phit - sphere->center; // normal at the intersection point.
// if the normal and the view direction are not opposite to each other,
// reverse the normal direction.
if (raydir.dot(nhit) > 0) nhit = -nhit;
nhit.normalize(); // normalize normal direction
// The angle between raydir and the normal at point hit (not used).
//T s_angle = acos(raydir.dot(nhit)) / ( sqrt(raydir.dot(raydir)) * sqrt(nhit.dot(nhit)));
//T s_incidence = sin(s_angle);
T bias = 1e-5; // add some bias to the point from which we will be tracing
// Do we have transparency or reflection?
if ((sphere->transparency > 0 || sphere->reflection > 0) && depth < MAX_RAY_DEPTH) {
T IdotN = raydir.dot(nhit); // raydir.normal
// I and N are not pointing in the same direction, so take the invert.
T facingratio = std::max(T(0), -IdotN);
// change the mix value between reflection and refraction to tweak the effect (fresnel effect)
T fresneleffect = mix<T>(pow(1 - facingratio, 3), 1, 0.1);
// compute reflection direction (not need to normalize because all vectors
// are already normalized)
Vec3<T> refldir = raydir - nhit * 2 * raydir.dot(nhit);
Vec3<T> reflection = trace(phit + (nhit * bias), refldir, spheres, depth + 1);
Vec3<T> refraction = 0;
// if the sphere is also transparent compute refraction ray (transmission)
if (sphere->transparency) {
T ior = 1.2, eta = 1 / ior;
T k = 1 - eta * eta * (1 - IdotN * IdotN);
Vec3<T> refrdir = raydir * eta - nhit * (eta * IdotN + sqrt(k));
refraction = trace(phit - nhit * bias, refrdir, spheres, depth + 1);
}
// the result is a mix of reflection and refraction (if the sphere is transparent)
surfaceColor = (reflection * fresneleffect + refraction * (1 - fresneleffect) * sphere->transparency) * sphere->surfaceColor;
}
else {
// it's a diffuse object, no need to raytrace any further
// Look at all sphere to find lights
double shadow = 1.0;
for (unsigned i = 0; i < spheres.size(); ++i) {
if (spheres[i]->emissionColor.x > 0) {
// this is a light
Vec3<T> transmission = 1.0;
Vec3<T> lightDirection = spheres[i]->center - phit;
lightDirection.normalize();
T light_angle = (acos(raydir.dot(lightDirection)) / ( sqrt(raydir.dot(raydir)) * sqrt(lightDirection.dot(lightDirection))));
T light_incidence = sin(light_angle);
for (unsigned j = 0; j < spheres.size(); ++j) {
if (i != j) {
T t0, t1;
// Does the ray from point hit to the light intersect an object?
// If so, calculate the shadow.
if (spheres[j]->intersect(phit + (nhit * bias), lightDirection, &t0, &t1)) {
shadow = std::max(0.0, shadow - (1.0 - spheres[j]->transparency));
transmission = transmission * spheres[j]->surfaceColor * shadow;
//break;
}
}
}
// For each light found, we add light transmission to the pixel.
surfaceColor += sphere->surfaceColor * transmission *
std::max(T(0), nhit.dot(lightDirection)) * spheres[i]->emissionColor;
}
}
}
return surfaceColor + sphere->emissionColor;
}
// Main rendering function. We compute a camera ray for each pixel of the image,
// trace it and return a color. If the ray hits a sphere, we return the color of the
// sphere at the intersection point, else we return the background color.
