c++ template substitution error - c++

I really wanted to solve this myself, but spending hours looking at the same code again and again is not making me happy. The error message looks quite straightforward, and it points me to the Not2 template. It complains that there is no Apply member, but it clearly has Apply, two of them. Function2 and Not2 has a very similar form, but the compiler doesn't say anything about Function2, so something's going wrong inside Not2. Not2 is meant to take a Function2 template and negate the result.
I removed irrelevant code as much as possible, but still the code seems quite long. Just skip away if you think reading all that isn't worth your time.
main.cpp:130:24: error: type/value mismatch at argument 1 in template parameter list for 'template<class T> constexpr const int unbox<T>'
using Apply = Box<!unbox<T::template Apply<U>::template Apply<V>>>;
^
main.cpp:130:24: note: expected a type, got 'typename T::Apply<U>::Apply<V>'
main.cpp:130:70: error: template argument 1 is invalid
using Apply = Box<!unbox<T::template Apply<U>::template Apply<V>>>;
^
main.cpp: In instantiation of 'struct Sort_<List<Box<2>, Box<1> > >':
main.cpp:155:37: required by substitution of 'template<class T> using Sort = typename Sort_::Type [with T = List<Box<2>, Box<1> >]'
main.cpp:159:38: required from here
main.cpp:151:77: error: no class template named 'Apply' in 'Not2<Function2<LessThan_> >::Apply<Box<2> > {aka struct Not2<Function2<LessThan_> >::Apply_<Box<2> >}'
Filter<Tail<T>, Not2<LessThan>::template Apply<Head<T>>::template Apply>> Type;
^
template<int n>
struct Box
{
};
template<typename T>
struct Unbox_;
template<int n>
struct Unbox_<Box<n>>
{
static constexpr int value = n;
};
template<typename T>
constexpr int unbox = Unbox_<T>::value;
template<typename ...>
struct List
{
};
template<>
struct List<>
{
};
template<typename, typename>
struct Cons_;
template<typename T, typename ...Ts>
struct Cons_<T, List<Ts...>>
{
typedef List<T, Ts...> Type;
};
template<typename T, typename U>
using Cons = typename Cons_<T, U>::Type;
template<typename>
struct Head_;
template<typename T, typename ...Ts>
struct Head_<List<T, Ts...>>
{
typedef T Type;
};
template<typename T>
using Head = typename Head_<T>::Type;
template<typename>
struct Tail_;
template<typename T, typename ...Ts>
struct Tail_<List<T, Ts...>>
{
typedef List<Ts...> Type;
};
template<typename T>
using Tail = typename Tail_<T>::Type;
template<typename T, typename U>
struct Merge_
{
typedef Cons<Head<T>, typename Merge_<Tail<T>, U>::Type> Type;
};
template<typename T>
struct Merge_<List<>, T>
{
typedef T Type;
};
template<typename T, typename U>
using Merge = typename Merge_<T, U>::Type;
template<typename, typename T, typename>
struct If_
{
typedef T Type;
};
template<typename T, typename U>
struct If_<Box<0>, T, U>
{
typedef U Type;
};
template<typename T, typename U, typename V>
using If = typename If_<T, U, V>::Type;
template<typename T, template<typename> class U>
struct Filter_
{
typedef If<U<Head<T>>, Cons<Head<T>, typename Filter_<Tail<T>, U>::Type>,
typename Filter_<Tail<T>, U>::Type> Type;
};
template<template<typename> class T>
struct Filter_<List<>, T>
{
typedef List<> Type;
};
template<typename T, template<typename> class U>
using Filter = typename Filter_<T, U>::Type;
template<template<typename, typename> class T>
struct Function2
{
template<typename U>
struct Apply_
{
template<typename V>
using Apply = T<U, V>;
};
template<typename U>
using Apply = Apply_<U>;
};
template<typename T>
struct Not2
{
template<typename U>
struct Apply_
{
template<typename V>
using Apply = Box<!unbox<T::template Apply<U>::template Apply<V>>>;
};
template<typename U>
using Apply = Apply_<U>;
};
template<typename T, typename U>
struct LessThan_2
{
typedef Box<unbox<T> < unbox<U>> Type;
};
template<typename T, typename U>
using LessThan_ = typename LessThan_2<T, U>::Type;
using LessThan = Function2<LessThan_>;
template<typename T>
struct Sort_
{
typedef Merge<Merge<Filter<Tail<T>, LessThan::Apply<Head<T>>::template Apply>, List<Head<T>>>,
Filter<Tail<T>, Not2<LessThan>::template Apply<Head<T>>::template Apply>> Type;
};
template<typename T>
using Sort = typename Sort_<T>::Type;
int main()
{
typedef Sort<List<Box<2>, Box<1>>> L;
}

I believe you are simply missing a typename inside the unbox template argument list on the line (130) giving you the error.
Also, you do not seem to be doing any sorting in your Sort_ and Merge_ templates, since they simply concatenate lists using the head as pivot Coliru illustration. I guess your code is not completed yet.

Related

Alias that transforms a template type to the same type but templated on something different

I have a
template <typename T, typename U>
struct A;
and a
template <typename U>
struct B;
How do I make an alias that transforms an A<T, U> type to a A<T, B<U>> type? i.e. something that looks like this:
template <typename TypeA>
using ModifiedTypeA = TypeA<T, B<U>>; // <--- I don't know how to get T and U from TypeA
where ModifiedTypeA only needs to be templated on TypeA?
I was thinking that the above could be achieved if TypeA is always guaranteed to have member aliases
template <typename T_, typename U_>
struct A
{
using T = T_;
using U = U_;
};
and then do
template <typename TypeA>
using ModifiedTypeA = TypeA<typename TypeA::T, B<typename TypeA::U>>;
But is there another cleaner way + that doesn't make the above assumption?
