Building log4cplus for Windows x64 - c++

I am supposed to build existing Windows 32bit project for Windows 64bit. (and probably linux 64bit too).
The project uses log4cplus library. That one only contains 32bit .lib files at the moment and is shining example of why I hate using libraries in C++ - there's just a bunch of source files and linux bash scripts. The INSTALL help file is entirely about the configure bash script which doesn't work on Windows. The configure probably just passes some arguments to GCC, but I don't known which ones.
I downloaded MinGW in hope I'll be able to use mingw32-make on the project and it will work, but no such thing happened.
So does anyone have any experience making those Linux projects on Windows? This is not the first time I tackle this problem - my third most viewed question is about broken Boost build. Judging from the view count, I'm not the only one who has problems building Linux project on widnows.

log4cplus maintainer here.
The master branch of log4cplug GIT repository is C++11 only. Because of this, it requires Visual Studio 2015 and thus the msvc14 directory is there.
Branch 1.2.x and its releases come with Visual Studio project files for version 2010. However, you might be able to build it using CMake for even older Visual Studio.
However, both of them, in any configuration, should have no problem building for AMD64 platform.
I also suggest that you read the README.md file. It documents many things, some of which might be useful to you, too.

Related

Is it possible to use Visual Studio to compile and debug with GCC? [duplicate]

I am creating a very large project (a few thousand lines) and so would rather not use Notepad++. An IDE would make it so much easier. I have experience with Microsoft Visual Studio and love it. Is there some easy way to use Cygwin's GCC from within Microsoft Visual Studio?
Alternately, are there any other good Windows IDEs for GCC besides NetBeans and Eclipse? (I hate both of them with a passion.)
There are several ways to go here:
Option 1: Create a Custom Build Tool
Visual Studio 2005 and newer will let you register custom build tools. They tell the IDE how to transform files of one form (e.g. a .cpp file) into another form (e.g. an .obj file).
So far as I know, no one has done this yet for GCC. And, doing it yourself requires writing COM code, which is probably too deep a pool to dive into just for a single project. You'd have to have a compelling reason to take this project on.
You then have to manually adjust each project to tell it to use the custom build tool instead of the default, since you're using a file name extension (.cpp, probably) that Visual C++ already knows about. You'll run into trouble if you try to mix the VC++ and g++ compilers for a single executable built from multiple modules.
On the plus side, if you were looking to start an open source project, this sounds like a good one to me. I expect you'd quickly gather a big user base.
Option 2: Makefile Project
Start Visual Studio and say File > New Project.
In the Visual C++ section, select Makefile Project
Fill out the Makefile Project Wizard:
Build command line: make
Clean commands: make clean
Rebuild command line: make clean all
You can leave the Output (for debugging) field alone if you've named your executable after the project name and it lands where Visual Studio expects to find it.
Leave the rest of the fields alone unless you know what they are and why you want to change them. As an example, you might choose to pass a -D flag on the Preprocessor definitions line to get separate debug and release outputs. If you know you want this, you know how to set it up, so I'm not going to make this long answer even longer in order to explain it.
You'll be asked the same set of questions for the Release build. If you want to bother with separate debug and release builds, you'd make any changes here.
Having done all this, you still have to create the Makefile, and add a make.exe to your PATH. As with the debug vs. release question, going into that level of detail would push this answer off topic.
As ugly as this looks, it's still easier than creating custom build tools. Plus, you say you need to port to Unix eventually, so you're going to need that Makefile anyway.
Option 3: Cross-Platform Development
You say you want to port this program to Unix at some point, but that doesn't mean you must use GCC on Windows now. It is quite possible to write your program so that it builds under Visual C++ on Windows and GCC/Makefiles on *ix systems.
There are several tools that make this easier. One very popular option is CMake, which is available as an installation time option in newer versions of Visual Studio. There are many alternatives such as SCons and Bakefile.
Clang
You can use the Clang compiler with Visual Studio to target Android, iOS, and Windows.
If you are targeting Android, you can use the Clang/LLVM compiler that ships with the Android NDK and toolchain to build your project. Likewise, Visual Studio can use Clang running on a Mac to build projects targeting iOS. Support for Android and iOS is included in the “Mobile Development with C++” workload. For more information about targeting Android or iOS check out our posts tagged with the keywords “Android” and “iOS”.
If you are targeting Windows, you have a few options:
Use Clang/LLVM; “Clang for Windows” includes instructions to install Clang/LLVM as a platform toolset in Visual Studio.
Use Clang to target Windows with Clang/C2 (Clang frontend with Microsoft Code Generation).
GCC
If your project targets Linux or Android, you can consider using GCC. Visual Studio’s C++ Android development natively supports building your projects with the GCC that ships with the Android NDK, just like it does for Clang. You can also target Linux – either remotely or locally with the Windows Subsystem for Linux – with GCC.
Check out our post on Visual C++ for Linux Development for much more info about how to use Visual Studio to target Linux with GCC. If you are specifically interested in targeting WSL locally, check out Targeting WSL from Visual Studio.
Source: https://devblogs.microsoft.com/cppblog/use-any-c-compiler-with-visual-studio/
I'm from the future.
I keep (poking at) a C/C++ toolchain using Visual Code on Win/Lin/Mac and MinGW installed from Choclatey.
(This was done for my sanity - install GDB and GCC however you want)
I've run it with GCC and GDB with IntelliSense using MS's own weird JSON makefiles.
Someday, someone (you?) will write a Gradle or Python script to generate these; for now the examples online in the docs seem to work.
It seems to require three types of JSON thing;
a single IntelliSense configuration for the whole workspace
a Debugging Configuration entry for each binary you want to debug
these can invoke the build tasks
a Build Task per-artifact
I don't think that there's a "require" or "dependency" thingie-mah-bob; sorry