Vec3<double> *image = new Vec3<double>[width * height];
static Vec3<double> cam_pos = Vec3<double>(0);
template<typename T>
void render(const std::vector<Sphere<T> *> &spheres)
{
Vec3<T> *pixel = image;
T invWidth = 1 / T(width), invHeight = 1 / T(height);
T fov = 30, aspectratio = T(width) / T(height);
T angle = tan(M_PI * 0.5 * fov / T(180));
// Trace rays
for (GLuint y = 0; y < height; ++y) {
for (GLuint x = 0; x < width; ++x, ++pixel) {
T xx = (2 * ((x + 0.5) * invWidth) - 1) * angle * aspectratio;
T yy = (1 - 2 * ((y + 0.5) * invHeight)) * angle;
Vec3<T> raydir(xx, yy, -1);
raydir.normalize();
*pixel = trace(cam_pos, raydir, spheres, 0);
}
}
}
//********************************** OPEN GL ***********************************************
void init(void)
{
/* Select clearing (background) color */
glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
/* Initialize viewing values */
//glMatrixMode(GL_PROJECTION);
gluOrtho2D(0,width,0,height);
}
void advanceDisplay(void)
{
cam_pos.z = cam_pos.z - 2;
glutPostRedisplay();
}
void backDisplay(void)
{
cam_pos.z = cam_pos.z + 2;
glutPostRedisplay();
}
void resetDisplay(void)
{
Vec3<double> new_cam_pos;
new_cam_pos = cam_pos;
cam_pos = new_cam_pos;
glutPostRedisplay();
}
void reshape(int w, int h)
{
glLoadIdentity();
gluOrtho2D(0,width,0,height);
glLoadIdentity();
}
void mouse(int button, int state, int x, int y)
{
switch (button)
{
case GLUT_LEFT_BUTTON:
if(state == GLUT_DOWN)
{
glutIdleFunc(advanceDisplay);
}
break;
case GLUT_MIDDLE_BUTTON:
if(state == GLUT_DOWN)
{
glutIdleFunc(resetDisplay);
}
break;
case GLUT_RIGHT_BUTTON:
if(state == GLUT_DOWN)
{
glutIdleFunc(backDisplay);
}
break;
}
}
void display(void)
{
int i;
float x, y;
/* clear all pixels */
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix();
render<double>(spheres); // Creates the image and put it to memory in image[].
i=0;
glBegin(GL_POINTS);
for(y=1.0f;y>-1.0;y=y-height_step)
{
for(x=1.0f;x>-1.0;x=x-width_step)
{
glColor3f((std::min(double(1), image[i].x)),
(std::min(double(1), image[i].y)),
(std::min(double(1), image[i].z)));
glVertex2f(x, y);
if(i < width*height)
{
i = i + 1;
}
}
}
glEnd();
glPopMatrix();
glutSwapBuffers();
}
int main(int argc, char **argv)
{
// position, radius, surface color, reflectivity, transparency, emission color
spheres.push_back(new Sphere<double>(Vec3<double>(0, -10004, -20), 10000, Vec3<double>(0.2), 0.0, 0.0));
spheres.push_back(new Sphere<double>(Vec3<double>(3, 0, -15), 2, Vec3<double>(1.00, 0.1, 0.1), 0.65, 0.95));
spheres.push_back(new Sphere<double>(Vec3<double>(1, -1, -18), 1, Vec3<double>(1.0, 1.0, 1.0), 0.9, 0.9));
spheres.push_back(new Sphere<double>(Vec3<double>(-2, 2, -15), 2, Vec3<double>(0.1, 0.1, 1.0), 0.05, 0.5));
spheres.push_back(new Sphere<double>(Vec3<double>(-4, 3, -18), 1, Vec3<double>(0.1, 1.0, 0.1), 0.3, 0.7));
spheres.push_back(new Sphere<double>(Vec3<double>(-4, 0, -25), 1, Vec3<double>(1.00, 0.1, 0.1), 0.65, 0.95));
spheres.push_back(new Sphere<double>(Vec3<double>(-1, 1, -25), 2, Vec3<double>(1.0, 1.0, 1.0), 0.0, 0.0));
spheres.push_back(new Sphere<double>(Vec3<double>(2, 2, -25), 1, Vec3<double>(0.1, 0.1, 1.0), 0.05, 0.5));
spheres.push_back(new Sphere<double>(Vec3<double>(5, 3, -25), 2, Vec3<double>(0.1, 1.0, 0.1), 0.3, 0.7));
// light
spheres.push_back(new Sphere<double>(Vec3<double>(-10, 20, 0), 3, Vec3<double>(0), 0, 0, Vec3<double>(3)));
spheres.push_back(new Sphere<double>(Vec3<double>(0, 10, 0), 3, Vec3<double>(0), 0, 0, Vec3<double>(1)));
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(width, height);
glutInitWindowPosition(10,10);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
delete [] image;
while (!spheres.empty()) {
Sphere<double> *sph = spheres.back();
spheres.pop_back();
delete sph;
}
return 0;
}
This is where the image is written to memory:
Vec3<double> *image = new Vec3<double>[width * height];
static Vec3<double> cam_pos = Vec3<double>(0);
template<typename T>
void render(const std::vector<Sphere<T> *> &spheres)
{
Vec3<T> *pixel = image;
T invWidth = 1 / T(width), invHeight = 1 / T(height);
T fov = 30, aspectratio = T(width) / T(height);
T angle = tan(M_PI * 0.5 * fov / T(180));
// Trace rays
for (GLuint y = 0; y < height; ++y) {
for (GLuint x = 0; x < width; ++x, ++pixel) {
T xx = (2 * ((x + 0.5) * invWidth) - 1) * angle * aspectratio;
T yy = (1 - 2 * ((y + 0.5) * invHeight)) * angle;
Vec3<T> raydir(xx, yy, -1);
raydir.normalize();
*pixel = trace(cam_pos, raydir, spheres, 0);
}
}
}
This is where I read it back and write it to each point of Opengl:
void display(void)
{
int i;
float x, y;
/* clear all pixels */
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix();
render<double>(spheres); // Creates the image and put it to memory in image[].
