Say I am building a record type:
type thing {
fruit: string;
}
But I want the possible values of fruit to be constrained to a fixed set of strings.
It seems natural to model this in OCaml as a variant, e.g.:
type fruit = APPLE | BANANA | CHERRY
type thing {
fruit: fruit;
}
Okay so far.
But if I use [##deriving yojson] on these types then the serialized output will be like:
{ "fruit": ["APPLE"] }
By default Yojson wants to serialize a variant as a tuple of [<name>, <args>...] which... I can see the logic of it, but it is not helpful here.
I want it to serialize as:
{ "fruit": "APPLE" }
Making use of a couple of ppx deriving plugins I managed to build this module to de/serialize as I want:
module Fruit = struct
type t = APPLE | BANANA | CHERRY [##deriving enum, variants]
let names =
let pairs i (name, _) = (name, (Option.get (of_enum i))) in
let valist = List.mapi pairs Variants.descriptions in
List.to_seq valist |> Hashtbl.of_seq
let to_yojson v = `String (Variants.to_name v)
let of_yojson = function
| `String s -> Hashtbl.find_opt names s
|> Option.to_result ~none:(Printf.sprintf "Invalid value: %s" s)
| yj -> Error (Printf.sprintf "Invalid value: %s" (Yojson.Safe.to_string yj))
end
Which works fine... but I have some other "string enum" variants I want to treat the same way. I don't want to copy and paste this code every time.
I got as far as this:
module StrEnum (
V : sig
type t
val of_enum : int -> t option
module Variants : sig
val descriptions : (string * int) list
val to_name : t -> string
end
end
) = struct
type t = V.t
let names =
let pairs i (name, _) = (name, (Option.get (V.of_enum i))) in
let valist = List.mapi pairs V.Variants.descriptions in
List.to_seq valist |> Hashtbl.of_seq
let to_yojson v = `String (V.Variants.to_name v)
let of_yojson = function
| `String s -> Hashtbl.find_opt names s
|> Option.to_result ~none:(Printf.sprintf "Invalid StrEnum value: %s" s)
| yj -> Error (Printf.sprintf "Invalid StrEnum value: %s" (Yojson.Safe.to_string yj))
end
module Fruit = struct
type t = APPLE | BANANA | CHERRY [##deriving enum, variants]
end
module FruitEnum = StrEnum (Fruit)
That much seems to type-check, and I can:
utop # Yojson.Safe.to_string (FruitEnum.to_yojson Fruit.APPLE);;
- : string = "\"APPLE\""
utop # FruitEnum.of_yojson (Yojson.Safe.from_string "\"BANANA\"");;
- : (FruitEnum.t, string) result = Ok Fruit.BANANA
...but when I try to:
type thing {
fruit: FruitEnum.t;
}
[##deriving yojson]
I get Error: Unbound value FruitEnum.t
It seems to be because I am re-exporting type t = V.t from the variant's module, I don't really understand though. (Or is it because the yojson ppx can't "see" the result of the functor properly?)
How can I fix this?
I would also like to be able to skip defining the variant module separately and just do:
module Fruit = StrEnum (struct
type t = APPLE | BANANA | CHERRY [##deriving enum, variants]
end)
...but this gives the error:
Error: This functor has type
functor
(V : sig
type t
val of_enum : int -> t option
module Variants :
sig
val descriptions : (string * int) list
val to_name : t -> string
end
end)
->
sig
type t = V.t
val names : (string, t) Hashtbl.t
val to_yojson : t -> [> `String of string ]
val of_yojson : Yojson.Safe.t -> (t, string) result
end
The parameter cannot be eliminated in the result type.
Please bind the argument to a module identifier.
and I don't understand what is wrong.
Regarding the last error, it's because OCaml requires a 'stable path' to types inside modules so it can refer to them. A stable path is a named path to a type, e.g. Fruit.t.
By contrast, StrEnum(struct type t = ... end).t is not a stable path because the type t is referencing a type t in the module literal which does not have a name.
Long story short, you basically can't skip defining the variant module separately. But it's simple to do it in two steps:
module Fruit = struct
type t = ...
end
module Fruit = StrEnum(Fruit)
The second definition refers to the first and shadows it. Shadowing is a well-known and often-used technique in OCaml.