Try
template <typename TypeA, template<typename> typename TemplateB>
struct ModifiedTypeAWtihImpl;
template <template<typename, typename> typename TemplateA,
typename T, typename U,
template<typename> typename TemplateB>
struct ModifiedTypeAWtihImpl<TemplateA<T, U>, TemplateB> {
using type = TemplateA<T, TemplateB<U>>;
};
template <typename TypeA, template<typename> typename TemplateB>
using ModifiedTypeAWtih = typename ModifiedTypeAWtihImpl<TypeA, TemplateB>::type;
Demo

Grouping same type variadic template types into <type, int> variadic types, omitting <type, 0> from the variadic list

I'm implementing compile time unit system, I am able to multiply different units together such that, for example:
Scalar<int, M_>{2} * Scalar<int, M_>{2} == Scalar<int, M_, M_>{4};
I want also to be able to do this:
Scalar<int, M_, M_>{4} / Scalar<int, M_>{2} == Scalar<int, M_>{2};
And I think a good place to start would be to group similar units to a template< typename T, int P> struct UnitPower type, so that
Scalar<int, UnitPower<M_, 1>>{2} * Scalar<int, UnitPower<M_, 1>>{2} == Scalar<int, UnitPower<M_, 2>>{4};
and
Scalar<int, UnitPower<M_, 2>>{4} / Scalar<int, UnitPower<M_, 1>>{2} == Scalar<int, UnitPower<M_, 1>>{2};
This will come in handy for a more general case:
Scalar<double, UnitPower<M_, 1>, UnitPower<S_, -2>, UnitPower<G_, 1>>{70} / Scalar<double, UnitPower<M_, 1>, UnitPower<S_, -1>>{10} == Scalar<double, UnitPower<S_, -1>, UnitPower<G_, 1>>{7}
I would also need to make the operators agnostic to the order of these UnitPowers...
Here's the code so far:
struct M_;
struct S_;
struct Mps_;
template<typename T, int P>
struct UnitPower {};
template<typename T, int P, typename... R>
struct group_units {
//static constexpr type = ?
};
template <typename T, class... C>
struct Scalar
{
protected:
T value;
public:
constexpr explicit Scalar(const T value) : value(value) {}
template<typename U>
constexpr auto operator<=>(const Scalar<U, C...> rhs) {
return value <=> static_cast<U>(rhs.value);
}
template<typename U>
constexpr bool operator==(const Scalar<U, C...> rhs) const { return value == static_cast<T>(rhs); }
template<typename U, typename... D>
constexpr Scalar<std::common_type_t<T, U>, C..., D...> operator/(const Scalar<U, D...> rhs) const {
using V = std::common_type_t<T, U>;
return Scalar<V, C..., D...>{static_cast<V>(value) / static_cast<V>(rhs)};
}
template<typename U, typename... D>
constexpr Scalar<std::common_type_t<T, U>, C..., D...> operator*(const Scalar<U, D...> rhs) const {
using V = std::common_type_t<T, U>;
return Scalar<V, C..., D...>{static_cast<V>(value) * static_cast<V>(rhs)};
}
template<typename U>
constexpr std::common_type_t<T, U> operator/(const Scalar<U, C...> rhs) const {
using V = std::common_type_t<T, U>;
return static_cast<V>(value) / static_cast<V>(rhs);
}
template<typename U>
constexpr Scalar<std::common_type_t<T, U>, C...> operator/(const U rhs) const {
using V = std::common_type_t<T, U>;
return Scalar<V, C...>{static_cast<V>(value) / static_cast<V>(rhs)};
}
constexpr explicit operator T() const { return value; }
template<typename U>
constexpr explicit operator U() const { return static_cast<U>(value); }
};
template<typename T>
struct Meters : Scalar<T, M_> { using Scalar<T, M_>::Scalar; };
template<typename T>
struct Seconds : Scalar<T, S_> { using Scalar<T, S_>::Scalar; };
As you can see, the division operator is currently only defined for same unit (in the same order), and returns just a number (which is the correct return type in this case), or takes just a number, returning the Scalar with no unit modification, which is also the correct behavior.
The multiplication operator just appends the units, and I need it to group them first.
I've added the
template<int P, typename T>
struct UnitPower {};
template<int P, typename T, typename... R>
struct group_units {
//static constexpr type = ?
};
Part, but I don't really know how to go about it..
I'm also not sure how to make the operators unit order agnostic.
After learning how to group the units for the multiplication operator, the division operator would be similar to the multiplication with regards to units - just using negative powers for the right hand side.
So my question is two-fold:
How to make the function unit order agnostic?
How to group similar units into a UnitPower<U, int> structs, and omit units whose power is 0? (and decay Scalar to the underlying value type if all UnitPowers are omitted).
Pretty challenging... Even though I only did some basic tests below code seems to work, at very least it should give you quite a number of hints how to solve the problem. There's yet pretty much potential for beautifying the code (even though got less with latest edit) and naming of my templates sure is anything else but optimal – but I leave that to you to fix... As a little compensation division is already supplied, too ;)
The idea is always based on the same fundamental principle: We need to recurse into the template arguments to make the type changes we need. Keeping that in mind it should be possible to understand the code below. If questions remain, feel free to leave a comment.