i=0;
glBegin(GL_POINTS);
for(y=1.0f;y>-1.0;y=y-height_step)
{
for(x=1.0f;x>-1.0;x=x-width_step)
{
glColor3f((std::min(double(1), image[i].x)),
(std::min(double(1), image[i].y)),
(std::min(double(1), image[i].z)));
glVertex2f(x, y);
if(i < width*height)
{
i = i + 1;
}
}
}
glEnd();
glPopMatrix();
glutSwapBuffers();
}
I have no idea what is causing this. Is it a bad design? An Opengl display mode? I don't know.
Is it a bad design?
Yes! Upload your rendered scene to a texture and then render a quad with it:
// g++ -O3 main.cpp -lglut -lGL -lGLU
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <fstream>
#include <vector>
#include <iostream>
#include <cassert>
// OpenGl
#include "GL/glut.h"
GLuint width = 800, height = 480;
GLdouble width_step = 2.0f / width;
GLdouble height_step = 2.0f / height;
const int MAX_RAY_DEPTH = 3;
template<typename T>
class Vec3
{
public:
T x, y, z;
// Vector constructors.
Vec3() : x(T(0)), y(T(0)), z(T(0)) {}
Vec3(T xx) : x(xx), y(xx), z(xx) {}
Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
// Vector normalisation.
Vec3& normalize()
{
T nor = x * x + y * y + z * z;
if (nor > 1) {
T invNor = 1 / sqrt(nor);
x *= invNor, y *= invNor, z *= invNor;
}
return *this;
}
// Vector operators.
Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
Vec3<T>& operator += (const Vec3<T> &v) { x += v.x, y += v.y, z += v.z; return *this; }
Vec3<T>& operator *= (const Vec3<T> &v) { x *= v.x, y *= v.y, z *= v.z; return *this; }
Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
};
template<typename T>
class Sphere
{
public:
// Sphere variables.
Vec3<T> center; /// position of the sphere
T radius, radius2; /// sphere radius and radius^2
Vec3<T> surfaceColor, emissionColor; /// surface color and emission (light)
T transparency, reflection; /// surface transparency and reflectivity
// Sphere constructor.
// position(c), radius(r), surface color(sc), reflectivity(refl), transparency(transp), emission color(ec)
Sphere(const Vec3<T> &c, const T &r, const Vec3<T> &sc,
const T &refl = 0, const T &transp = 0, const Vec3<T> &ec = 0) :
center(c), radius(r), surfaceColor(sc), reflection(refl),
transparency(transp), emissionColor(ec), radius2(r * r)
{}
// compute a ray-sphere intersection using the geometric solution
bool intersect(const Vec3<T> &rayorig, const Vec3<T> &raydir, T *t0 = NULL, T *t1 = NULL) const
{
// we start with a vector (l) from the ray origin (rayorig) to the center of the curent sphere.
Vec3<T> l = center - rayorig;
// tca is a vector length in the direction of the normalise raydir.
// its length is streched using dot until it forms a perfect right angle triangle with the l vector.
T tca = l.dot(raydir);
// if tca is < 0, the raydir is going in the opposite direction. No need to go further. Return false.
if (tca < 0) return false;
// if we keep on into the code, it's because the raydir may still hit the sphere.
