Okay so when my professor was going over it in class it seemed quite simple, but when I got to my homework I became confused. This is a homework example.
for (int i = 0; i < n; i++) // I know this runs at T(n)
for (int j = n - 1; j >= i; j--)
cout << i << " " << j << endl;
Here's an example I understand
for(int i=0; i<n-1; i++) {
for(int j=i+1; j<n; j++) {
1 Simple statement
}
For that example I just plugged in 0, 1, and 2. For 0, it ran for n-1, at 1 for n-2 and at 2 n-3. So I think that for the homework example if I plugged in 0 it would run for n+1 since j has to be greater than or equal to i which is 0. If it's not obvious, i'm pretty confused. If anyone could show me how to solve it, that'd make my day. Thanks guys.
Let's dig into the functon. Let's pick some numbers.
say, n = 5
So our code looks like this (magical pseudo-code uses INCLUSIVE loops, not that it's too important)
(1)for i = 0 to 4
(2)for j = 4 to i
(3)print i j
next
next
So this is a matter of preference, but usually loops are assumed to cost 1 simple statement per execution (comparison, and incrementation). So we'll assume that statements (1) and (2) have a cost of 2. Statement (3) has a cost of 1.
Now to determine T(n).
Our outer loop for i = 0 to 4 runs exactly n times.
Our inner loop for j = 4 to i . . . We'll dig in there for a minute.
For our example with n = 5 loop (2) will execute like so
j = 4; i = 0; j = 4; i = 1; j = 4; i = 2; j = 4; i = 3 j = 4; i = 4;
j = 3; i = 0; j = 3; i = 1; j = 3; i = 2; j = 3; i = 3;
j = 2; i = 0; j = 2; i = 1; j = 2; i = 2;
j = 1; i = 0; j = 1; i = 1;
j = 0; i = 0;
So it makes this kind of pyramid shape, where we do 1 less iteration each time. This particular example ran 5 + 4 + 3 + 2 + 1 = 15 times.
We can write this down as SUM(i; i = 0 to n).
Which we know from precalc: = (1/2)(n)(n+1).
And (3) will execute the exact same number of times as that inner loop since it's the only statement. So our total runtime is going to be. . .
COST(1) + COST(2) + COST(3)
(2)(n) + 2(1/2)(n)(n+1) + (1/2)(n)(n+1)
We can clean this up to be
(3/2)(n)(n+1) + 2n = T(n).
That said, this assumes that loops cost 2 and the statement costs 1. It's usually more meaningful to say loops cost 0 and statements cost 1. If that were the case, T(n) = (1/2)(n)(n+1).
And givent that T(n), we know T(n) is O(n^2).
Hope this helps!
It's not that hard.
3 examples for single loops:
for (int i = 0; i < n; i++)
for(int i = 0; i < n-1; i++)
for(int i = 2; i < n-1; i++)
The first loop executs it's content n times (i=0,1,2,3,...,n-1).
The same way, the second loop is just n-1 times.
The third would be n-3 because it starts not at 0, but 2
(and if n is less than 3, ie. n-3<0, it won't execute at all)
In a nested loop like
for(int i = 0; i < n-1; i++) {
for(int j = 0; j < n; j++) {
//something
}
}
For each pass of the outer loop, the whole inner loop is executed, ie. you can multiply both single loop counts to get how often "something" is executed in total. Here, it is (n-1) * n = n^2 - n.
If the inner loop depends on the value of the outer loop, it gets a bit more complicated:
for(int i = 0; i < n-1; i++) {
for(int j = i+1; j < n; j++) {
//something
}
}
The inner loop alone is n - (i+1) times, the outer one n-1 times (with i going from 0 to n-2).
While there are "proper" ways to calculate this, a bit logical thinking is often easier, as you did already:
i-value => inner-loop-time
0 => n-1
1 => n-2
...
n-2 => n - (n-2+1) = 1
So you´ll need the sum 1+2+3+...+(n-1).
For calculating sums from 1 to x, following formula helps:
sum[1...x] = x*(x+1)/2
So, the sum from 1 to n-1 is
sum[1...n-1] = (n-1)*(n-1+1)/2 = (n^2 - n)/2
and that´s the solution for the loops above (your second code).
About the first code:
Outer loop: n
Inner loop: From n-1 down to i included, or the other way from i up to <=n-1,
or from i up to <n, that´s n-i times
i >= innerloop
0 n
1 n-1
2 n-2
...
n-1 1
...and the sum from 1 to n is (n^2 + n)/2.
One easy way to investigate a problem is to model it and look at resulting data.