template <typename Unit, int>
struct UnitPower { };
template <typename T, typename ... Units>
struct Scalar
{
T value;
};
template <typename ... Units>
struct concat;
template <typename ... Units>
using concat_t = typename concat<Units...>::type;
template <typename U, typename ... Units>
struct concat<U, std::tuple<Units...>>
{
using type = std::tuple<U, Units...>;
};
template <typename ... UnitsX, typename ... UnitsY>
struct concat<std::tuple<UnitsX...>, std::tuple<UnitsY...>>
{
using type = std::tuple<UnitsX..., UnitsY...>;
};
template <typename ... Units>
struct powers;
template <typename ... Units>
using powers_t = typename powers<Units...>::type;
template <>
struct powers<>
{
using type = std::tuple<>;
};
template <typename U, typename ... Units>
struct powers<U, Units...>
{
using type = concat_t<UnitPower<U, 1>, powers_t<Units...>>;
};
template <typename U, int N, typename ... Units>
struct powers<UnitPower<U, N>, Units...>
{
using type = concat_t<UnitPower<U, N>, powers_t<Units...>>;
};
template <typename ... Units>
struct count;
template <typename ... Units>
using count_t = typename count<Units...>::type;
template <typename U, int P>
struct count<UnitPower<U, P>>
{
using type = UnitPower<U, P>;
};
template <typename U, int PX, int PY, typename ... Units>
struct count<UnitPower<U, PX>, UnitPower<U, PY>, Units...>
{
using type = count_t<UnitPower<U, PX + PY>, Units...>;
};
template <typename UX, int PX, typename UY, int PY, typename ... Units>
struct count<UnitPower<UX, PX>, UnitPower<UY, PY>, Units...>
{
using type = count_t<UnitPower<UX, PX>, Units...>;
};
template < typename ... Units>
struct count<std::tuple<Units...>>
{
using type = count_t<Units...>;
};
template <typename ... Units>
struct remain;
template <typename ... Units>
using remain_t = typename remain<Units...>::type;
template <typename U, int P>
struct remain<UnitPower<U, P>>
{
using type = std::tuple<>;
};
template <typename U, int PX, int PY, typename ... Units>
struct remain<UnitPower<U, PX>, UnitPower<U, PY>, Units...>
{
using type = remain_t<UnitPower<U, PX>, Units...>;
};
template <typename UX, int PX, typename UY, int PY, typename ... Units>
struct remain<UnitPower<UX, PX>, UnitPower<UY, PY>, Units...>
{
using type = concat_t<
UnitPower<UY, PY>,
remain_t<UnitPower<UX, PX>, Units...>
>;
};
template < typename ... Units>
struct remain<std::tuple<Units...>>
{
using type = remain_t<Units...>;
};
template <typename ... Units>
struct combine;
template <typename ... Units>
using combine_t = typename combine<Units...>::type;
template <>
struct combine<>
{
using type = std::tuple<>;
};
template <typename U, int P>
struct combine<UnitPower<U, P>>
{
using type = std::tuple<UnitPower<U, P>>;
};
template <typename U, int P, typename ... Units>
struct combine<UnitPower<U, P>, Units...>
{
using type = concat_t<
count_t<UnitPower<U, P>, Units...>,
combine_t<remain_t<UnitPower<U, P>, Units...>>
>;
};
template <typename ... Units>
struct combine<std::tuple<Units...>>
{
using type = combine_t<Units...>;
};
template <typename ... Units>
struct normalize;
template <typename ... Units>
using normalize_t = typename normalize<Units...>::type;
template <>
struct normalize<>
{
using type = std::tuple<>;
};
template <typename U, typename ... Units>
struct normalize<UnitPower<U, 0>, Units...>
{
using type = normalize_t<Units...>;
};
template <typename U, typename ... Units>
struct normalize<UnitPower<U, 1>, Units...>
{
using type = concat_t<U, normalize_t<Units...>>;
};
template <typename U, int N, typename ... Units>
struct normalize<UnitPower<U, N>, Units...>
{
using type = concat_t<UnitPower<U, N>, normalize_t<Units...>>;
};
template <typename ... Units>
struct normalize<std::tuple<Units...>>
{
using type = normalize_t<Units...>;
};
template <typename T, typename ... Units>
struct scalar;
template <typename ... Units>
using scalar_t = typename scalar<Units...>::type;
template <typename T, typename ... Units>
struct scalar<T, std::tuple<Units...>>
{
using type = Scalar<T, Units...>;
};
template <typename ... T>
struct multiply;
template <typename ... T>
using multiply_t = typename multiply<T...>::type;
template <typename TX, typename TY, typename ... UnitsX, typename ... UnitsY>
struct multiply<TX, TY, std::tuple<UnitsX...>, std::tuple<UnitsY...>>
{
using type = scalar_t<
decltype(std::declval<TX>() * std::declval<TY>()),
normalize_t<combine_t<concat_t<
powers_t<UnitsX...>, powers_t<UnitsY...>
>>>
>;
};
template <typename TX, typename TY, typename ... UnitsX, typename ... UnitsY>
auto operator*(Scalar<TX, UnitsX...> x, Scalar<TY, UnitsY...> y)
-> multiply_t<TX, TY, std::tuple<UnitsX...>, std::tuple<UnitsY...>>
{
return {x.value * y.value};
}
template <typename ... Units>
struct negate;
template <typename ... Units>
using negate_t = typename negate<Units...>::type;
template <>
struct negate<>
{
using type = std::tuple<>;
};
template <typename U, int N, typename ... Units>
struct negate<UnitPower<U, N>, Units...>
{
using type = concat_t<UnitPower<U, -N>, negate_t<Units...>>;
};
template <typename ... Units>
struct negate<std::tuple<Units...>>
{
using type = negate_t<Units...>;
};
template <typename ... T>
struct divide;
template <typename ... T>
using divide_t = typename divide<T...>::type;
template <typename TX, typename TY, typename ... UnitsX, typename ... UnitsY>
struct divide<TX, TY, std::tuple<UnitsX...>, std::tuple<UnitsY...>>
{
using type = scalar_t<
decltype(std::declval<TX>() / std::declval<TY>()),
normalize_t<combine_t<concat_t<
powers_t<UnitsX...>, negate_t<powers_t<UnitsY...>>
>>>
>;
};
template <typename TX, typename TY, typename ... UnitsX, typename ... UnitsY>
auto operator/(Scalar<TX, UnitsX...> x, Scalar<TY, UnitsY...> y)
-> divide_t<TX, TY, std::tuple<UnitsX...>, std::tuple<UnitsY...>>
{
return {x.value / y.value};
}
Here's what I came up with.