// l.dot(l) gives us the l vector length to the power of 2. Then we use Pythagoras' theorem.
// remove the length tca to the power of two (tca * tca) and we get a distance from the center of the sphere to the power of 2 (d2).
T d2 = l.dot(l) - (tca * tca);
// if this distance to the center (d2) is greater than the radius to the power of 2 (radius2), the raydir direction is missing the sphere.
// No need to go further. Return false.
if (d2 > radius2) return false;
// Pythagoras' theorem again: radius2 is the hypotenuse and d2 is one of the side. Substraction gives the third side to the power of 2.
// Using sqrt, we obtain the length thc. thc is how deep tca goes into the sphere.
T thc = sqrt(radius2 - d2);
if (t0 != NULL && t1 != NULL) {
// remove thc to tca and you get the length from the ray origin to the surface hit point of the sphere.
*t0 = tca - thc;
// add thc to tca and you get the length from the ray origin to the surface hit point of the back side of the sphere.
*t1 = tca + thc;
}
// There is a intersection with a sphere, t0 and t1 have surface distances values. Return true.
return true;
}
};
std::vector<Sphere<double> *> spheres;
// function to mix 2 T varables.
template<typename T>
T mix(const T &a, const T &b, const T &mix)
{
return b * mix + a * (T(1) - mix);
}
// This is the main trace function. It takes a ray as argument (defined by its origin
// and direction). We test if this ray intersects any of the geometry in the scene.
// If the ray intersects an object, we compute the intersection point, the normal
// at the intersection point, and shade this point using this information.
// Shading depends on the surface property (is it transparent, reflective, diffuse).
// The function returns a color for the ray. If the ray intersects an object, it
// returns the color of the object at the intersection point, otherwise it returns
// the background color.
template<typename T>
Vec3<T> trace(const Vec3<T> &rayorig, const Vec3<T> &raydir,
const std::vector<Sphere<T> *> &spheres, const int &depth)
{
T tnear = INFINITY;
const Sphere<T> *sphere = NULL;
// Try to find intersection of this raydir with the spheres in the scene
for (unsigned i = 0; i < spheres.size(); ++i) {
T t0 = INFINITY, t1 = INFINITY;
if (spheres[i]->intersect(rayorig, raydir, &t0, &t1)) {
// is the rayorig inside the sphere (t0 < 0)? If so, use the second hit (t0 = t1)
if (t0 < 0) t0 = t1;
// tnear is the last sphere intersection (or infinity). Is t0 in front of tnear?
if (t0 < tnear) {
// if so, update tnear to this closer t0 and update the closest sphere
tnear = t0;
sphere = spheres[i];
}
}
}
// At this moment in the program, we have the closest sphere (sphere) and the closest hit position (tnear)
// For this pixel, if there's no intersection with a sphere, return a Vec3 with the background color.
if (!sphere) return Vec3<T>(.5); // Grey background color.
// if we keep on with the code, it is because we had an intersection with at least one sphere.
Vec3<T> surfaceColor = 0; // initialisation of the color of the ray/surface of the object intersected by the ray.
Vec3<T> phit = rayorig + (raydir * tnear); // point of intersection.
Vec3<T> nhit = phit - sphere->center; // normal at the intersection point.
// if the normal and the view direction are not opposite to each other,
// reverse the normal direction.
if (raydir.dot(nhit) > 0) nhit = -nhit;
nhit.normalize(); // normalize normal direction
// The angle between raydir and the normal at point hit (not used).
//T s_angle = acos(raydir.dot(nhit)) / ( sqrt(raydir.dot(raydir)) * sqrt(nhit.dot(nhit)));
//T s_incidence = sin(s_angle);
T bias = 1e-5; // add some bias to the point from which we will be tracing
// Do we have transparency or reflection?
if ((sphere->transparency > 0 || sphere->reflection > 0) && depth < MAX_RAY_DEPTH) {
T IdotN = raydir.dot(nhit); // raydir.normal
// I and N are not pointing in the same direction, so take the invert.
