I have seen implementations of the Observer design pattern in which the Observer is responsible for multiple Subjects. Most of these implementations use a std::vector<Subject*> in order to keep track of the Subjects.
Would it be possible for me to do a similar thing, using a std::unordered_set<weak_ptr<Subject>> instead?
The reason I want to use an unordered_set is that I will not need duplicates, and I don't need an ordered container. From what I understand, an unordered_set is the way to go in this situation. Also, the reason I am using a weak_ptr is that it should be safer?
If you disagree, leave an answer explaining what container I should use instead. If I did use the unordered_set, I would have to declare a hash function for the weak_ptr, but could this be accomplished by just using the hash function for the pointer inside, obtained with subjects.lock().get()?
First of all, in my answer I will use Subject as the one who sends messages to registered Observers, since it is the common use of this two terms.
Would it be possible for me to do a similar thing, using a std::unordered_set<weak_ptr<Observer>> instead?
It is possible. However remeber that the object held by a weak_ptr can be freed, weak_ptr needs to be casted to a shared_ptr before accessing the underlying object. It is done this way so the object is not freed while you are handling it.
Would it be possible for me to do a similar thing, using a std::unordered_set> instead?
If you need to enforce uniqueness the unordered_set looks like a good choice to me. If you don't need to, then a vector is more straightforward solution. Some would tell that unique_set is slower and requires more memory than a vector, but unless you need very high frequency registration of Observers or thousands of them, you won't notice the difference.
About the weak pointer, it gives you the flexibility of having your Observers deallocated while registered, so it should be fine. This behaviour may be unexpected if you come from a memory managed language like Java. If you want to hold them in existence while they are registered in your Subject you may use a shared_pointer instead.
I would have to declare a hash function for the weak_ptr, but could this be accomplished by just using the hash function for the pointer inside, obtained with observer.lock().get()?
Be careful when creating hash functions, I dont recommend you to use object's pointer for the hash function, specially if your Subjects can be copied/moved. Instead you may create an unique identifier for every Subject upon creation using a counter, and remember to write copy/move constructors and operators accordingly.
If you cannot write an identifying hash function, then you should't use the unique_set, since you lose the advantages it brings.
As a footnote, the beauty of object containers is that you can fit them to your needs, every solution is the correct solution if it does what you really want.
There isn't really one 'correct' answer for the choice of container; it depends upon what you are aiming for from the point of view of performance. And whether or not performance is really all that important for this.
It also depends upon memory efficiency. If you only have a few of these unordered_set objects and need very fast lookup then it may be a good choice. Since it is a hash table it will use a fairly large amount of memory per unordered_set object.
If you have a lot of unordered_set objects with fairly few items then it may get a bit expensive in terms of memory budget. If you need fast insertion and removal then std::set may be better in this case. However if the collection only ever contains a handful of items then the lookup will probably actually be faster with a linear search of std::vector due to the processor cache (i.e. better locality of reference of the vector elements compared to std::set - which may result in more elements being on the same cache line). Memory usage of vector will be lower than either of std::set or std::unordered_set.
If you need fast lookup of specific objects for some reason and use std::vector and typically have a a moderate number of elements then you could insert items into the vector in sorted order. You can then use std::lower_bound to do an O(log n) binary search lookup. However, this has a potentially high cost for inserting and removing elements.
I'd probably just go for std:vector in most cases - you generally have few observers, so may as well keep memory usage tighter.
And using weak_ptr is certainly a good option if these objects are used elsewhere with shared_ptr.
In the Observer pattern the Observer subscribes to notifications about changes on a Subject. The Subject is responsible for updating all subscribed Observers whenever its observable state changes. For that to work the Observers do not need to keep track of the Subjects. Instead the Subject must keep track of all subscribed Observers.
A nice explanation of the Observer pattern can be found here: https://sourcemaking.com/design_patterns/observer
Code outline:
class Subject;
class Observer
{
public:
// when notified about a change, the Observer
// knows which Subject changed, because of the parameter s
virtual void subjectChanged(Subject* s)=0;
};
class Subject
{
private:
int m_internalState;
std::set<Observer*> m_observers;
public:
void subscribe(Observer* o)
{
m_observers.insert(o);
}
void unsubscribe(Observer* o);
{
m_observers.erase(o);
}
void setInternalState(int state)
{
auto end=m_observers.end();
for(auto it=m_observers.begin(); it != end; ++it)
it->subjectChanged(this);
}
};
In most cases it won't matter which exact collection type you choose for storing the Observers, because there will be very few Observers. However, choosing a set-type has the advantage, that each Observer will receive only one notification. With a vector it could happen that the same Observer receives multiple notifications about the same change, if (for some reason) it was subscribed multiple times.