#include <tuple>
#include <type_traits>
template <typename T, typename Tuple>
struct remove_from_tuple;
template <typename T, typename Tuple>
using remove_from_tuple_t = typename remove_from_tuple<T, Tuple>::type;
template <typename T, typename... ElemT>
struct remove_from_tuple<T, std::tuple<ElemT...>> {
using type = decltype(std::tuple_cat(std::declval<
std::conditional_t<std::is_same_v<T, ElemT>, std::tuple<>, std::tuple<ElemT>>
>()...));
static constexpr std::size_t removed =
sizeof...(ElemT) - std::tuple_size<type>::value;
};
template <class Tuple1, class Tuple2>
struct is_tuple_permutation : std::false_type {};
template <class Tuple1, class Tuple2>
constexpr bool is_tuple_permutation_v = is_tuple_permutation<Tuple1, Tuple2>::value;
template <>
struct is_tuple_permutation<std::tuple<>, std::tuple<>>
: public std::true_type {};
template <typename T, typename... List1, typename Tuple2>
struct is_tuple_permutation<std::tuple<T, List1...>, Tuple2> {
private:
using remove1_t = remove_from_tuple<T, std::tuple<List1...>>;
using remove2_t = remove_from_tuple<T, Tuple2>;
public:
static constexpr bool value =
1 + remove1_t::removed == remove2_t::removed &&
is_tuple_permutation_v<typename remove1_t::type, typename remove2_t::type>;
};
struct M_;
struct S_;
struct KG_;
template <class Tag, int P>
struct UnitPower {};
// Trait: UnitPower<Tag0, P0>, UnitPower<Tag1, P1>, ... -> Tag0
template <class... Units>
struct first_tag;
template <class... Units>
using first_tag_t = typename first_tag<Units...>::type;
template <class Tag0, int P0, class... Units>
struct first_tag<UnitPower<Tag0, P0>, Units...> {
using type = Tag0;
};
// Trait: Sum powers of all UnitPower with matching Tag in Units...;
// Put all Units... with different Tag in tuple remainder.
template <class Tag, class... Units>
struct collect_unit;
template <class Tag, class... Units>
constexpr int collect_unit_power = collect_unit<Tag, Units...>::power;
template <class Tag, class... Units>
using collect_unit_remainder_t = typename collect_unit<Tag, Units...>::remainder;
template <class Tag>
struct collect_unit<Tag> {
static constexpr int power = 0;
using remainder = std::tuple<>;
};
template <class Tag, int P0, class... Units>
struct collect_unit<Tag, UnitPower<Tag, P0>, Units...> {
static constexpr int power = P0 + collect_unit_power<Tag, Units...>;
using remainder = collect_unit_remainder_t<Tag, Units...>;
};
template <class Tag, class Unit0, class... Units>
struct collect_unit<Tag, Unit0, Units...> {
static constexpr int power = collect_unit_power<Tag, Units...>;
using remainder = decltype(std::tuple_cat(
std::declval<std::tuple<Unit0>>(),
std::declval<collect_unit_remainder_t<Tag, Units...>>()));
};
// Trait: Combine any units with the same Tag.
template <class Tuple>
struct group_units;
template <class Tuple>
using group_units_t = typename group_units<Tuple>::type;
template <>
struct group_units<std::tuple<>> {
using type = std::tuple<>;
};
template <class... Units>
struct group_units<std::tuple<Units...>> {
private:
using Tag0 = first_tag_t<Units...>;
using collect_t = collect_unit<Tag0, Units...>;
public:
using type = decltype(std::tuple_cat(
std::declval<std::conditional_t<
collect_t::power != 0,
std::tuple<UnitPower<Tag0, collect_t::power>>,
std::tuple<>>>(),
std::declval<group_units_t<typename collect_t::remainder>>()));
};
template <typename T, class... Units>
class Scalar;
// Trait: Do two Scalars have the same underlying type and the same units
// in any order?
template <class S1, class S2>
struct Scalars_compatible : public std::false_type {};
template <class S1, class S2>
constexpr bool Scalars_compatible_v = Scalars_compatible<S1, S2>::value;
template <typename T1, class... Units1, typename T2, class... Units2>
struct Scalars_compatible<Scalar<T1, Units1...>, Scalar<T2, Units2...>>
: public std::bool_constant<is_tuple_permutation_v<
std::tuple<Units1...>, std::tuple<Units2...>>>
{};
template <typename T, class Tuple>
struct tuple_to_Scalar;
template <typename T, class Tuple>
using tuple_to_Scalar_t = typename tuple_to_Scalar<T, Tuple>::type;
template <typename T, class... Units>
struct tuple_to_Scalar<T, std::tuple<Units...>> {
using type = Scalar<T, Units...>;
};
template <class S1, class S2>
struct Scalar_product;
template <class S1, class S2>
using Scalar_product_t = typename Scalar_product<S1, S2>::type;
template <typename T1, class... Units1, typename T2, class... Units2>
struct Scalar_product<Scalar<T1, Units1...>, Scalar<T2, Units2...>> {
using type = tuple_to_Scalar_t<
std::common_type_t<T1, T2>,
group_units_t<std::tuple<Units1..., Units2...>>>;
};
template <class Unit>
struct invert_unit;
template <class Unit>
using invert_unit_t = typename invert_unit<Unit>::type;
template <class Tag, int P>
struct invert_unit<UnitPower<Tag, P>> {
using type = UnitPower<Tag, -P>;
};
template <class S1, class S2>
struct Scalar_quotient;
template <class S1, class S2>
using Scalar_quotient_t = typename Scalar_quotient<S1, S2>::type;
template <typename T1, class... Units1, typename T2, class... Units2>
struct Scalar_quotient<Scalar<T1, Units1...>, Scalar<T2, Units2...>> {
using type = tuple_to_Scalar_t<
std::common_type_t<T1, T2>,
group_units_t<std::tuple<Units1..., invert_unit_t<Units2>...>>>;
};
using Distance_t = Scalar<double, UnitPower<M_, 1>>;
using Time_t = Scalar<double, UnitPower<S_, 1>>;
using Speed_t = Scalar_quotient_t<Distance_t, Time_t>;
using Acceleration_t = Scalar_quotient_t<Speed_t, Time_t>;
using Mass_t = Scalar<double, UnitPower<KG_, 1>>;
using Energy_t = Scalar_product_t<Mass_t, Acceleration_t>;
static_assert(Scalars_compatible_v<Energy_t, Scalar<double, UnitPower<KG_, 1>, UnitPower<M_, 1>, UnitPower<S_, -2>>>);
static_assert(Scalars_compatible_v<Scalar_quotient_t<Speed_t, Acceleration_t>, Time_t>);
Note you'll probably want to restrict your operator+, operator==, etc. to require Scalars_compatible_v.