How to download, build and include PDCurses in Visual Studio 2019 for C++ on Windows

I'm fairly new to C/C++ but have never tried to include external libraries before in my projects as I've mostly been doing tutorials and such. These have been mostly console applications/games. When I was looking for an alternative to the "evil" system(" ") commands I was pointed to Curses.
Now I've gone to the GitHub for both branches of the PDCurses source library (wmcbrine's branch and Bill-Gray's Branch) but every time I try to build library it returns multiple errors (happy to provide a image of the errors if need be).
The biggest issue is that the documentation is a little difficult to understand for an absolute beginner and most tutorials are extremely outdated. I was hoping that someone know's of a relevant tutorial on how to get PDCurses up and running on windows (for C++) or could explain how to do it on here.
So, I have figured out how to get PDCurses compiled using it's Makefiles (Makefile.vc specifically) and such.
To anyone who may have issue doing this in future, make sure to read the README.md file very slowly and carefully. From a beginners perspective it was a bit vague but it does contain all the information needed it in it, it should just be read a few time 😅.
It also should be noted that when compiling the library into a .dll for Visual Studio 2019 using the nmake function, you have to run the command in the x86/x64 Native Tools Command Prompt. Which one you use will depend on the architecture you plan to build your project in. If your not sure where to find it, open you start menu>all apps>scroll down to the folder "Visual Studio 2019" and they all should be in there.
Run the "nmake" command in this shell configures a .bat file which optimises for x86 or x64 architecture respectively. Hopefully this helps anyone who might ask this (or a similar) question.

Compile and Build commands in Visual Studio 2017 [duplicate]

I am creating a very large project (a few thousand lines) and so would rather not use Notepad++. An IDE would make it so much easier. I have experience with Microsoft Visual Studio and love it. Is there some easy way to use Cygwin's GCC from within Microsoft Visual Studio?
Alternately, are there any other good Windows IDEs for GCC besides NetBeans and Eclipse? (I hate both of them with a passion.)
There are several ways to go here:
Option 1: Create a Custom Build Tool
Visual Studio 2005 and newer will let you register custom build tools. They tell the IDE how to transform files of one form (e.g. a .cpp file) into another form (e.g. an .obj file).
So far as I know, no one has done this yet for GCC. And, doing it yourself requires writing COM code, which is probably too deep a pool to dive into just for a single project. You'd have to have a compelling reason to take this project on.
You then have to manually adjust each project to tell it to use the custom build tool instead of the default, since you're using a file name extension (.cpp, probably) that Visual C++ already knows about. You'll run into trouble if you try to mix the VC++ and g++ compilers for a single executable built from multiple modules.
On the plus side, if you were looking to start an open source project, this sounds like a good one to me. I expect you'd quickly gather a big user base.
Option 2: Makefile Project
Start Visual Studio and say File > New Project.
In the Visual C++ section, select Makefile Project
Fill out the Makefile Project Wizard:
Build command line: make
Clean commands: make clean
Rebuild command line: make clean all
You can leave the Output (for debugging) field alone if you've named your executable after the project name and it lands where Visual Studio expects to find it.
Leave the rest of the fields alone unless you know what they are and why you want to change them. As an example, you might choose to pass a -D flag on the Preprocessor definitions line to get separate debug and release outputs. If you know you want this, you know how to set it up, so I'm not going to make this long answer even longer in order to explain it.
You'll be asked the same set of questions for the Release build. If you want to bother with separate debug and release builds, you'd make any changes here.
Having done all this, you still have to create the Makefile, and add a make.exe to your PATH. As with the debug vs. release question, going into that level of detail would push this answer off topic.
As ugly as this looks, it's still easier than creating custom build tools. Plus, you say you need to port to Unix eventually, so you're going to need that Makefile anyway.
Option 3: Cross-Platform Development
You say you want to port this program to Unix at some point, but that doesn't mean you must use GCC on Windows now. It is quite possible to write your program so that it builds under Visual C++ on Windows and GCC/Makefiles on *ix systems.
There are several tools that make this easier. One very popular option is CMake, which is available as an installation time option in newer versions of Visual Studio. There are many alternatives such as SCons and Bakefile.
Clang
You can use the Clang compiler with Visual Studio to target Android, iOS, and Windows.
If you are targeting Android, you can use the Clang/LLVM compiler that ships with the Android NDK and toolchain to build your project. Likewise, Visual Studio can use Clang running on a Mac to build projects targeting iOS. Support for Android and iOS is included in the “Mobile Development with C++” workload. For more information about targeting Android or iOS check out our posts tagged with the keywords “Android” and “iOS”.
If you are targeting Windows, you have a few options:
Use Clang/LLVM; “Clang for Windows” includes instructions to install Clang/LLVM as a platform toolset in Visual Studio.
Use Clang to target Windows with Clang/C2 (Clang frontend with Microsoft Code Generation).
GCC
If your project targets Linux or Android, you can consider using GCC. Visual Studio’s C++ Android development natively supports building your projects with the GCC that ships with the Android NDK, just like it does for Clang. You can also target Linux – either remotely or locally with the Windows Subsystem for Linux – with GCC.
Check out our post on Visual C++ for Linux Development for much more info about how to use Visual Studio to target Linux with GCC. If you are specifically interested in targeting WSL locally, check out Targeting WSL from Visual Studio.
Source: https://devblogs.microsoft.com/cppblog/use-any-c-compiler-with-visual-studio/
I'm from the future.
I keep (poking at) a C/C++ toolchain using Visual Code on Win/Lin/Mac and MinGW installed from Choclatey.
(This was done for my sanity - install GDB and GCC however you want)
I've run it with GCC and GDB with IntelliSense using MS's own weird JSON makefiles.
Someday, someone (you?) will write a Gradle or Python script to generate these; for now the examples online in the docs seem to work.
It seems to require three types of JSON thing;
a single IntelliSense configuration for the whole workspace
a Debugging Configuration entry for each binary you want to debug
these can invoke the build tasks
a Build Task per-artifact
I don't think that there's a "require" or "dependency" thingie-mah-bob; sorry

Building GSL (GNU Scientific Library) in Windows for use with VS2015

I am trying to build GSL as a library(DLL,lib) to use with my application. I have tested both GSL ports(gladman) to VS and CMake route and I do not want to go that path due to various reasons.
Currently I am using nuget version and I am not too happy about it as some functions are missing. I want to build it myself to be absolutely sure about what I am getting. The objective is to build four set of dll and libs---win32, win32d, win64 and win64d.
I know that from a MinGW library I can build lib file(for VS2015) and thereafter dll using Microsoft LIB tool if I have DEF file available.
My open source experience is very limited. Till now I have successfully built gsl for MinGW using ./config, make, make install. But I am not finding any DEF file generated and I do not know how to utilize this build to generate required DEF and dll to be used with Microsoft Visual Studio 2015.
Thank you
Building and linking has always been a pain for me as well. For mac, I use Homebrew, which downloads frameworks and libraries through a simple one-line-command in the terminal. I would then simply add the library into my program by adding the directory of the libs necessary. In XCode, there was an "add framework/library"-button where I added the directories, but I'm sure there's an analogue in VS.
However, you seem to be using Windows (so Homebrew will not work). I searched the web for Windows versions of Homebrew, and it seems that Scoop is pretty similar. You might want to check that out.
Hope this helped, despite me using different tools :)