I really think that using std::unordered_set is a bit over-kill.
what is this observer pattern? when an event or a change of state occurs, iterate over an array of state-checkers and make them do something if the state is invalid or special in any sort.
this has being said, you want to iterate over an array with objects with overriden virtual function and call it. why whould set give us any benefit?
also, I don't get the weak_ptr idea - the owner of the observers is the array with holds them. the owner of that array is the Subject.
now that all has being said, I would go with std::vector<std::unique_ptr<Observer>>.
Edit:
using C++11, I'd even go with std::vector<std::function<void(Subject&)>> and avoid the boilerplate of inheriting+overriding.
The simplest thing to do is to roll with boost::signals2, which already implemented this for you, for all signatures. The fundamental problem with your approach is that the implementation is tied to a particular signature with a particular subject and observer, which is virtually worthless compared to a generic solution that applies for all cases.
The Observer pattern is not a pattern, it's a class template.
Related
There are various ways of returning a collection of items from a method of a class in C++.
For example, consider the class MessageSpy that listens on all Messages sent over a connection. A client could access the messaging information in a number of ways.
const CollectionClass MessageSpy::getMessages()
Iterator MessageSpy::begin(), Iterator MessageSpy::end()
void MessageSpy::getMessages(OutputIterator)
void MessageSpy::eachMessage(Functor)
others...
Each approach has its trade-offs. For example: Approach 1 would require copying the whole collection which is expensive for large collections. While approach 2 makes the class look like a collection which is inappropriate for a view...
Since I'm always strungling choosing the most appropriate approach in I wonder what you consider the trade-offs/costs when considering these approaches?
I suggest an iterator based/callback based approach in cases where you demand the most lightweight solution possible.
The reason is that it decouples the supplier from the usage patterns by the consumer.
In particular, slamming the result into a collection1 (even though the result maybe "optimized" - likely into (N)RVO or moving instead of copying the object) would still allocate a complete container for the full capacity.
Edit: 1 an excellent addition to "obligatory papers" (they're not; they're just incredibly helpful if you want to understand things): Want Speed? Pass By value by Dave Abrahams.
Now
this is overkill if the consumer actually stops processing data after the first few elements
for(auto f=myType.begin(), l=myType.end(); f!=l; ++f)
{
if (!doProcessing(*f))
break;
}
this can be suboptimal even if the consumer processes al elements eventually: there might not be a need to have all elements copied at any particular moment, so the 'slot' for the 'current element' can be reused, reducing memory requirements, increasing cache locality. E.g.:
for(auto f=myType.begin(), l=myType.end(); f!=l; ++f)
{
myElementType const& slot = *f; // making the temp explicit
doProcessing(slot);
}
Note that iterator interfaces are simply still superior if the consumer did want a collection containing all elements:
std::vector<myElementType> v(myType.begin(), myType.end());
// look: the client gets to _decide_ what container he wants!
std::set<myElementType, myComparer> s(myType.begin(), myType.end());
Try getting this flexibility otherwise.
Finally, there are some elements of style:
by nature it's easy to expose (const) references to the elements using iterators; this makes it much easier to avoid object slicing and to enable clients to use the elements polymorphically.
iterator-style interfaces could be overloaded to return non-const references on dereference. A container to be returned, couldn't contain references (directly)
if you adhere to the requirements of range-based-for in C++11 you can have some syntactic sugar:
for (auto& slot : myType)
{
doProcessing(slot);
}
Finally, (as shown above), in the general sense iterators work nicely with the standard library.
The callback style (and similarly the Output-iterator style) has many of the benefits of the iterator style (namely, you could use return values to abort iteration halfway, and you could do processing without allocating copies of all elements up front), but it seems to me to be slightly less flexible in use. Of course, there may be situations where you want to encourage a particular usage pattern, and this migh be a good way to go.