See it on godbolt.
The answer to template metaprogramming questions is to always use Boost.Mp11.
So first, you probably don't want to support both Scalar<int, M, M> and Scalar<int, Power<M, 2>>, the former has limited value anyway. But I'll start motivating Mp11 by demonstrating how to convert just a list of powers (some of which may be Powers) into a normalized set (not yet grouped):
// using a type (that is an integral constant)
// for power rather than an integer, for convenience
template <typename Unit, typename Power>
struct UnitPower { };
// if T is a list (it would be a UnitPower)
// otherwise it's a base unit with power 1
template <typename T>
using normalize_unit = mp_if<
mp_is_list<T>, T, UnitPower<T, mp_int<1>>>;
template <typename L>
using normalize = mp_transform<normalize_unit, L>;
I could've written this to take a pack of T... and just produce an mp_list there but I wanted to start using algorithms earlier. So here, normalize<mp_list<M, M, UnitPower<M, mp_int<2>>> yields the type mp_list<UnitPower<M, mp_int<1>>, UnitPower<M, mp_int<1>>, UnitPower<M, mp_int<2>>>
Alright, so now that we have a bunch of UnitPowers, we can group them. The way to do this is to keep a map of Unit to Power. A map in the Mp11 sense is just a "list" of "pairs", where each key only appears once. But UnitPower is a "pair" in the Mp11 sense, and the grouping algorithm we want is basically the example for mp_map_update:
template <typename M, typename T>
using update_powers = mp_map_update_q<M, T,
mp_bind<mp_plus, _2, mp_second<T>>>;
template <typename L>
using grouped_powers = mp_fold<normalize<L>, mp_list<>, update_powers>;
And... that's it actually. The slightly awkward function there is because mp_map_update takes a function that gets called with the unit and then the power of the element already in the map, so we need to pull out its power (_2) and add it (mp_plus) to the power we're currently updating (mp_second<T>).
Then, with that, multiplication is grouping both lists together:
template <typename L1, typename L2>
using multiply_powers = grouped_powers<mp_append<L1, L2>>;
And dividing is the same but we have to negate the right-hand list first:
template <typename UP>
using negate = mp_replace_second<UP, mp_int<-mp_second<UP>::value>>;
template <typename L1, typename L2>
using divide_powers = multiply_powers<L1, mp_transform<negate, normalize<L2>>>;
And that's all we need. Demo.
static_assert(std::same_as<
multiply_powers<mp_list<M, M>, mp_list<M, S>>,
mp_list<UnitPower<M, mp_int<3>>, UnitPower<S, mp_int<1>>>>);
static_assert(std::same_as<
divide_powers<mp_list<M, M>, mp_list<M, S>>,
mp_list<UnitPower<M, mp_int<1>>, UnitPower<S, mp_int<-1>>>>);

Is the object a vector? [duplicate]

Is it possible to write a type trait whose value is true for all common STL structures (e.g., vector, set, map, ...)?
To get started, I'd like to write a type trait that is true for a vector and false otherwise. I tried this, but it doesn't compile:
template<class T, typename Enable = void>
struct is_vector {
static bool const value = false;
};
template<class T, class U>
struct is_vector<T, typename boost::enable_if<boost::is_same<T, std::vector<U> > >::type> {
static bool const value = true;
};
The error message is template parameters not used in partial specialization: U.
Look, another SFINAE-based solution for detecting STL-like containers:
template<typename T, typename _ = void>
struct is_container : std::false_type {};
template<typename... Ts>
struct is_container_helper {};
template<typename T>
struct is_container<
T,
std::conditional_t<
false,
is_container_helper<
typename T::value_type,
typename T::size_type,
typename T::allocator_type,
typename T::iterator,
typename T::const_iterator,
decltype(std::declval<T>().size()),
decltype(std::declval<T>().begin()),
decltype(std::declval<T>().end()),
decltype(std::declval<T>().cbegin()),
decltype(std::declval<T>().cend())
>,
void
>
> : public std::true_type {};
Of course, you might change methods and types to be checked.
If you want to detect only STL containers (it means std::vector, std::list, etc) you should do something like this.
UPDATE. As #Deduplicator noted, container might not meet AllocatorAwareContainer requirements (e.g.: std::array<T, N>). That is why check on T::allocator_type is not neccessary. But you may check any/all Container requirements in a similar way.
You would say that it should be simpler than that...
template <typename T, typename _ = void>
struct is_vector {
static const bool value = false;
};
template <typename T>
struct is_vector< T,
typename enable_if<
is_same<T,
std::vector< typename T::value_type,
typename T::allocator_type >
>::value
>::type
>
{
static const bool value = true;
};
... But I am not really sure of whether that is simpler or not.
In C++11 you can use type aliases (I think, untested):
template <typename T>
using is_vector = is_same<T, std::vector< typename T::value_type,
typename T::allocator_type > >;
The problem with your approach is that the type U is non-deducible in the context where it is used.
Actually, after some trial and error I found it's quite simple:
template<class T>
struct is_vector<std::vector<T> > {
static bool const value = true;
};
I'd still like to know how to write a more general is_container. Do I have to list all types by hand?
While the other answers here that try to guess whether a class is a container or not might work for you, I would like to present you with the alternative of naming the type you want to return true for. You can use this to build arbitrary is_(something) traits types.
template<class T> struct is_container : public std::false_type {};
template<class T, class Alloc>
struct is_container<std::vector<T, Alloc>> : public std::true_type {};
template<class K, class T, class Comp, class Alloc>
struct is_container<std::map<K, T, Comp, Alloc>> : public std::true_type {};
And so on.
You will need to include <type_traits> and whatever classes you add to your rules.
Why not do something like this for is_container?
template <typename Container>
struct is_container : std::false_type { };
template <typename... Ts> struct is_container<std::list<Ts...> > : std::true_type { };
template <typename... Ts> struct is_container<std::vector<Ts...> > : std::true_type { };
// ...
That way users can add their own containers by partially-specializing. As for is_vector et-al, just use partial specialization as I did above, but limit it to only one container type, not many.
The way I like to detect whether something is a container is to look for data() and size() member functions. Like this:
template <typename T, typename = void>
struct is_container : std::false_type {};
template <typename T>
struct is_container<T
, std::void_t<decltype(std::declval<T>().data())
, decltype(std::declval<T>().size())>> : std::true_type {};
template <typename T>
struct is_container {
template <
typename U,
typename I = typename U::const_iterator
>
static int8_t test(U* u);
template <typename U>
static int16_t test(...);
enum { value = sizeof test <typename std::remove_cv<T>::type> (0) == 1 };
};
template<typename T, size_t N>
struct is_container <std::array<T,N>> : std::true_type { };
Fast forward to 2018 and C++17, I was so daring to improve on #Frank answer
// clang++ prog.cc -Wall -Wextra -std=c++17
#include <iostream>
#include <vector>
namespace dbj {
template<class T>
struct is_vector {
using type = T ;
constexpr static bool value = false;
};
template<class T>
struct is_vector<std::vector<T>> {
using type = std::vector<T> ;
constexpr static bool value = true;
};
// and the two "olbigatory" aliases
template< typename T>
inline constexpr bool is_vector_v = is_vector<T>::value ;
template< typename T>
using is_vector_t = typename is_vector<T>::type ;
} // dbj
int main()
{
using namespace dbj;
std::cout << std::boolalpha;
std::cout << is_vector_v<std::vector<int>> << std::endl ;
std::cout << is_vector_v<int> << std::endl ;
} /* Created 2018 by dbj#dbj.org */
The "proof the pudding". There are better ways to do this, but this works for std::vector.
We can also use concepts. I compiled this with GCC 10.1 flag -std=c++20.
#include<concepts>
template<typename T>
concept is_container = requires (T a)
{
a.begin();
// Uncomment both lines for vectors only
// a.data(); // arrays and vectors
// a.reserve(1); // narrowed down to vectors
};
In our project we still didn't manage to migrate to compiler supporting C++11, so for type_traits of container objects I had to wrote a simple boost style helper:
template<typename Cont> struct is_std_container: boost::false_type {};
template<typename T, typename A>
struct is_std_container<std::vector<T,A> >: boost::true_type {};
template<typename T, typename A>
struct is_std_container<std::list<T,A> >: boost::true_type {};
template<typename T, typename A>
struct is_std_container<std::deque<T,A> >: boost::true_type {};
template<typename K, typename C, typename A>
struct is_std_container<std::set<K,C,A> >: boost::true_type {};
template<typename K, typename T, typename C, typename A>
struct is_std_container<std::map<K,T,C,A> >: boost::true_type {};
template<typename Cont> struct is_std_sequence: boost::false_type {};
template<typename T, typename A>
struct is_std_sequence<std::vector<T,A> >: boost::true_type {};
template<typename T, typename A>
struct is_std_sequence<std::list<T,A> >: boost::true_type {};
template<typename T, typename A>
struct is_std_sequence<std::deque<T,A> >: boost::true_type {};
If you also want to make it work for const std::vector, you can use the following:
namespace local {
template<typename T, typename _ = void>
struct isVector: std::false_type {
};
template<typename T>
struct isVector<T,
typename std::enable_if<
std::is_same<typename std::decay<T>::type, std::vector<typename std::decay<T>::type::value_type, typename std::decay<T>::type::allocator_type> >::value>::type> : std::true_type {
};
}
TEST(TypeTraitTest, testIsVector) {
ASSERT_TRUE(local::isVector<std::vector<int>>::value);
ASSERT_TRUE(local::isVector<const std::vector<int>>::value);
ASSERT_FALSE(local::isVector<std::list<int>>::value);
ASSERT_FALSE(local::isVector<int>::value);
std::vector<uint8_t> output;
std::vector<uint8_t> &output2 = output;
EXPECT_TRUE(core::isVector<decltype(output)>::value);
EXPECT_TRUE(core::isVector<decltype(output2)>::value);
}
Without the std::remove_cv call the second ASSERT_TRUE would fail. But of course this depends on your needs. The thing here is that according to the specs, std::is_same checks for const and volatile to also match.

How to access a possibly unexisting type-alias in C++11?

I would like to write something like this:
template <class T>
using MyTypeOrTupple = typename std::conditional<has_member_type_MyType<T>::value,
typename T::MyType,
std::tuple<> >::type;
I implemented has_member_type_MyType using https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Member_Detector
However, GCC (4.8.4) still complains about using T::MyType when MyType is not defined in T. Is there a way to solve this?