Overall, I'm not sure all this PPX machinery is actually justified. You can pretty easily hand-write converter functions, e.g.
let to_yojson = function
| APPLE -> `String "APPLE"
| BANANA -> `String "BANANA"
| CHERRY -> `String "CHERRY"
Well, I was curious to have a go at writing a PPX deriver to perform this transformation.
Here's what I ended up with:
open Ppxlib
module List = ListLabels
let make_methods ~(loc : location) ~(is_poly : bool) (constructors : constructor_declaration list) =
let (module Ast) = Ast_builder.make loc in
let v_patt = match is_poly with
| true -> fun name -> Ast.ppat_variant name None
| false -> fun name -> Ast.ppat_construct { txt = (Lident name); loc } None
and v_expr = match is_poly with
| true -> fun name -> Ast.pexp_variant name None
| false -> fun name -> Ast.pexp_construct { txt = (Lident name); loc } None
in
let (to_cases, of_cases) =
List.map constructors ~f:(
fun cd ->
let name = cd.pcd_name.txt in
let to_case = {
pc_lhs = v_patt name;
pc_guard = None;
pc_rhs = [%expr `String [%e Ast.estring name] ];
} in
let of_case = {
pc_lhs = Ast.ppat_variant "String" (Some (Ast.pstring name));
pc_guard = None;
pc_rhs = [%expr Ok ([%e v_expr name]) ];
} in
(to_case, of_case)
)
|> List.split
in
let of_default_case = {
pc_lhs = [%pat? yj ];
pc_guard = None;
pc_rhs = [%expr Error (Printf.sprintf "Invalid value: %s" (Yojson.Safe.to_string yj)) ];
} in
let of_cases = of_cases # [of_default_case] in
let to_yojson = [%stri let to_yojson = [%e Ast.pexp_function to_cases]] in
let of_yojson = [%stri let of_yojson = [%e Ast.pexp_function of_cases] ] in
[to_yojson; of_yojson]
let type_impl ~(loc : location) (td : type_declaration) =
match td with
| {ptype_kind = (Ptype_abstract | Ptype_record _ | Ptype_open); _} ->
Location.raise_errorf ~loc "Cannot derive yojson_str_enum for non variant types"
| {ptype_kind = Ptype_variant constructors; _} -> begin
let invalid_constructors =
List.filter_map constructors ~f:(
fun cd -> match cd.pcd_args with
| (Pcstr_tuple [] | Pcstr_record []) -> None
| _ -> Some (cd)
)
in
if (List.length invalid_constructors) > 0 then
Location.raise_errorf ~loc "Cannot derive yojson_str_enum for variant types with constructor args";
match is_polymorphic_variant td ~sig_:false with
| `Definitely | `Maybe -> make_methods ~loc ~is_poly:true constructors
| `Surely_not -> make_methods ~loc ~is_poly:false constructors
end
let generate_impl ~ctxt (_rec_flag, type_declarations) =
(* [loc] is "location", not "lines of code" *)
let loc = Expansion_context.Deriver.derived_item_loc ctxt in
List.map type_declarations ~f:(type_impl ~loc)
|> List.concat
let yojson_str_enum =
Deriving.add
"yojson_str_enum"
~str_type_decl:(Deriving.Generator.V2.make_noarg generate_impl)
to make usable it needs a dune file something like:
(library
(kind ppx_rewriter)
(name <lib name>)
(preprocess (pps ppxlib.metaquot))
(libraries yojson ppxlib))
After adding <lib name> to the pps in your dune file, usage is like:
module Fruit = struct
type t = APPLE | BANANA | CHERRY [##deriving yojson_str_enum]
end
It seems to work fine for my use case. It might be extended per the comment by #Yawar to take args allowing to specify to/from string transform functions for the variant labels. But I was happy just with Fruit.APPLE -> "APPLE" for now. I should also implement the sig_type_decl version.
One part I am a bit uncertain about is this:
match is_polymorphic_variant td ~sig_:false with
| `Definitely | `Maybe -> make_methods ~loc ~is_poly:true constructors
| `Surely_not -> make_methods ~loc ~is_poly:false constructors
I am not very clear when the `Maybe case occurs or how it should most correctly be handled, or if there is a better way of detecting "backtick variants" than using the is_polymorphic_variant method from ppxlib.
How do you define a simple lambda calculus-like DSL in OCaml using GADTs? Specifically, I can't figure out how to properly define the type checker to translate from an untyped AST to a typed AST nor can I figure out the correct type for the context and environment.
Here's some code for a simple lambda calculus-like language using the traditional approach in OCaml
(* Here's a traditional implementation of a lambda calculus like language *)
type typ =
| Boolean
| Integer
| Arrow of typ*typ
type exp =
| Add of exp*exp
| And of exp*exp
| App of exp*exp
| Lam of string*typ*exp
| Var of string
| Int of int
| Bol of bool
let e1=Add(Int 1,Add(Int 2,Int 3))
let e2=Add(Int 1,Add(Int 2,Bol false)) (* Type error *)
let e3=App(Lam("x",Integer,Add(Var "x",Var "x")),Int 4)
let rec typecheck con e =
match e with
| Add(e1,e2) ->
let t1=typecheck con e1 in
let t2=typecheck con e2 in
begin match (t1,t2) with
| (Integer,Integer) -> Integer
| _ -> failwith "Tried to add with something other than Integers"
end
| And(e1,e2) ->
let t1=typecheck con e1 in
let t2=typecheck con e2 in
begin match (t1,t2) with
| (Boolean,Boolean) -> Boolean
| _ -> failwith "Tried to and with something other than Booleans"
end
| App(e1,e2) ->
let t1=typecheck con e1 in
let t2=typecheck con e2 in
begin match t1 with
| Arrow(t11,t12) ->
if t11 <> t2 then
failwith "Mismatch of types on a function application"
else
t12
| _ -> failwith "Tried to apply a non-arrow type"
end
| Lam(x,t,e) ->
Arrow (t,typecheck ((x,t)::con) e)
| Var x ->
let (y,t) = List.find (fun (y,t)->y=x) con in
t
| Int _ -> Integer
| Bol _ -> Boolean
let t1 = typecheck [] e1
(* let t2 = typecheck [] e2 *)
let t3 = typecheck [] e3
type value =
| VBoolean of bool
| VInteger of int
| VArrow of ((string*value) list -> value -> value)
let rec eval env e =
match e with
| Add(e1,e2) ->
let v1=eval env e1 in
let v2=eval env e2 in
begin match (v1,v2) with
| (VInteger i1,VInteger i2) -> VInteger (i1+i2)
| _ -> failwith "Tried to add with something other than Integers"
end
| And(e1,e2) ->
let v1=eval env e1 in
let v2=eval env e2 in
begin match (v1,v2) with
| (VBoolean b1,VBoolean b2) -> VBoolean (b1 && b2)
| _ -> failwith "Tried to and with something other than Booleans"
end
| App(e1,e2) ->
let v1=eval env e1 in
let v2=eval env e2 in
begin match v1 with
| VArrow a1 -> a1 env v2
| _ -> failwith "Tried to apply a non-arrow type"
end
| Lam(x,t,e) ->
VArrow (fun env' v' -> eval ((x,v')::env') e)
| Var x ->
let (y,v) = List.find (fun (y,t)->y=x) env in
v
| Int i -> VInteger i
| Bol b -> VBoolean b
let v1 = eval [] e1
let v3 = eval [] e3
Now, I'm trying to translate this into something that uses GADTs. Here's my start
(* Now, we try to GADT the process *)
type exp =
| Add of exp*exp
| And of exp*exp
| App of exp*exp
| Lam of string*typ*exp
| Var of string
| Int of int
| Bol of bool
let e1=Add(Int 1,Add(Int 2,Int 3))
let e2=Add(Int 1,Add(Int 2,Bol false))
let e3=App(Lam("x",Integer,Add(Var "x",Var "x")),Int 4)
type _ texp =
| TAdd : int texp * int texp -> int texp
| TAnd : bool texp * bool texp -> bool texp
| TApp : ('a -> 'b) texp * 'a texp -> 'b texp
| TLam : string*'b texp -> ('a -> 'b) texp
| TVar : string -> 'a texp
| TInt : int -> int texp
| TBol : bool -> bool texp
let te1 = TAdd(TInt 1,TAdd(TInt 2,TInt 3))
let rec typecheck : type a. exp -> a texp = fun e ->
match e with
| Add(e1,e2) ->
let te1 = typecheck e1 in
let te2 = typecheck e2 in
TAdd (te1,te2)
| _ -> failwith "todo"
Here's the problem. First, I'm not sure how to define the correct type for TLam and TVar in the type texp. Generally, I would provide the type with the variable name, but I'm not sure how to do that in this context. Second, I don't know the correct type for the context in the function typecheck. Before, I used some kind of list, but now I'm sure sure of the type of the list. Third, after leaving out the context, the typecheck function doesn't type check itself. It fails with the message
File "test03.ml", line 32, characters 8-22:
Error: This expression has type int texp
but an expression was expected of type a texp
Type int is not compatible with type a
which makes complete sense. This is more of an issue of that I'm not sure what the correct type for typecheck should be.