The first thing (you somehow didn't mention at all) I would think about is
const CollectionClass& MessageSpy::getMessages()
Note the &. That returns you const reference which can't be modified but can be freely accepted.
No copying, unless you really want to copy.
If that's not suitable, Qt, for example, uses "implicit data sharing" for plenty of classes.
I.e. your classes are "kinda" returned by value, BUT their internal data is shared until you attempt to perform write operation on one of them. In this case, class you're trying to write into, performs a deep copy, and data stops being shared. That means less data is moved around.
And there's return value optimization some people on SO seems to love too much. Basically, when you return something big by value, some compilers in certain situations can eliminate extra copy, and immediately pass value bypassing extra assignment which may be faster than returning by reference. I wouldn't rely on it too much, but if you profiled your code and figured out that using RVO provides a good speed-up, then it is worth using.
I wouldn't recommend "iterators", because using them on C++03 compiler without auto keyword is royal pain in the #&#. Long names or many typedefs. I would return const reference to container itself instead.
I am having some issues designing the memory management for an Entity-Component system and am having some issues coming up with the detail of the design. Here is what I am trying to do (note that all of these classes except Entity are actually virtual, so will have many different specific implementations):
The Program class will have a container of Entity's. The Program will loop through the Entity's and call update on each of them. It will also have a few SubSystem's, which it will also update on each loop through.
Each Entity will contain two types of Component's. All of them will be owned by a unique_ptr inside the Entity since their lifetime is directly tied to the entity. One type, UpdateableComponent, will be updated when the Entity.update() method is called. The second type SubSystemComponent will be updated from within their respective SubSystem.
Now here are my two problems. The first is that some of the Component's will control the lifetime of their parent Entity. My current idea for this is that Component will be able to call a function parent.die() which would change an internal flag inside Entity. Then after Program finishes looping through its updates, it loops through a second time and removes each Entity which was marked for deletion during the last update. I don't know if this is an efficient or smart way to go about it, although it should avoid the problem of an Entity dieing while its Component's are still updating.
The second issue is that I am not sure how to reference SubSystemComponent's from within SubSystem. Since they are refered to by a unique_ptr from inside Entity, I can't use a shared_ptr or a weak_ptr, and a standard pointer would end up dangling when the Entity owning a component dies. I could switch to a shared_ptr inside the Entity for these, then use a weak_ptr in the SubSystem's, however I would prefer to not do this because the whole point is that Entity completely owns its Component's.
So 2 things:
Can my first idea be improved upon in a meaningful way?
Is there an easy way to implement a weak_ptr sort of functionality with unique_ptr, or should I just switch to shared_ptr and just make sure to not create more than one shared_ptr to the SubSystemComponent's
Can my first idea be improved upon in a meaningful way?
Hard to say without knowing more about the nature of the work being undertaken. For example, you haven't said anything about your use of threads, but it seems your design gives equal priority to all the possible updates by cycling through things in a set sequence. For some things where low latency is important, or there's some useful prioritorisation that would ideally be done, a looping sequence like that isn't good, while other times it's ideal.
There are other ways to coordinate the Component-driven removal of Entities from the Program:
return codes could bubble up to the loop over entities, triggering an erase from the container of Entities,
an Observer pattern or lambda/std::function could allow the Program to specify cleanup behaviour.
Is there an easy way to implement a weak_ptr sort of functionality with unique_ptr,
No.
or should I just switch to shared_ptr and just make sure to not create more than one shared_ptr to the SubSystemComponent's
It sounds like a reasonable fit. You could even wrap a shared_ptr in a non-copyable class to avoid accidental mistakes.
Alternatively - as for Entity destruction above - you could coordinate the linkage between SubSystem and SubSystemComponent using events, so the SubSystemComponent destructor calls back to the SubSystem. An Observer pattern is one way to do this, a SubSystemComponent-side std::function fed a lambda is even more flexible. Either way, the Subsystem removes the SubSystemComponent from its records.
just came a across a situation where I needs to store heap-allocated pointers (to a class B) in an STL container. The class that owns the privately held container (class A) also creates the instances of B. Class A will be able to return a const pointers to B instances for clients of A.
Now, does it matter if these pointer are stored in a set or a vector? I thought of having a set just to verify that no duplicates are stored but since addresses are stored, two B pointers with the same data can be stored (unless I provide a comparison class for data comparison I presume).