Do not use that crazy thing from Wikibooks.
template <class T>
using MyType_t = typename T::MyType;
template<class T>
using MyTypeOrTuple = detected_or_t<std::tuple<>, MyType_t, T>;
Where detected_or_t is std::experimental::detected_or_t from library fundamentals TS v2, and can be implemented as follows:
namespace detail {
template<class...> struct voidify { using type = void; };
template<class...Ts> using void_t = typename voidify<Ts...>::type;
template <class Default, class AlwaysVoid,
template<class...> class Op, class... Args>
struct detector {
using value_t = std::false_type;
using type = Default;
};
template <class Default, template<class...> class Op, class... Args>
struct detector<Default, void_t<Op<Args...>>, Op, Args...> {
using value_t = std::true_type;
using type = Op<Args...>;
};
} // namespace detail
template <class Default, template<class...> class Op, class... Args>
using detected_or = detail::detector<Default, void, Op, Args...>;
template< class Default, template<class...> class Op, class... Args >
using detected_or_t = typename detected_or<Default, Op, Args...>::type;
template <typename...>
struct voider { using type = void; };
template <typename... Ts>
using void_t = typename voider<Ts...>::type;
template <typename, typename = void_t<>>
struct MyTypeOrTupple { using type = std::tuple<>; };
template <typename T>
struct MyTypeOrTupple<T, void_t<typename T::MyType>> { using type = typename T::MyType; };
template <typename T>
using MyTypeOrTupple_t = typename MyTypeOrTupple<T>::type;
DEMO
I think it's required 2 level of indirection:
template<typename ...>
struct void_type
{
using type = void;
};
template<typename ...T>
using void_t = typename void_type<T...>::type;
#define HAS_TYPE(NAME) \
template<typename, typename = void> \
struct has_type_##NAME: std::false_type \
{}; \
template<typename T> \
struct has_type_##NAME<T, void_t<typename T::NAME>>: std::true_type \
{}
HAS_TYPE(MyType);
template<typename T, bool = has_type_MyType<T>::value>
struct MyTypeOrTupple_impl;
template<typename T>
struct MyTypeOrTupple_impl<T, true>
{ using type = typename T::MyType; };
template<typename T>
struct MyTypeOrTupple_impl<T, false>
{ using type = std::tuple<>; };
template<typename T> using MyTypeOrTupple = typename MyTypeOrTupple_impl<T>::type;
DEMO
Version keeping std::conditional:
template <typename T> struct identity { using type = T; };
template <typename T> struct MyType { using type = typename T::MyType; };
template <class T>
using MyTypeOrTupple =
typename std::conditional<has_member_type_MyType<T>::value,
MyType<T>,
identity<std::tuple<>>>::type::type;

Find out whether a C++ object is callable

Is it possible to write a type trait, say is_callable<T> which tells if an object has an operator() defined?
It is easy if the arguments to the call operator are known in advance, but not in the general case.
I want the trait to return true if and only if there is at least one overloaded call operator defined.
This question is related and has a good answer, but it doesn't work on all types (only on int-convertible types). Also, std::is_function works, but only on proper C++ functions, not on functors. I'm looking for a more general solution.
I think this trait does what you want. It detects operator() with any kind of signature even if it's overloaded and also if it's templatized:
template<typename T>
struct is_callable {
private:
typedef char(&yes)[1];
typedef char(&no)[2];
struct Fallback { void operator()(); };
struct Derived : T, Fallback { };
template<typename U, U> struct Check;
template<typename>
static yes test(...);
template<typename C>
static no test(Check<void (Fallback::*)(), &C::operator()>*);
public:
static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};
The principle is based on Member Detector idiom. As it is, it will fail to compile if you pass it a non-class type, but that shouldn't be hard to fix, I just left it out for brevity. You can also extend it to report true for functions.
Of course it doesn't give you any info about the signature(s) of operator() whatsoever, but I believe that's not what you asked for, right?
EDIT for Klaim:
It's simple enough to make it work (return false) with non-class types. If you rename the above class to is_callable_impl, you can write this, for example:
template<typename T>
struct is_callable
: std::conditional<
std::is_class<T>::value,
is_callable_impl<T>,
std::false_type
>::type
{ };
The answers here were helpful but I came here wanting something that could also spot whether something was callable regardless of whether it happened to be an object or a classic function. jrok's answer to this aspect of the problem, alas, didn't work because std::conditional actually evaluates the types of both arms!
So, here's a solution:
// Note that std::is_function says that pointers to functions
// and references to functions aren't functions, so we'll make our
// own is_function_t that pulls off any pointer/reference first.
template<typename T>
using remove_ref_t = typename std::remove_reference<T>::type;
template<typename T>
using remove_refptr_t = typename std::remove_pointer<remove_ref_t<T>>::type;
template<typename T>
using is_function_t = typename std::is_function<remove_refptr_t<T>>::type;
// We can't use std::conditional because it (apparently) must determine
// the types of both arms of the condition, so we do it directly.
// Non-objects are callable only if they are functions.
template<bool isObject, typename T>
struct is_callable_impl : public is_function_t<T> {};
// Objects are callable if they have an operator(). We use a method check
// to find out.
template<typename T>
struct is_callable_impl<true, T> {
private:
struct Fallback { void operator()(); };
struct Derived : T, Fallback { };
template<typename U, U> struct Check;
template<typename>
static std::true_type test(...);
template<typename C>
static std::false_type test(Check<void (Fallback::*)(), &C::operator()>*);
public:
typedef decltype(test<Derived>(nullptr)) type;
};
// Now we have our final version of is_callable_t. Again, we have to take
// care with references because std::is_class says "No" if we give it a
// reference to a class.
template<typename T>
using is_callable_t =
typename is_callable_impl<std::is_class<remove_ref_t<T>>::value,
remove_ref_t<T> >::type;
But in the end, for my application, I really wanted to just know whether you could say f() (i.e., call it with no arguments), so I instead went with something much simpler.
template <typename T>
constexpr bool noarg_callable_impl(
typename std::enable_if<bool(sizeof((std::declval<T>()(),0)))>::type*)
{
return true;
}
template<typename T>
constexpr bool noarg_callable_impl(...)
{
return false;
}
template<typename T>
constexpr bool is_noarg_callable()
{
return noarg_callable_impl<T>(nullptr);
}
In fact, I went even further. I knew the function was supposed to return an int, so rather than just check that I could call it, I checked the return type, too, by changing the enable_if to:
typename std::enable_if<std::is_convertible<decltype(std::declval<T>()()),
int>::value>::type*)
Hope this helps someone!