T facingratio = std::max(T(0), -IdotN);
// change the mix value between reflection and refraction to tweak the effect (fresnel effect)
T fresneleffect = mix<T>(pow(1 - facingratio, 3), 1, 0.1);
// compute reflection direction (not need to normalize because all vectors
// are already normalized)
Vec3<T> refldir = raydir - nhit * 2 * raydir.dot(nhit);
Vec3<T> reflection = trace(phit + (nhit * bias), refldir, spheres, depth + 1);
Vec3<T> refraction = 0;
// if the sphere is also transparent compute refraction ray (transmission)
if (sphere->transparency) {
T ior = 1.2, eta = 1 / ior;
T k = 1 - eta * eta * (1 - IdotN * IdotN);
Vec3<T> refrdir = raydir * eta - nhit * (eta * IdotN + sqrt(k));
refraction = trace(phit - nhit * bias, refrdir, spheres, depth + 1);
}
// the result is a mix of reflection and refraction (if the sphere is transparent)
surfaceColor = (reflection * fresneleffect + refraction * (1 - fresneleffect) * sphere->transparency) * sphere->surfaceColor;
}
else {
// it's a diffuse object, no need to raytrace any further
// Look at all sphere to find lights
double shadow = 1.0;
for (unsigned i = 0; i < spheres.size(); ++i) {
if (spheres[i]->emissionColor.x > 0) {
// this is a light
Vec3<T> transmission = 1.0;
Vec3<T> lightDirection = spheres[i]->center - phit;
lightDirection.normalize();
T light_angle = (acos(raydir.dot(lightDirection)) / ( sqrt(raydir.dot(raydir)) * sqrt(lightDirection.dot(lightDirection))));
T light_incidence = sin(light_angle);
for (unsigned j = 0; j < spheres.size(); ++j) {
if (i != j) {
T t0, t1;
// Does the ray from point hit to the light intersect an object?
// If so, calculate the shadow.
if (spheres[j]->intersect(phit + (nhit * bias), lightDirection, &t0, &t1)) {
shadow = std::max(0.0, shadow - (1.0 - spheres[j]->transparency));
transmission = transmission * spheres[j]->surfaceColor * shadow;
//break;
}
}
}
// For each light found, we add light transmission to the pixel.
surfaceColor += sphere->surfaceColor * transmission *
std::max(T(0), nhit.dot(lightDirection)) * spheres[i]->emissionColor;
}
}
}
return surfaceColor + sphere->emissionColor;
}
// Main rendering function. We compute a camera ray for each pixel of the image,
// trace it and return a color. If the ray hits a sphere, we return the color of the
// sphere at the intersection point, else we return the background color.
Vec3<double> *image = new Vec3<double>[width * height];
static Vec3<double> cam_pos = Vec3<double>(0);
template<typename T>
void render(const std::vector<Sphere<T> *> &spheres)
{
Vec3<T> *pixel = image;
T invWidth = 1 / T(width), invHeight = 1 / T(height);
T fov = 30, aspectratio = T(width) / T(height);
T angle = tan(M_PI * 0.5 * fov / T(180));
// Trace rays
for (GLuint y = 0; y < height; ++y) {
for (GLuint x = 0; x < width; ++x, ++pixel) {
T xx = (2 * ((x + 0.5) * invWidth) - 1) * angle * aspectratio;
T yy = (1 - 2 * ((y + 0.5) * invHeight)) * angle;
Vec3<T> raydir(xx, yy, -1);
raydir.normalize();
*pixel = trace(cam_pos, raydir, spheres, 0);
}
}
}
//********************************** OPEN GL ***********************************************
void advanceDisplay(void)
{
cam_pos.z = cam_pos.z - 2;
glutPostRedisplay();
}
void backDisplay(void)
{
cam_pos.z = cam_pos.z + 2;
glutPostRedisplay();
}
void resetDisplay(void)
{
Vec3<double> new_cam_pos;
new_cam_pos = cam_pos;
cam_pos = new_cam_pos;
glutPostRedisplay();
}
void mouse(int button, int state, int x, int y)
{
switch (button)
{
case GLUT_LEFT_BUTTON:
if(state == GLUT_DOWN)
{
glutIdleFunc(advanceDisplay);
}
break;
case GLUT_MIDDLE_BUTTON:
if(state == GLUT_DOWN)
{
glutIdleFunc(resetDisplay);
}
break;
case GLUT_RIGHT_BUTTON:
if(state == GLUT_DOWN)
{
glutIdleFunc(backDisplay);
}
break;
}
}
GLuint tex = 0;
void display(void)
{
int i;
float x, y;
render<double>(spheres); // Creates the image and put it to memory in image[].