Any thoughts on this (quite vague) subject? What are the pros/cons for the alternatives? Are smart_pointers something to look into?
Please ask me if anything imperative is unclear, thank you!
There's nothing wrong with storing pointers in a standard container - be it a vector, set, map, or whatever. You just have to be aware of who owns that memory and make sure that it's released appropriately. When choosing a container, choose the container that makes the most sense for your needs. vector is great for random access and appending but not so great for inserting elsewhere in the container. list deals with insertions extremely well, but it doesn't have random access. Sets ensure that there are no duplicates in the container and it's sorted (though the sorting isn't very useful if the set holds pointers and you don't give a comparator function) whereas a map is a set of key-value pairs, so sorting and access is done by key. Etc. Etc. Every container has its pros and cons and which is best for a particular situation depends entirely on that situation.
As for pointers, again, having pointers in containers is fine. The issue that you need to worry about is who owns the memory and therefore must worry about freeing it. If there is a clear object that owns what a particular pointer points to, then it should probably be that object which frees it. If it's essentially the container which owns the memory, then you need to make sure that you delete all of the pointers in the container before the container is destroyed.
If you are concerned with there being multiple pointers to the same data floating around or there is no clear owner for a particular chunk of memory, then smart pointers are a good solution. Boost's shared_ptr would probably be a good one to use, and shared_ptr will be part of C++0x. Many would suggest that you should always use shared pointers, but there is some overhead involved and whether it's best for your particular application will depend entirely on your application.
Ultimately, you need to be aware of the strengths and weaknesses of the various container types and determine what the best container is for whatever you're doing. The same goes for how to deal with pointer management. You need to write your program in a way that it's clear who owns a particular chunk of memory and make sure that that owner frees it when appropriate. Shared pointers are just one solution for that (albeit an excellent one). What the best solution is depends on the particulars of your program.
Why would there be any duplicates in the first place? If class A is the sole entity responsible for creating the instances, and it holds the container privately, meaning there's no way for others to mutate it, it seems to me that there should be no cause for duplicates. Well, if there is, won't that be remediable by some checking prior to adding the pointer to the vector?
I don't know why it would matter if you store a pointer in what kind of container. Containers don't really manipulate their data, they only provide access to them in different ways. So, it's up to you :)
If you need to store pointers in stl containers, use shared_ptr.
Now, the set sounds completely wrong. What are you going to do with those?
If you need to add and remove, then list.
If you need to iterate over range, or all, then vector.
If you need to access specific, knowing a key, then map.
Take a look at others as well. One size doesn't fit all.
My answer is that any decisions that you make have be be with your goal in mind. If you need a 'no duplicates allowed' rule that a set enforces, then use a set. If not then you might want to use a vector or any container might do the trick.
As for smart_pointers yes, they are really really useful. Should they be used? I don't know, once again I don't know what your end goal is or the problem that you are trying to solve with them.
Basically it comes down this. If I said "I want to use a hammer. What do you think of that?" you would probably say "Well what for, I know that hammers are pretty good for nails and wood scenarios but they could also be used as a tool to hurt people or maybe as a book stand. Look, just wait a second, what is this for again?" The problem is that I have not, really said why I want to use a hammer. I have not said what goal I am trying to achieve.
So if you have sort of an overall goal then why not let us know, then it will be obvious if you are using the right tools for the job and we can help you more.
In my opinion, stick with vector unless you have a real reason not to. Sets come with some runtime overhead as well as quite large semantic overhead compared to a vector.
My application problem is the following -
I have a large structure foo. Because these are large and for memory management reasons, we do not wish to delete them when processing on the data is complete.
We are storing them in std::vector<boost::shared_ptr<foo>>.
My question is related to knowing when all processing is complete. First decision is that we do not want any of the other application code to mark a complete flag in the structure because there are multiple execution paths in the program and we cannot predict which one is the last.
So in our implementation, once processing is complete, we delete all copies of boost::shared_ptr<foo>> except for the one in the vector. This will drop the reference counter in the shared_ptr to 1. Is it practical to use shared_ptr.use_count() to see if it is equal to 1 to know when all other parts of my app are done with the data.
One additional reason I'm asking the question is that the boost documentation on the shared pointer shared_ptr recommends not using "use_count" for production code.