Here is a possible solution using C++11 that works without requiring to know the signature of the call operator for functors, but only as long the functor does not have more than one overload of operator ():
#include <type_traits>
template<typename T, typename = void>
struct is_callable : std::is_function<T> { };
template<typename T>
struct is_callable<T, typename std::enable_if<
std::is_same<decltype(void(&T::operator())), void>::value
>::type> : std::true_type { };
This is how you would use it:
struct C
{
void operator () () { }
};
struct NC { };
struct D
{
void operator () () { }
void operator () (int) { }
};
int main()
{
static_assert(is_callable<C>::value, "Error");
static_assert(is_callable<void()>::value, "Error");
auto l = [] () { };
static_assert(is_callable<decltype(l)>::value, "Error");
// Fires! (no operator())
static_assert(is_callable<NC>::value, "Error");
// Fires! (several overloads of operator ())
static_assert(is_callable<D>::value, "Error");
}
C++17 brings std::is_invocable and friends.
This answer also given a solution on how to emulate it with C++14.
There are several other answers already, of course, and they are useful, but none of them seem to cover every use case AFAICT. Borrowing from those answers and this possible implementation of std::is_function, I created a version that covers every possible use case of which I could think. It's kind of lengthy, but very feature complete (Demo).
template<typename T, typename U = void>
struct is_callable
{
static bool const constexpr value = std::conditional_t<
std::is_class<std::remove_reference_t<T>>::value,
is_callable<std::remove_reference_t<T>, int>, std::false_type>::value;
};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...), U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(*)(Args...), U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(&)(Args...), U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......), U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(*)(Args......), U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(&)(Args......), U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)const, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)volatile, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)const volatile, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)const, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)volatile, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)const volatile, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)&, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)const&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)volatile&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)const volatile&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)&, U> : std::true_type {};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)const&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)volatile&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)const volatile&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)const&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)volatile&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args...)const volatile&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)const&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)volatile&&, U> : std::true_type{};
template<typename T, typename U, typename ...Args>
struct is_callable<T(Args......)const volatile&&, U> : std::true_type{};
template<typename T>
struct is_callable<T, int>
{
private:
using YesType = char(&)[1];
using NoType = char(&)[2];
struct Fallback { void operator()(); };
struct Derived : T, Fallback {};
template<typename U, U>
struct Check;
template<typename>
static YesType Test(...);
template<typename C>
static NoType Test(Check<void (Fallback::*)(), &C::operator()>*);
public:
static bool const constexpr value = sizeof(Test<Derived>(0)) == sizeof(YesType);
};
This works correctly with non-class types (returns false, of course), function types (<T()>), function pointer types, function reference types, functor class types, bind expressions, lambda types, etc. This works correctly even if the class constructor is private and/or non-defaulted, and even if operator() is overloaded. This returns false for member function pointers by design because they are not callable, but you can use bind to create a callable expression.
Note: These assume that the default constructor is valid for the type your checking. Not sure offhand how to get around that.
The following seems to work if it's callable with 0 arguments. Is there something in is_function's implementation that might help to extend this to 1 or more argument callables?:
template <typename T>
struct is_callable {
// Types "yes" and "no" are guaranteed to have different sizes,
// specifically sizeof(yes) == 1 and sizeof(no) == 2.
typedef char yes[1];
typedef char no[2];
template <typename C>
static yes& test(decltype(C()())*);
template <typename>
static no& test(...);
// If the "sizeof" the result of calling test<T>(0) would be equal to the sizeof(yes),
// the first overload worked and T has a nested type named foobar.
static const bool value = sizeof(test<T>(0)) == sizeof(yes);
};
If you know the type of the argument (even if it's a template parameter), the following would work for 1 argument, and I imagine one could extend pretty easily from there:
template <typename T, typename T2>
struct is_callable_1 {
// Types "yes" and "no" are guaranteed to have different sizes,
// specifically sizeof(yes) == 1 and sizeof(no) == 2.
typedef char yes[1];
typedef char no[2];
template <typename C>
static yes& test(decltype(C()(T2()))*);
template <typename, typename>
static no& test(...);
// If the "sizeof" the result of calling test<T>(0) would be equal to the sizeof(yes),
// the first overload worked and T has a nested type named foobar.
static const bool value = sizeof(test<T>(0)) == sizeof(yes);
};
Edit
here is a modification that handles the case where default constructor isn't available.
This is a neat and short trick for finding if T is callable. It goes along the lines originally proposed by Walter E. Brown at CPPCON'14 in his talk on modern template metaprogramming.
template <class... >
using void_t = void;
template <class T>
using has_opr_t = decltype(&T::operator());
template <class T, class = void>
struct is_callable : std::false_type { };
template <class T>
struct is_callable<T, void_t<has_opr_t<typename std::decay<T>::type>>> : std::true_type { };
Here is another implementation.
It makes use of std::is_function template for free functions.
For classes, it uses something similar to the Member Detector Idiom. If T has a call operator, callable_2 will contain more than one operator(). This will cause the first can_call function to be discarded (through SFINAE) due to ambiguity failure in decltype(&callable_2<T>::operator()) and the second can_call function will return true. If T does not have a call operator, the first can_call function will be used (due to overload resolution rules).
namespace impl
{
struct callable_1 { void operator()(); };
template<typename T> struct callable_2 : T, callable_1 { };
template<typename T>
static constexpr bool can_call(decltype(&callable_2<T>::operator())*) noexcept { return false; }
template<typename>
static constexpr bool can_call(...) noexcept { return true; }
template<bool is_class, typename T>
struct is_callable : public std::is_function<T> { };
template<typename T> struct is_callable<false, T*> : public is_callable<false, T> { };
template<typename T> struct is_callable<false, T* const> : public is_callable<false, T> { };
template<typename T> struct is_callable<false, T* volatile> : public is_callable<false, T> { };
template<typename T> struct is_callable<false, T* const volatile> : public is_callable<false, T> { };
template<typename T>
struct is_callable<true, T> : public std::integral_constant<bool, can_call<T>(0)> { };
}
template<typename T>
using is_callable = impl::is_callable<std::is_class<std::remove_reference_t<T>>::value,
std::remove_reference_t<T>>;