In your case, the question is: how many iterations does the inner loop depending on the the value of the outer loop variable?
let n = 10 in [0..n-1] |> List.map (fun x -> x,n-1-x);;
The 1 line above is the model showing what happens. If you now look at the resulting output, you will quickly notice something...
val it : (int * int) list =
[(0, 9); (1, 8); (2, 7); (3, 6); (4, 5); (5, 4); (6, 3); (7, 2); (8, 1);
(9, 0)]
What is it you notice? For a given N you run the outer loop N times - this is trivial. Now we need to sum up the second numbers and we have the solution:
sum(N-1..0) = sum(N-1..1) = N * (N-1) / 2.
So the total count of cout calls is N * (N-1) / 2.
Another easy way to achieve the same is to modify your function a bit:
int count(int n) {
int c = 0;
<outer for loop>
<inner for loop>
c++;
return c;
}
Related
The first loop runs O(log n) time but the second loop's runtime depends on the counter of the first loop, If we examine it more it should run like (1+2+4+8+16....+N) I just couldn't find a reasonable answer to this series...
for (int i = 1; i < n; i = i * 2)
{
for (int j = 1; j < i; j++)
{
//const time
}
}
Just like you said. If N is power of two, then 1+2+4+8+16....+N is exactly 2*N-1 (sum of geometric series) . This is same as O(N) that can be simplified to N.
It is like :
1 + 2 + 4 + 8 + 16 + ....+ N
= 2 ^ [O(log(N) + 1] - 1
= O(N)
This is code -
for (i = 1; i<=1000000 ; i++ ) {
for ( j = 1; j<= 1000000; j++ ) {
for ( k = 1; k<= 1000000; k++ ) {
if (i % j == k && j%k == 0)
count++;
}
}
}
or is it better to reduce any % operation that goes upto million times in any programme ??
edit- i am sorry ,
initialized by 0, let say i = 1 ok!
now, if i reduce the third loop as #darshan's answer then both the first
&& second loop can run upto N times
and also it calculating % , n*n times. ex- 2021 mod 2022 , then 2021 mod 2023..........and so on
so my question is- % modulus is twice (and maybe more) as heavy as compared to +, - so there's any other logic can be implemented here ?? which is alternate for this question. and gives the same answer as this logic will give..
Thank you so much for knowledgeable comments & help-
Question is:
3 integers (A,B,C) is considered to be special if it satisfies the
following properties for a given integer N :
A mod B=C
B mod C=0
1≤A,B,C≤N
I'm so curious if there is any other smartest solution which can greatly reduces time complexity.
A much Efficient code will be the below one , but I think it can be optimized much more.
First of all modulo (%) operator is quite expensive so try to avoid it on a large scale
for(i = 0; i<=1000000 ; i++ )
for( j = 0; j<= 1000000; j++ )
{
a = i%j;
for( k = 0; k <= j; k++ )
if (a == k && j%k == 0)
count++;
}
We placed a = i%j in second loop because there is no need for it to be calculated every time k changes as it is independent of k and for the condition j%k == 0 to be true , k should be <= j hence change looping restrictions
First of all, your code has undefined behavior due to division by zero: when k is zero then j%k is undefined, so I assume that all your loops should start with 1 and not 0.
Usually the % and the / operators are much slower to execute than any other operation. It is possible to get rid of most invocations of the % operators in your code by several simple steps.
First, look at the if line:
if (i % j == k && j%k == 0)
The i % j == k has a very strict constrain over k which plays into your hands. It means that it is pointless to iterate k at all, since there is only one value of k that passes this condition.
for (i = 1; i<=1000000 ; i++ ) {
for ( j = 1; j<= 1000000; j++ ) {
k = i % j;
// Constrain k to the range of the original loop.
if (k <= 1000000 && k > 0 && j%k == 0)
count++;
}
}
To get rid of "i % j" switch the loop. This change is possible since this code is affected only by which combinations of i,j are tested, not in the order in which they are introduced.
for ( j = 1; j<= 1000000; j++ ) {
for (i = 1; i<=1000000 ; i++ ) {
k = i % j;
// Constrain k to the range of the original loop.
if (k <= 1000000 && k > 0 && j%k == 0)
count++;
}
}
Here it is easy to observe how k behaves, and use that in order to iterate on k directly without iterating on i and so getting rid of i%j. k iterates from 1 to j-1 and then does it again and again. So all we have to do is to iterate over k directly in the loop of i. Note that i%j for j == 1 is always 0, and since k==0 does not pass the condition of the if we can safely start with j=2, skipping 1:
for ( j = 2; j<= 1000000; j++ ) {
for (i = 1, k=1; i<=1000000 ; i++, k++ ) {
if (k == j)
k = 0;
// Constrain k to the range of the original loop.
if (k <= 1000000 && k > 0 && j%k == 0)
count++;
}
}
This is still a waste to run j%k repeatedly for the same values of j,k (remember that k repeats several times in the inner loop). For example, for j=3 the values of i and k go {1,1}, {2,2}, {3,0}, {4,1}, {5,2},{6,0},..., {n*3, 0}, {n*3+1, 1}, {n*3+2, 2},... (for any value of n in the range 0 < n <= (1000000-2)/3).