Edit -
What I did not say is that when we need a new foo, we will scan the vector of foo pointers looking for a foo that is not currently in use and use that foo for the next round of processing. This is why I was thinking that having the reference counter of 1 would be a safe way to ensure that this particular foo object is no longer in use.
My immediate reaction (and I'll admit, it's no more than that) is that it sounds like you're trying to get the effect of a pool allocator of some sort. You might be better off overloading operator new and operator delete to get the effect you want a bit more directly. With something like that, you can probably just use a shared_ptr like normal, and the other work you want delayed, will be handled in operator delete for that class.
That leaves a more basic question: what are you really trying to accomplish with this? From a memory management viewpoint, one common wish is to allocate memory for a large number of objects at once, and after the entire block is empty, release the whole block at once. If you're trying to do something on that order, it's almost certainly easier to accomplish by overloading new and delete than by playing games with shared_ptr's use_count.
Edit: based on your comment, overloading new and delete for class sounds like the right thing to do. If anything, integration into your existing code will probably be easier; in fact, you can often do it completely transparently.
The general idea for the allocator is pretty much the same as you've outlined in your edited question: have a structure (bitmaps and linked lists are both common) to keep track of your free objects. When new needs to allocate an object, it can scan the bit vector or look at the head of the linked list of free objects, and return its address.
This is one case that linked lists can work out quite well -- you (usually) don't have to worry about memory usage, because you store your links right in the free object, and you (virtually) never have to walk the list, because when you need to allocate an object, you just grab the first item on the list.
This sort of thing is particularly common with small objects, so you might want to look at the Modern C++ Design chapter on its small object allocator (and an article or two since then by Andrei Alexandrescu about his newer ideas of how to do that sort of thing). There's also the Boost::pool allocator, which is generally at least somewhat similar.
If you want to know whether or not the use count is 1, use the unique() member function.
I would say your application should have some method that eliminates all references to the Foo from other parts of the app, and that method should be used instead of checking use_count(). Besides, if use_count() is greater than 1, what would your program do? You shouldn't be relying on shared_ptr's features to eliminate all references, your application architecture should be able to eliminate references. As a final check before removing it from the vector, you could assert(unique()) to verify it really is being released.
I think you can use shared_ptr's custom deleter functionality to call a particular function when the last copy has been released. That way, you're not using use_count at all.
You would need to hold something other than a copy of the shared_ptr in your vector so that the shared_ptr is only tracking the outstanding processing.
Boost has several examples of custom deleters in the shared_ptr docs.
I would suggest that instead of trying to use the shared_ptr's use_count to keep track, it might be better to implement your own usage counter. this way you will have full control over this rather than using the shared_ptr's one which, as you rightly suggest, is not recommended. You can also pre-set your own counter to allow for the number of threads you know will need to act on the data, rather than relying on them all being initialised at the beginning to get their copies of the structure.
class MyContainedClass {
};
class MyClass {
public:
MyContainedClass * getElement() {
// ...
std::list<MyContainedClass>::iterator it = ... // retrieve somehow
return &(*it);
}
// other methods
private:
std::list<MyContainedClass> m_contained;
};
Though msdn says std::list should not perform relocations of elements on deletion or insertion, is it a good and common way to return pointer to a list element?
PS: I know that I can use collection of pointers (and will have to delete elements in destructor), collection of shared pointers (which I don't like), etc.
I don't see the use of encapsulating this, but that may be just me. In any case, returning a reference instead of a pointer makes a lot more sense to me.
In a general sort of way, if your "contained class" is truly contained in your "MyClass", then MyClass should not be allowing outsiders to touch its private contents.
So, MyClass should be providing methods to manipulate the contained class objects, not returning pointers to them. So, for example, a method such as "increment the value of the umpteenth contained object", rather than "here is a pointer to the umpteenth contained object, do with it as you wish".
It depends...
It depends on how much encapsulated you want your class to be, and what you want to hide, or show.
The code I see seems ok for me. You're right about the fact the std::list's data and iterators won't be invalidated in case of another data/iterator's modification/deletion.
Now, returning the pointer would hide the fact you're using a std::list as an internal container, and would not let the user to navigate its list. Returning the iterator would let more freedom to navigate this list for the users of the class, but they would "know" they are accessing a STL container.
It's your choice, there, I guess.