Building C++ on both Windows and Linux

I'm involved in C++ project targeted for Windows and Linux (RHEL) platforms. Till now the development was purely done on Visual Studio 2008. For Linux compilation we used 3rd party Visual Studio plugin, which read VS solution/perojects files and remotely compiled on Linux machine.
Recently the decision was to abandon the 3rd party plugin.
Now my big concern is a build system. I was looking around for cross platform build tools. This way I don't need to maintain two set of build files (e.g. vcproj/solution for Windows and make files for Linux).
I found the following candidates:
a. Scons
b. cmake
What do you think about the tools for cross-platfrom development?
Yet another point that bothers me is that Visual Studio (+ Visual Assist) will loose a lot functionality without vcproj files - how you handle the issue with the tools?
Thanks
Dima
PS 1: Something that I like about Scons is that it
(a) uses python and hence it's flexible, while cmake uses propriety language (I understand that it's not a winner feature for a build-system) (b) self contained (no need to generate makefiles on Linux as with cmake).
So why not Scons? Why in your projects the decision was to use cmake?
CMake will allow you to still use Visual Studio solutions and project files. Cmake doesn't build the source code itself, rather it generated build-files for you. For Linux this can be Code::Blocks, KDevelop or plain makefiles or still other more esoteric choices . For Windows it can be among others Visual Studio project files and still others for MacOS.
So Visual Studio solutions and projects are created from your CMakeLists.txt. This works for big projects just fine. E.g. current Ogre3d uses CMake for all platforms (Windows, Linux, MacOS and IPhone) and it works really well.
I don't know much about scons in that regard though, I only used to build one library and only in Linux. So I can't compare these two on fair ground. But for our multi-platform projects CMake is strong enough.
I haven't used Scons before, so can't say how that works, but CMake works pretty well.
It works by producing the build files needed for the platform you're targeting.
When used to target VC++, it produces solution and project files so from VS, it appears as if they were native VS projects. The only difference is, of course, that if you edit the project or solution directly through VS, the changes will be erased the next time you run CMake, as it overwrites your project/solution files.
So any changes have to be made to the CMake files instead.
We have a big number of core libraries and applications based on those libraries. We maintain a Makefile based build system on Linux and on Windows using the Visual Studio solution for each project or library.
We find it works well for our needs, each library or app is developed either on linux or windows with cross compilation in mind (e.g. don't use platform specific api's). We use boost for stuff like file paths, threads and so on. In specific cases we use templates/#defines to select platform specific solution (for example events). When is ready we move to the other system (linux or windows), recompile, fix warnings/errors and test.
Instead of spending time figuring out tools that can cross compile on both platforms we use system that is best for each platform and spend time fixing specific issues and making the software better.
We have GUI apps only on Windows atm. so there's no GUI to cross compile. Most of our development that is shared between Windows and Linux is server side networking (sockets, TCP/IP, UDP ...) and then client side tools on Linux and GUI apps on Windows.
Using with perforce for source code version management we find in quite many cases that the Linux Makefile system is much more flexible for what we need then Windows VS. Especially for using multiple workspaces (views of source code versions) where we need to point to common directories and so on. On Linux this can be done automatically running a script to update environment variables, on Visual Studio referencing environment variables is very inflexible because it's hard to update automatically between views/branches.
Re sync question:
I assume you are asking how to make sure that the two build systems get synchronized between linux and windows. We are actually using Hudson on Linux and CruiseControl on Windows (we had windows first with cruise control, when I went to setup linux version I figured Hudson is better so now we have mixed environment). Our systems are running all the time. When something is updated it is tested and released (either windows or linux version) so you would know right away if it does not work. During testing we make sure all the latest features are there and fully functional. I guess that's it, no dark magic involved.
Oh you mean build scripts ... Each application has it's own solution, in solution you setup up dependencies. On Linux side I have a makefile for each project and a build script in project directory that takes care of all dependencies, this mostly means build core libraries and couple of specific frameworks required for given app. As you can see this is different for each platform, it is easy to add line to build script that changes to directory and makes required project.
It helps to have projects setup in consistent way.
On Windows you open project and add dependency project. Again no magic involved. I see this kind of tasks as development related, for example you added new functionality to a project and have to link in the frameworks and headers. So from my point of view there is no reason to automate these - as they are part of what developers do when they implement features.
Another options is premake. It's like cmake in that it generates solutions from definition files. It's open source and the latest version is very highly customizable using Lua scripting. We were able to add custom platform support without too much trouble. For your situation it has support for both Visual Studio and GNU makefiles standard.
See Premake 4.0 Homepage
CruiseControl is a good choice for continuous integration. We have it running on Linux using Mono with success.
Here is an article about the decision made by KDE developers to choose CMake over SCons. However I've to point that this article is almost three years old, so scons should have improved.
Here is comparison of SCons with other building tools.
Had to do this a lot in the past. What we did is use gnu make for virtually everything including windows at times.
You can use the project files under windows if you prefer and use gnu make for Linux.
There isn't really a nice way to write cross platform makefiles because the target file will
be different among other things (and pathname issues, \ vs / etc). In general, you'll probably be tweaking the code across the various platforms to take subtle differences into account, so a tweak to a make file and checking on the other platforms would have to happen
anyway.
Many OS projects maintain Makefiles for different platforms such as zlib where they are named like Makefile.win, Makefile.linux etc. You could follow their lead.