I have an equation: f = (100*E**(-x*1600)-50), it takes a very long time to give a solution for x but in another online solver, it only takes a few ms. How can I do to boost the performance?
raw code:
f = (100*E**(-x*1600)-50)
solve(f,x)
Expected result:
If you just want the real solution (and not the many symbolic solutions) use nsolve. The bisect solvers is appropriated for this function with a steep gradient near the root. Defining lam = var('lam') gives
If you want a symbolic solution (but not the many imaginary ones) then solveset or the lower level _invert can be used:
>>> from sympy import solveset, var, Reals
>>> from sympy.solvers.solvers import _invert
>>> var('x')
x
>>> eq=(100*E**(-x*1600)-50)
>>> solveset(eq,x,Reals)
{log(2)/1600}
>>> from sympy.solvers.solvers import _invert
>>> _invert(eq,x)
(log(2)/1600, x)
I have a number stored in mongo as 15000.245263 with 6 numbers after decimal point but when I use pymongo to get this number I got 15000.24. Is the pymongo reduced the precision of float?
I can't reproduce this. In Python 2.7.13 on my Mac:
>>> from pymongo import MongoClient
>>> c = MongoClient().my_db.my_collection
>>> c.delete_many({}) # Delete all documents
>>> c.insert_one({'x': 15000.245263})
>>> c.find_one()
{u'x': 15000.245263, u'_id': ObjectId('59525d32a08bff0800cc72bd')}
The retrieved value of "x" is printed the same as it was when I entered it.
This could happen if you trying to print out a long float value, and i think it is not related to mongodb.
>>> print 1111.1111
1111.1111
>>> print 1111111111.111
1111111111.11
>>> print 1111111.11111111111
1111111.11111
# for a timestamp
>>> import time
>>> now = time.time()
>>> print now
1527160240.06
For python2.7.10 it will just display 13 character(for my machine), if you want to display the whole value, use a format instead, like this:
>>> print '%.6f' % 111111111.111111
111111111.111111
And this is just a display problem, the value of the variable will not be affected.
>>> test = 111111111.111111 * 2
>>> test
222222222.222222
>>> print test
222222222.222
I have been trying to work out how to replicate IDL's smooth function in Python and I just can't get anything like the same results. (Disclaimer: It is probably 10 years since I touched this kind of mathematical problem so it has been dumped to make way for information like where to find the cheapest local fuel). I am trying to code this:
smooth(b,w,/nan)
where b is a 2D float array containing NANs (zeros - missing data - have also been converted to NAN).
From the IDL documents, it appears smooth uses a boxcar, so from scipy.ndimage.filters I have tried:
bsmooth = uniform_filter(b, w)
I am aware that there are some fundamental differences here:
the default edge behaviour from IDL is "the end points are copied
from the original array to the result with no smoothing" whereas I
don't seem to have the option to do this with the uniform filter.
Treatment of the NaN elements. In IDL, the /nan keyword seems to
mean that where possible the NaN values will be filled by the result
of the other points in the window. If there are no valid points to
generate a result, by a MISSING keyword. I thought I could
approximate this behaviour following the smoothing using
scipy.interpolate's NearestNDInterpolator (thanks to the brilliant
explanation by Alex on here:
filling gaps on an image using numpy and scipy)
Here is my test array:
>>>b array([[ 0.97599638, 0.93114936, 0.87070072, 0.5379253 ],
[ 0.34873217, nan, 0.40985891, 0.22407863],
[ nan, nan, nan, 0.67532134],
[ nan, nan, 0.85441768, nan]])
My answers bore not the SLIGHTEST resemblance to IDL, whether I use the /nan keyword or not.
IDL> smooth(b,2,/nan)
0.97599638 0.93114936 0.87070072 0.53792530
0.34873217 0.70728749 0.60817236 0.22407863
NaN 0.53766960 0.54091913 0.67532134
NaN NaN 0.85441768 NaN
IDL> smooth(b,2)
0.97599638 0.93114936 0.87070072 0.53792530
0.34873217 -NaN -NaN 0.22407863
-NaN -NaN -NaN 0.67532134
-NaN -NaN 0.85441768 NaN
I confess I find the scipy documentation rather sparse on detail so I have no idea if I am really doing what I think I doing. The fact that the two python approaches which I believed would both smooth the image give different answers suggests that things are not what I understood them to be.