Note that if it == std::list<>.end(), then you'll have a problem with this code, but I guess you already know that, and that this is not the subject of this discussion.
Still, there are alternative I summarize below:
Using const will help...
The fact you return a non-const pointer lets the user of you object silently modify any MyContainedClass he/she can get his/her hands on, without telling your object.
Instead or returning a pointer, you could return a const pointer (and suffix your method with const) to stop the user from modifying the data inside the list without using an accessor approved by you (a kind of setElement ?).
const MyContainedClass * getElement() const {
// ...
std::list<MyContainedClass>::const_iterator it = ... // retrieve somehow
return &(*it);
}
This will increase somewhat the encapsulation.
What about a reference?
If your method cannot fail (i.e. it always return a valid pointer), then you should consider returning the reference instead of the pointer. Something like:
const MyContainedClass & getElement() const {
// ...
std::list<MyContainedClass>::const_iterator it = ... // retrieve somehow
return *it;
}
This has nothing to do with encapsulation, though..
:-p
Using an iterator?
Why not return the iterator instead of the pointer? If for you, navigating the list up and down is ok, then the iterator would be better than the pointer, and is used mostly the same way.
Make the iterator a const_iterator if you want to avoid the user modifying the data.
std::list<MyContainedClass>::const_iterator getElement() const {
// ...
std::list<MyContainedClass>::const_iterator it = ... // retrieve somehow
return it;
}
The good side would be that the user would be able to navigate the list. The bad side is that the user would know it is a std::list, so...
Scott Meyers in his book Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library says it's just not worth trying to encapsulate your containers since none of them are completely replaceable for another.
Think good and hard about what you really want MyClass for. I've noticed that some programmers write wrappers for their collections just as a matter of habit, regardless of whether they have any specific needs above and beyond those met by the standard STL collections. If that's your situation, then typedef std::list<MyContainedClass> MyClass and be done with it.
If you do have operations you intend to implement in MyClass, then the success of your encapsulation will depend more on the interface you provide for them than on how you provide access to the underlying list.
No offense meant, but... With the limited information you've provided, it smells like you're punting: exposing internal data because you can't figure out how to implement the operations your client code requires in MyClass... or possibly, because you don't even know yet what operations will be required by your client code. This is a classic problem with trying to write low-level code before the high-level code that requires it; you know what data you'll be working with, but haven't really nailed down exactly what you'll be doing with it yet, so you write a class structure that exposes the raw data all the way to the top. You'd do well to re-think your strategy here.
#cos:
Of course I'm encapsulating
MyContainedClass not just for the sake
of encapsulation. Let's take more
specific example:
Your example does little to allay my fear that you are writing your containers before you know what they'll be used for. Your example container wrapper - Document - has a total of three methods: NewParagraph(), DeleteParagraph(), and GetParagraph(), all of which operate on the contained collection (std::list), and all of which closely mirror operations that std::list provides "out of the box". Document encapsulates std::list in the sense that clients need not be aware of its use in the implementation... but realistically, it is little more than a facade - since you are providing clients raw pointers to the objects stored in the list, the client is still tied implicitly to the implementation.
If we put objects (not pointers) to
container they will be destroyed
automatically (which is good).
Good or bad depends on the needs of your system. What this implementation means is simple: the document owns the Paragraphs, and when a Paragraph is removed from the document any pointers to it immediately become invalid. Which means you must be very careful when implementing something like:
other objects than use collections of
paragraphs, but don't own them.
Now you have a problem. Your object, ParagraphSelectionDialog, has a list of pointers to Paragraph objects owned by the Document. If you are not careful to coordinate these two objects, the Document - or another client by way of the Document - could invalidate some or all of the pointers held by an instance of ParagraphSelectionDialog! There's no easy way to catch this - a pointer to a valid Paragraph looks the same as a pointer to a deallocated Paragraph, and may even end up pointing to a valid - but different - Paragraph instance! Since clients are allowed, and even expected, to retain and dereference these pointers, the Document loses control over them as soon as they are returned from a public method, even while it retains ownership of the Paragraph objects.
This... is bad. You've end up with an incomplete, superficial, encapsulation, a leaky abstraction, and in some ways it is worse than having no abstraction at all. Because you hide the implementation, your clients have no idea of the lifetime of the objects pointed to by your interface. You would probably get lucky most of the time, since most std::list operations do not invalidate references to items they don't modify. And all would be well... until the wrong Paragraph gets deleted, and you find yourself stuck with the task of tracing through the callstack looking for the client that kept that pointer around a little bit too long.
The fix is simple enough: return values or objects that can be stored for as long as they need to be, and verified prior to use. That could be something as simple as an ordinal or ID value that must be passed to the Document in exchange for a usable reference, or as complex as a reference-counted smart pointer or weak pointer... it really depends on the specific needs of your clients. Spec out the client code first, then write your Document to serve.
The Easy way
#cos, For the example you have shown, i would say the easiest way to create this system in C++ would be to not trouble with the reference counting. All you have to do would be to make sure that the program flow first destroys the objects (views) which holds the direct references to the objects (paragraphs) in the collection, before the root Document get destroyed.
The Tough Way
However if you still want to control the lifetimes by reference tracking, you might have to hold references deeper into the hierarchy such that Paragraph objects holds reverse references to the root Document object such that, only when the last paragraph object gets destroyed will the Document object get destructed.
Additionally the paragraph references when used inside the Views class and when passed to other classes, would also have to passed around as reference counted interfaces.
Toughness
This is too much overhead, compared to the simple scheme i listed in the beginning. It avoids all kinds of object counting overheads and more importantly someone who inherits your program does not get trapped in the reference dependency threads traps that criss cross your system.
Alternative Platforms
This kind-of tooling might be easier to perform in a platform that supports and promotes this style of programming like .NET or Java.
You still have to worry about memory
Even with a platform such as this you would still have to ensure your objects get de-referenced in a proper manner. Else outstanding references could eat up your memory in the blink of an eye. So you see, reference counting is not the panacea to good programming practices, though it helps avoid lots of error checks and cleanups, which when applied the whole system considerably eases the programmers task.
Recommendation
That said, coming back to your original question which gave raise to all the reference counting doubts - Is it ok to expose your objects directly from the collection?
Programs cannot exist where all classes / all parts of the program are truly interdependent of each other. No, that would be impossible, as a program is the running manifestation of how your classes / modules interact. The ideal design can only minimize the dependencies and not remove them totally.
So my opinion would be, yes it is not a bad practice to expose the references to the objects from your collection, to other objects that need to work with them, provided you do this in a sane manner
Ensure that only a few classes / parts of your program can get such references to ensure minimum interdependency.
Ensure that the references / pointers passed are interfaces and not concrete objects so that the interdependency is avoided between concrete classes.
Ensure that the references are not further passed along deeper into the program.
Ensure that the program logic takes care of destroying the dependent objects, before cleaning up the actual objects that satisfy those references.
I think the bigger problem is that you're hiding the type of collection so even if you use a collection that doesn't move elements you may change your mind in the future. Externally that's not visible so I'd say it's not a good idea to do this.
std::list will not invalidate any iterators, pointers or references when you add or remove things from the list (apart from any that point the item being removed, obviously), so using a list in this way isn't going to break.
As others have pointed out, you may want not want to be handing out direct access to the private bits of this class. So changing the function to:
const MyContainedClass * getElement() const {
// ...
std::list<MyContainedClass>::const_iterator it = ... // retrieve somehow
return &(*it);
}
may be better, or if you always return a valid MyContainedClass object then you could use
const MyContainedClass& getElement() const {
// ...
std::list<MyContainedClass>::const_iterator it = ... // retrieve somehow
return *it;
}
to avoid the calling code having to cope with NULL pointers.
STL will be more familiar to a future programmer than your custom encapsulation, so you should avoid doing this if you can. There will be edge cases that you havent thought about which will come up later in the app's lifetime, wheras STL is failry well reviewed and documented.
Additionally most containers support somewhat similar operations like begin end push etc. So it should be fairly trivial to change the container type in your code should you change the container. eg vector to deque or map to hash_map etc.
Assuming you still want to do this for a more deeper reason, i would say the correct way to do this is to implement all the methods and iterator classes that list implements. Forward the calls to the member list calls when you need no changes. Modify and forward or do some custom actions where you need to do something special (the reason why you decide to this in the first place)
It would be easier if STl classes where designed to be inherited from but for efficiency sake it was decided not to do so. Google for "inherit from STL classes" for more thoughts on this.