In any case, how do you go about fixing these functions?
Edit 1
Here's a possible type for the context or environment
type _ ctx =
| Empty : unit ctx
| Item : string * 'a * 'b ctx -> ('a*'b) ctx
Edit 2
The trick with the environment is to make sure that the type of the environment is embedded into the type of the expression. Otherwise, there's not enough information in order to make things type safe. Here's a completed interpreter. At the moment, I do not have a valid type checker to move from untyped expressions to typed expressions.
type (_,_) texp =
| TAdd : ('e,int) texp * ('e,int) texp -> ('e,int) texp
| TAnd : ('e,bool) texp * ('e,bool) texp -> ('e,bool) texp
| TApp : ('e,('a -> 'b)) texp * ('e,'a) texp -> ('e,'b) texp
| TLam : (('a*'e),'b) texp -> ('e,('a -> 'b)) texp
| TVar0 : (('a*'e),'a) texp
| TVarS : ('e,'a) texp -> (('b*'e),'a) texp
| TInt : int -> ('e,int) texp
| TBol : bool -> ('e,bool) texp
let te1 = TAdd(TInt 1,TAdd(TInt 2,TInt 3))
(*let te2 = TAdd(TInt 1,TAdd(TInt 2,TBol false))*)
let te3 = TApp(TLam(TAdd(TVar0,TVar0)),TInt 4)
let te4 = TApp(TApp(TLam(TLam(TAdd(TVar0,TVarS(TVar0)))),TInt 4),TInt 5)
let te5 = TLam(TLam(TVarS(TVar0)))
let rec eval : type e t. e -> (e,t) texp -> t = fun env e ->
match e with
| TAdd (e1,e2) ->
let v1 = eval env e1 in
let v2 = eval env e2 in
v1 + v2
| TAnd (e1,e2) ->
let v1 = eval env e1 in
let v2 = eval env e2 in
v1 && v2
| TApp (e1,e2) ->
let v1 = eval env e1 in
let v2 = eval env e2 in
v1 v2
| TLam e ->
fun x -> eval (x,env) e
| TVar0 ->
let (v,vs)=env in
v
| TVarS e ->
let (v,vs)=env in
eval vs e
| TInt i -> i
| TBol b -> b
Then, we have
# eval () te1;;
- : int = 6
# eval () te3;;
- : int = 8
# eval () te5;;
- : '_a -> '_b -> '_a = <fun>
# eval () te4;;
- : int = 9
If you want the term representation to enforce well-typedness, you need to change the way type environments (and variables) are represented: you cannot finely type a mapping from strings to value (type to represent mapping are homogeneous). The classic solution is to move to a representation of variables using De Bruijn indices (strongly-typed numbers) instead of variable names. It may help you to perform that conversion in the untyped world first, and then only care about typing in the untyped -> GADT pass.
Here is, rouhgly sketched, a GADT declaration for strongly typed variables:
type (_, _) var =
| Z : ('a, 'a * 'g) var
| S : ('a, 'g) var -> ('a, 'b * 'g) var
A value at type ('a, 'g) var should be understood as a description of a way to extract a value of type 'a out of an environment of type 'g. The environment is represented by a cascade of right-nested tuples. The Z case corresponds to picking the first variable in the environment, while the S case ignores the topmost variables and looks deeper in the environment.
Shayan Najd has a (Haskell) implementation of this idea on github. Feel free to have a look at the GADT representation or the type-checking/translating code.
Alright, so I finally worked things out. Since I may not be the only one who finds this interesting, here's a complete set of code that does both type checking and evaluation:
type (_,_) texp =
| TAdd : ('gamma,int) texp * ('gamma,int) texp -> ('gamma,int) texp
| TAnd : ('gamma,bool) texp * ('gamma,bool) texp -> ('gamma,bool) texp
| TApp : ('gamma,('t1 -> 't2)) texp * ('gamma,'t1) texp -> ('gamma,'t2) texp
| TLam : (('gamma*'t1),'t2) texp -> ('gamma,('t1 -> 't2)) texp
| TVar0 : (('gamma*'t),'t) texp
| TVarS : ('gamma,'t1) texp -> (('gamma*'t2),'t1) texp
| TInt : int -> ('gamma,int) texp
| TBol : bool -> ('gamma,bool) texp
type _ typ =
| Integer : int typ
| Boolean : bool typ
| Arrow : 'a typ * 'b typ -> ('a -> 'b) typ
type (_,_) iseq = IsEqual : ('a,'a) iseq
let rec is_equal : type a b. a typ -> b typ -> (a,b) iseq option = fun a b ->
match a, b with
| Integer, Integer -> Some IsEqual
| Boolean, Boolean -> Some IsEqual
| Arrow(t1,t2), Arrow(u1,u2) ->
begin match is_equal t1 u1, is_equal t2 u2 with
| Some IsEqual, Some IsEqual -> Some IsEqual
| _ -> None
end
| _ -> None
type _ isint = IsInt : int isint
let is_integer : type a. a typ -> a isint option = fun a ->
match a with
| Integer -> Some IsInt
| _ -> None
type _ isbool = IsBool : bool isbool
let is_boolean : type a. a typ -> a isbool option = fun a ->
match a with
| Boolean -> Some IsBool
| _ -> None
type _ context =
| CEmpty : unit context
| CVar : 'a context * 't typ -> ('a*'t) context
type exp =
| Add of exp*exp
| And of exp*exp
| App of exp*exp
| Lam : 'a typ * exp -> exp
| Var0
| VarS of exp
| Int of int
| Bol of bool
type _ exists_texp =
| Exists : ('gamma,'t) texp * 't typ -> 'gamma exists_texp
let rec typecheck
: type gamma t. gamma context -> exp -> gamma exists_texp =
fun ctx e ->
match e with
| Int i -> Exists ((TInt i) , Integer)
| Bol b -> Exists ((TBol b) , Boolean)
| Var0 ->
begin match ctx with
| CEmpty -> failwith "Tried to grab a nonexistent variable"
| CVar(ctx,t) -> Exists (TVar0 , t)
end
| VarS e ->
begin match ctx with
| CEmpty -> failwith "Tried to grab a nonexistent variable"
| CVar(ctx,_) ->
let tet = typecheck ctx e in
begin match tet with
| Exists (te,t) -> Exists ((TVarS te) , t)
end
end
| Lam(t1,e) ->
let tet2 = typecheck (CVar (ctx,t1)) e in
begin match tet2 with
| Exists (te,t2) -> Exists ((TLam te) , (Arrow(t1,t2)))
end
| App(e1,e2) ->
let te1t1 = typecheck ctx e1 in
let te2t2 = typecheck ctx e2 in
begin match te1t1,te2t2 with
| Exists (te1,t1),Exists (te2,t2) ->
begin match t1 with
| Arrow(t11,t12) ->
let p = is_equal t11 t2 in
begin match p with
| Some IsEqual ->
Exists ((TApp (te1,te2)) , t12)
| None ->
failwith "Mismatch of types on a function application"
end
| _ -> failwith "Tried to apply a non-arrow type"
end
end
| Add(e1,e2) ->
let te1t1 = typecheck ctx e1 in
let te2t2 = typecheck ctx e2 in
begin match te1t1,te2t2 with
| Exists (te1,t1),Exists (te2,t2) ->
let p = is_equal t1 t2 in
let q = is_integer t1 in
begin match p,q with
| Some IsEqual, Some IsInt ->
Exists ((TAdd (te1,te2)) , t1)
| _ ->
failwith "Tried to add with something other than Integers"
end
end
| And(e1,e2) ->
let te1t1 = typecheck ctx e1 in
let te2t2 = typecheck ctx e2 in
begin match te1t1,te2t2 with
| Exists (te1,t1),Exists (te2,t2) ->
let p = is_equal t1 t2 in
let q = is_boolean t1 in
begin match p,q with
| Some IsEqual, Some IsBool ->
Exists ((TAnd (te1,te2)) , t1)
| _ ->
failwith "Tried to and with something other than Booleans"
end
end
let e1 = Add(Int 1,Add(Int 2,Int 3))
let e2 = Add(Int 1,Add(Int 2,Bol false))
let e3 = App(Lam(Integer,Add(Var0,Var0)),Int 4)
let e4 = App(App(Lam(Integer,Lam(Integer,Add(Var0,VarS(Var0)))),Int 4),Int 5)
let e5 = Lam(Integer,Lam(Integer,VarS(Var0)))
let e6 = App(Lam(Integer,Var0),Int 1)
let e7 = App(Lam(Integer,Lam(Integer,Var0)),Int 1)
let e8 = Lam(Integer,Var0)
let e9 = Lam(Integer,Lam(Integer,Var0))
let tet1 = typecheck CEmpty e1
(*let tet2 = typecheck CEmpty e2*)
let tet3 = typecheck CEmpty e3
let tet4 = typecheck CEmpty e4
let tet5 = typecheck CEmpty e5
let tet6 = typecheck CEmpty e6
let tet7 = typecheck CEmpty e7
let tet8 = typecheck CEmpty e8
let tet9 = typecheck CEmpty e9
let rec eval : type gamma t. gamma -> (gamma,t) texp -> t = fun env e ->
match e with
| TAdd (e1,e2) ->
let v1 = eval env e1 in
let v2 = eval env e2 in
v1 + v2
| TAnd (e1,e2) ->
let v1 = eval env e1 in
let v2 = eval env e2 in
v1 && v2
| TApp (e1,e2) ->
let v1 = eval env e1 in
let v2 = eval env e2 in
v1 v2
| TLam e ->
fun x -> eval (env,x) e
| TVar0 ->
let (env,x)=env in
x
| TVarS e ->
let (env,x)=env in
eval env e
| TInt i -> i
| TBol b -> b
type exists_v =
| ExistsV : 't -> exists_v
let typecheck_eval e =
let tet = typecheck CEmpty e in
match tet with
| Exists (te,t) -> ExistsV (eval () te)
let v1 = typecheck_eval e1
let v3 = typecheck_eval e3
let v4 = typecheck_eval e4
let v5 = typecheck_eval e5
let v6 = typecheck_eval e6
let v7 = typecheck_eval e7
let v8 = typecheck_eval e8
let v9 = typecheck_eval e9
Here are the pieces I had trouble with and how I managed to resolve them
In order to correctly type the typed expressions texp, the type of the environment needed to be built into the type of texp. This implies, as gasche correctly noted, that we needed some sort of De Bruijin notation. The easiest was just Var0 and VarS. In order to use variable names, we'd just have to preprocess the AST.
The type of the expression, typ, needed to include both variant types to match on as well as the type we use in the typed expression. In other words, that also needed to be a GADT.
We require three proofs in order to ferret out the correct types in the type checker. These are is_equal, is_integer, and is_bool. The code for is_equal is actually in the OCaml manual under Advanced examples. Specifically, look at the definition of eq_type.
The type exp, for the untyped AST, actually needs to be a GADT also. The lambda abstraction needs access to typ, which is a GADT.
The type checker returns an existential type of both a typed expression as well as the type. We need both to get the program to check type. Also, we need the existential because the untyped expression may or may not have a type.
The existential type, exists_texp, exposes the type of the environment/context, but not the type. We need this type exposed in order to type check properly.
Once everything is setup, the evaluator follows the type rules exactly.
The result of combining the type checker with the evaluator must be another existential type. A priori, we don't know the resulting type, so we have to hide it in an existential package.