>>>uniform_filter(b, 2)
array([[ 0.97599638, 0.95357287, 0.90092504, 0.70431301],
[ 0.66236428, nan, nan, nan],
[ nan, nan, nan, nan],
[ nan, nan, nan, nan]])
I thought it was a bit odd it was so empty so I tried this with an array of 100 elements (still using a window of 2) and output the images. The results (first image is 'b' second is 'bsmooth') are not quite what I was hoping for:
Going back to the smaller array and following the examples in: http://scipy.github.io/old-wiki/pages/Cookbook/SignalSmooth which I thought would give the same output as uniform_filter, I tried:
>>> box = np.array([1,1,1,1])
>>> box = box.reshape(2,2)
>>> box
array([[1, 1],
[1, 1]])
>>> bsmooth = scipy.signal.convolve2d(b,box,mode='same')
>>> print bsmooth
[[ 0.97599638 1.90714574 1.80185008 1.40862602]
[ 1.32472855 nan nan 2.04256356]
[ nan nan nan nan]
[ nan nan nan nan]]
Obviously I have completely misunderstood the scipy functions, maybe even the IDL one. If anyone can help me to replicate the IDL smooth function as closely as possible, I would be extremely grateful. I am under considerable time pressure to get a solution for this that doesn't rely on IDL and I am tossing a coin to decide whether to code the function from scratch or develop a very contagious illness.
How can I perform the same smoothing in python?
First: Please use matplotlib.pyplot.imshow with interpolation="none" that's nicer to look at and maybe with greyscale.
So for your example: There is actually no convolution (filter) within scipy and numpy that treat's NaN as missing values (they propagate them within the convolution). At least I've found none so far and your boundary-treatement is also (to my knowledge) not implemented. But the boundary could be just replaced afterwards.
If you want to do convolution with NaN you can for example use astropy.convolution.convolve. There NaNs are interpolated using the kernel of your filter. But their convolution has some drawbacks as well: Border handling like you want isn't implemented there neither and your kernel must be of odd shape and the sum of your kernel must not be zero (or very close to it)
For example:
from astropy.convolution import convolve
import numpy as np
array = np.random.uniform(10,100, (4,4))
array[1,1] = np.nan
kernel = np.ones((3,3))
convolve(array, kernel)
as an example an initial array of
array([[ 97.19514587, 62.36979751, 93.54811286, 30.23567842],
[ 51.02184613, nan, 46.14769821, 60.08088041],
[ 20.86482452, 42.39661484, 36.96961278, 96.89180175],
[ 45.54453509, 76.61274347, 46.44485141, 25.40985372]])
will become:
array([[ 266.9009961 , 406.59680717, 348.69637399, 230.01236989],
[ 330.16243546, 506.82785931, 524.95440336, 363.87378443],
[ 292.75477064, 422.31693304, 487.26826319, 311.94469828],
[ 185.41871792, 268.83318211, 324.72547798, 205.71611967]])
if you want to "normalize" it, astropy offers the normalize_kernel parameter:
convolved = convolve(array, kernel, normalize_kernel=True)
array([[ 29.58753936, 42.09982189, 49.31793529, 33.00203873],
[ 49.87040638, 65.67695002, 66.10447436, 40.44026448],
[ 52.51126383, 63.03914444, 60.85474739, 35.88011742],
[ 39.40188443, 46.82350749, 40.1380926 , 22.46090152]])
If you want to replace the "edge" values with the ones from the original array just replace them:
convolved[0,:] = array[0,:]
convolved[-1,:] = array[-1,:]
convolved[:,0] = array[:,0]
convolved[:,-1] = array[:,-1]
So that's what the existing packages offer (as far as I know it). If you want to learn a bit of Cython or numba you can easily write your own convolutions that is not much slower (only a factor of 2-10) than the numpy/scipy ones but does EXACTLY what you want without messing around.
Since this is not something that is available in the python packages and because I saw the question asked several times during my research without satisfactory answers, here is how I solved the issue.
Provided is a test version of my function that I'm off to tidy up. I am sure there will be better ways to do the things I have done as I'm still fairly new to Python - please do recommend any appropriate changes.
Plots use autumn colourmap just because it allowed me to see the NaNs clearly.
My results:
IDL propagate
0.033369284 0.067915268 0.96602046 0.85623550
0.30435592 NaN NaN 100.00000
0.94065958 NaN NaN 0.90966976
0.018516513 0.044460904 0.051047217 NaN
python propagate
[[ 3.33692829e-02 6.79152655e-02 9.66020487e-01 8.56235492e-01]
[ 3.04355923e-01 nan nan 1.00000000e+02]
[ 9.40659566e-01 nan nan 9.09669768e-01]
[ 1.85165123e-02 4.44609040e-02 5.10472165e-02 nan]]
IDL replace
0.033369284 0.067915268 0.96602046 0.85623550
0.30435592 0.47452110 14.829881 100.00000
0.94065958 0.33833817 17.002417 0.90966976
0.018516513 0.044460904 0.051047217 NaN
python replace
[[ 3.33692829e-02 6.79152655e-02 9.66020487e-01 8.56235492e-01]
[ 3.04355923e-01 4.74521092e-01 1.48298812e+01 1.00000000e+02]
[ 9.40659566e-01 3.38338177e-01 1.70024175e+01 9.09669768e-01]
[ 1.85165123e-02 4.44609040e-02 5.10472165e-02 nan]]
My function:
#!/usr/bin/env python
# smooth.py
__version__ = 0.1
# Version 0.1 29 Feb 2016 ELH Test release
import numpy as np
import matplotlib.pyplot as mp
def Smooth(v1, w, nanopt):
# v1 is the input 2D numpy array.
# w is the width of the square window along one dimension
# nanopt can be replace or propagate
'''
v1 = np.array(
[[3.33692829e-02, 6.79152655e-02, 9.66020487e-01, 8.56235492e-01],
[3.04355923e-01, np.nan , 4.86013025e-01, 1.00000000e+02],
[9.40659566e-01, 5.23314093e-01, np.nan , 9.09669768e-01],
[1.85165123e-02, 4.44609040e-02, 5.10472165e-02, np.nan ]])
w = 2
'''
mp.imshow(v1, interpolation='None', cmap='autumn')
mp.show()
# make a copy of the array for the output:
vout=np.copy(v1)
# If w is even, add one
if w % 2 == 0:
w = w + 1
# get the size of each dim of the input:
r,c = v1.shape
# Assume that w, the width of the window is always square.
startrc = (w - 1)/2
stopr = r - ((w + 1)/2) + 1
stopc = c - ((w + 1)/2) + 1
# For all pixels within the border defined by the box size, calculate the average in the window.
# There are two options:
# Ignore NaNs and replace the value where possible.
# Propagate the NaNs
for col in range(startrc,stopc):
# Calculate the window start and stop columns
startwc = col - (w/2)
stopwc = col + (w/2) + 1
for row in range (startrc,stopr):
# Calculate the window start and stop rows
startwr = row - (w/2)
stopwr = row + (w/2) + 1
# Extract the window
window = v1[startwr:stopwr, startwc:stopwc]
if nanopt == 'replace':
# If we're replacing Nans, then select only the finite elements
window = window[np.isfinite(window)]
# Calculate the mean of the window
vout[row,col] = np.mean(window)
mp.imshow(vout, interpolation='None', cmap='autumn')
mp.show()
return vout
I have a python (2.7) script that reads an input file that contains text setup like this:
steve 83 67 77
The script averages the numbers corresponding to each name and returns a list for each name, that contains the persons name along with the average, for example the return output looks like this:
steve 75
However, the actual average value for "steve" is "75.66666667". Because of this, I would like the return value to be 76, not 75 (aka I would like it to round up to the nearest whole integer). I'm not sure how to get this done... Here is my code:
filename = raw_input('Enter a filename: ')
file=open(filename,"r")
line = file.readline()
students=[]
while line != "":
splitedline=line.split(" ")
average=0
for i in range(len(splitedline)-1) :
average+=int(splitedline[i+1])
average=average/(len(splitedline)-1)
students.append([splitedline[0],average])
line = file.readline()
for v in students:
print " ".join(map(str, v))
file.close()
While your code is very messy and should be improved overall, the solution to your problem should be simple:
average=average/(len(splitedline)-1)
should be:
average /= float(len(splitedline) - 1)
average = int(round(average))
By default in Python 2.x / with two integers does flooring division. You must explicitly make one of the parameters a floating point number to get real division. Then you must round the result and turn it back into an integer.
In Python 3 flooring division is //, and regular division is /. You can get this behavior in Python 2 with from __future__ import division.
I am new to python. I was trying to solve a matrix problem in which I have to use exit condition in loop for example if column and row of matrix is 3 or 4 then i want to run the loop 2 times and if col and row is 5 or 6 then it run 3 times.
>>> math.ceil(1.5)
2.0
>>> i=3
>>> math.ceil(i/2)
1.0
This is because 3 / 2 isn't 1.5 in Python 2, it's 1. Do from __future__ import division and then it'll be what you expect.
try this first:
i=3/2
print i
j=float(3)/2
print j
print math.ceil(j)
you should see
1
1.5
2.0
the way python deals with integer division is taking the lower bound.
Reference:
http://docs.python.org/2/reference/expressions.html