The values beyond n= floor((1000000-2)/3)== 333332 are tricky - let's have a look. For this value of n, i=333332*3=999996 and k=0, so the last iteration of {i,k}: {n*3,0},{n*3+1,1},{n*3+2, 2} becomes {999996, 0}, {999997, 1}, {999998, 2}. You don't really need to iterate over all these values of n since each of them does exactly the same thing. All you have to do is to run it only once and multiply by the number of valid n values (which is 999996+1 in this case - adding 1 to include n=0).
Since that did not cover all elements, you need to continue the remainder of the values: {999999, 0}, {1000000, 1}. Notice that unlike other iterations, there is no third value, since it would set i out-of-range.
for (int j = 2; j<= 1000000; j++ ) {
if (j % 1000 == 0) std::cout << std::setprecision(2) << (double)j*100/1000000 << "% \r" << std::flush;
int innerCount = 0;
for (int k=1; k<j ; k++ ) {
if (j%k == 0)
innerCount++;
}
int innerLoopRepeats = 1000000/j;
count += innerCount * innerLoopRepeats;
// complete the remainder:
for (int k=1, i= j * innerLoopRepeats+1; i <= 1000000 ; k++, i++ ) {
if (j%k == 0)
count++;
}
}
This is still extremely slow, but at least it completes in less than a day.
It is possible to have a further speed up by using an important property of divisibility.
Consider the first inner loop (it's almost the same for the second inner loop),
and notice that it does a lot of redundant work, and does it expensively.
Namely, if j%k==0, it means that k divides j and that there is pairK such that pairK*k==j.
It is trivial to calculate the pair of k: pairK=j/k.
Obviously, for k > sqrt(j) there is pairK < sqrt(j). This implies that any k > sqrt(j) can be extracted simply
by scanning all k < sqrt(j). This feature lets you loop over only a square root of all interesting values of k.
By searching only for sqrt(j) values gives a huge performance boost, and the whole program can finish in seconds.
Here is a view of the second inner loop:
// complete the remainder:
for (int k=1, i= j * innerLoopRepeats+1; i <= 1000000 && k*k <= j; k++, i++ ) {
if (j%k == 0)
{
count++;
int pairI = j * innerLoopRepeats + j / k;
if (pairI != i && pairI <= 1000000) {
count++;
}
}
}
The first inner loop has to go over a similar transformation.
Just reorder indexation and calculate A based on constraints:
void findAllSpecial(int N, void (*f)(int A, int B, int C))
{
// 1 ≤ A,B,C ≤ N
for (int C = 1; C < N; ++C) {
// B mod C = 0
for (int B = C; B < N; B += C) {
// A mod B = C
for (int A = C; A < N; A += B) {
f(A, B, C);
}
}
}
}
No divisions not useless if just for loops and adding operations.
Below is the obvious optimization:
The 3rd loop with 'k' is really not needed as there is already a many to One mapping from (I,j) -> k
What I understand from the code is that you want to calculate the number of (i,j) pairs such that the (i%j) is a factor of j. Is this correct or am I missing something?
So, I need to find the T(n) and then Big-O (tight upper bound) for the following piece of code:
int sum = 0;
for(int i = 1; i < n; i *= 2) {
for(int j = n; j > 0; j /= 2) {
for(int k = j; k < n; k += 2) {
sum += i + j * k;
}
}
}
Now from what I calculated for the loops, first loop runs log(n) times, second loop runs (log(n) * log(n)) times and the third loop is the one which is causing confusion, because I believe it runs for (n - j)/2 times. My question is can I assume it to be n/2 times, because I think it won't be a tight upper bound if I do that. Or is there a different approach that I am missing?
for(int i = 1; i < n; i *= 2) // (1)
for(int j = n; j > 0; j /= 2) // (2)
for(int k = j; k < n; k += 2) // (3)
For the first iteration of (3) (where k = j = n) no iteration will occur. After j is divided by 2 the third loop will run (n/2)/2 or n/4 times. After the third iteration of (2), (3) will run n/4/2 or n/8 times. We can sum the running time as follows:
n/4 + n/8 + n/16 + ... + n/2^k
This can also be written as:
n * (1/4 + 1/8 + 1/16 + ... + 1/2^k)
Which asymptotically is in O(n).