std::vector< unsigned char > buf;
buf.reserve( width * height * 3 );
for( size_t y = 0; y < height; ++y )
{
for( size_t x = 0; x < width; ++x )
{
// flip vertically (height-y) because the OpenGL texture origin is in the lower-left corner
// flip horizontally (width-x) because...the original code did so
size_t i = (height-y) * width + (width-x);
buf.push_back( (unsigned char)( std::min(double(1), image[i].x) * 255.0 ) );
buf.push_back( (unsigned char)( std::min(double(1), image[i].y) * 255.0 ) );
buf.push_back( (unsigned char)( std::min(double(1), image[i].z) * 255.0 ) );
}
}
/* clear all pixels */
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glEnable( GL_TEXTURE_2D );
glBindTexture( GL_TEXTURE_2D, tex );
glTexSubImage2D
(
GL_TEXTURE_2D, 0,
0, 0,
width, height,
GL_RGB,
GL_UNSIGNED_BYTE,
&buf[0]
);
glBegin( GL_QUADS );
glTexCoord2i( 0, 0 );
glVertex2i( -1, -1 );
glTexCoord2i( 1, 0 );
glVertex2i( 1, -1 );
glTexCoord2i( 1, 1 );
glVertex2i( 1, 1 );
glTexCoord2i( 0, 1 );
glVertex2i( -1, 1 );
glEnd();
glutSwapBuffers();
}
int main(int argc, char **argv)
{
// position, radius, surface color, reflectivity, transparency, emission color
spheres.push_back(new Sphere<double>(Vec3<double>(0, -10004, -20), 10000, Vec3<double>(0.2), 0.0, 0.0));
spheres.push_back(new Sphere<double>(Vec3<double>(3, 0, -15), 2, Vec3<double>(1.00, 0.1, 0.1), 0.65, 0.95));
spheres.push_back(new Sphere<double>(Vec3<double>(1, -1, -18), 1, Vec3<double>(1.0, 1.0, 1.0), 0.9, 0.9));
spheres.push_back(new Sphere<double>(Vec3<double>(-2, 2, -15), 2, Vec3<double>(0.1, 0.1, 1.0), 0.05, 0.5));
spheres.push_back(new Sphere<double>(Vec3<double>(-4, 3, -18), 1, Vec3<double>(0.1, 1.0, 0.1), 0.3, 0.7));
spheres.push_back(new Sphere<double>(Vec3<double>(-4, 0, -25), 1, Vec3<double>(1.00, 0.1, 0.1), 0.65, 0.95));
spheres.push_back(new Sphere<double>(Vec3<double>(-1, 1, -25), 2, Vec3<double>(1.0, 1.0, 1.0), 0.0, 0.0));
spheres.push_back(new Sphere<double>(Vec3<double>(2, 2, -25), 1, Vec3<double>(0.1, 0.1, 1.0), 0.05, 0.5));
spheres.push_back(new Sphere<double>(Vec3<double>(5, 3, -25), 2, Vec3<double>(0.1, 1.0, 0.1), 0.3, 0.7));
// light
spheres.push_back(new Sphere<double>(Vec3<double>(-10, 20, 0), 3, Vec3<double>(0), 0, 0, Vec3<double>(3)));
spheres.push_back(new Sphere<double>(Vec3<double>(0, 10, 0), 3, Vec3<double>(0), 0, 0, Vec3<double>(1)));
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(width, height);
glutInitWindowPosition(10,10);
glutCreateWindow(argv[0]);
glutDisplayFunc(display);
glutMouseFunc(mouse);
glGenTextures( 1, &tex );
glBindTexture( GL_TEXTURE_2D, tex );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glPixelStorei( GL_UNPACK_ALIGNMENT, 1 );
glTexImage2D( GL_TEXTURE_2D, 0, 3, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL );
glutMainLoop();
delete [] image;
while (!spheres.empty()) {
Sphere<double> *sph = spheres.back();
spheres.pop_back();
delete sph;
}
return 0;
}
How to load and display images is also explained on www.scratchapixel.com. Strange you didn't see this lesson:
http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-5-colors-and-digital-images/source-code/
It's all in there and they explain you how to display images using GL textures indeed.