This is a very interesting question. Let give n a real number and see how it's going. Say, n=100. If we only look at the two inner loops
j k
100 None
50 50, 52, ..., 98
25 25, 27, ..., 99
12 12, 14, ..., 98
6 6, 8, ..., 98
3 3, 5, ..., 99
1 1, 3, ..., 99
As you can see, the complexity of the third loop is actually O(n). Especially when n is a very large number, it will be close to Θ(n)
I am trying to implement a simple cumulative sum code in C++ as follows:
x[0] = 0;
for (k=1;k<100; k++)
x[k] = x[k-1] + x[k];
On this site, an implementation is noted down to eliminate the loop carry over dependency. The code should look like this for two threads:
x[0] = 0;
x[49] = 74; //pre calculated
//the outer loop is parallelized (two instances)
#pragma omp parallel for private(m,k)
for(m=0;m<2;m++) {
for (k=m*49+1; k<m*50+50; k++) {
x[k] = x[k-1] + x[k];
}
}
The problem is I still see the loop carry dependency here (two threads running parallel, but one needs data from another).
Can somebody please add some explanation here? What is the best way to eliminate such dependency?
Since the value of x[49] is already there, there is no need to compute it again: you can skip the iterations where k = 0 and k = 49. That's why the loop is unfolded in two nested loops.
However, there seems to be an error there. There should only be a loop carry dependency for the inner loop, and it should propagate across iterations of the outer loop. This is because the limits are not defined properly:
With m = 0, k = 1 .. 48 (you already got 0 and 49).
With m = 1, k = 50 ..99 (again, you already got 49!).
Therefore, the loop should be left as the following:
for( m = 0; m < 2; m++ ) {
for (k=m*49+1; k<m*51+49; k++) {
x[k] = x[k-1] + x[k];
}
}
If you change the addition to be:
x[k+1] = x[k] + x[k+1];
It can simplify a bit your lower bound...
for( m = 0; m < 2; m++ ) {
for (k=m*50; k < m*51+48; k++) {
x[k+1] = x[k] + x[k+1];
}
}
This question already has answers here:
Big O, how do you calculate/approximate it?
(24 answers)
Closed 8 years ago.
Compute the complexity of the following Algorithm?
I have the following code snippet:
i = 1;
while (i < n + 1) {
j = 1;
while (j < n + 1) {
j = j * 2;
}
i = i + 1;
}
plz explain it in detail
I want to know the the steps to solve the problem so I can solve such problems
Since j grows exponentially, the inner loop takes O(log(n)).
Since i grows linearly, the outer loop takes O(n).
Hence the overall complexity is O(n*log(n)).
i = 1;
while(i < n + 1){
j = 1;
While(j < n + 1){
j = j * 2:
}
i = i + 1;
}
outer loop takes O(n) since it increments by constant.
i = 1;
while(i < n + 1){
i = i + 1;
}
inner loop : j = 1, 2, 4, 8, 16, ...., 2^k
j = 2^k (k >= 0)
when will j stops ?
when j == n,
log(2^k) = log(n)
=> k * lg(2) = lg(n) ..... so k = lg(n).
While(j < n + 1){
j = j * 2;
}
so total O(n * lg(n))
You can simply understand outer-loop(with i) because it loops exactly n times. (1, 2, 3, ..., n). But inner-loop(j) is little difficult to understand.
Let's assume that n is 8. How much it loops? Starting with j = 1, it will be increased as exponentially : 1, 2, 4, 8. When j is over 8, loop will be terminated. It loops exactly 4 times. Then we can think general-form of this problem...
Think of that sequence 1, 2, 4, 8, .... If n is 2^k (k is non-negative integer), inner-loop will take k+1 times. (Because 2^(loop-1) = 2^k) Due to the assumption : n = 2^k, we can say that k = lg(n). So we can say inner-loop takes lg(n)+1 times.
When n is not exactly fit to 2^k, it takes one more time. ([lg(n)]+1) It's not a big deal with complexity though it has floor function. You can ingonre it this time.
So the total costs will be like this : n*(lg(n)+1). If you are familiar with Big-O notation, it can be expressed as : O(n lg n).
This one is similar to the following code :
for( int i = 1;i < n+1 ; i++){ // this loop runs n times
for(int j = 1 ; j<n+1 ; j=j*2){// this loop runs log_2(n)(log base 2 because it grows exponentially with 2)
//body
}
}
Hence in Big-Oh notation it is O(n)*O(logn) ; i.e, O(n*logn)
You can proceed like the following: