Preprocessor macro without replacement C++ - c++

According to cplusplus.com, the syntax to define a macro is:
#define identifier replacement
However, I sometimes stumble upon a macro definition which doesn't contain a replacement. For example in afxwin.h, there is the following preprocessor definition:
#define afx_msg // intentional placeholder
My questions:
What happens at compile-time when a preprocessor definition that doesn't have a replacement is used? Is it simply ignored? For example, does the line afx_msg void OnAddButton(); become void OnAddButton();?
What is the purpose of using preprocessor without replacement? Is it simply to make code more clear?

"Nothing" (no text) is a valid replacement text for a macro. It will simply be removed (more precisely, replaced by nothing) by the preprocessor.
There are multiple reasons why you'd use something like this. One is to simply use the macro in #ifdef and similar constructrs.
Another is conditional compilation. A typical use case is public APIs and DLL exports. On Windows, you need to mark a function as exported from a DLL (when building the DLL) or as imported from a DLL (when linking against the DLL). On ELF systems, no such declarations are necessary. Therefore, you'll often see code like this in public library headers:
#ifdef _WIN32
#ifdef BUILDING_MYLIB
#define MYLIB_API __declspec(dllexport)
#else
#define MYLIB_API __declspec(dllimport)
#endif
#else
#define MYLIB_API
#endif
void MYLIB_API myApiFunction();
Yet another reason could be code processing tools. Perhaps you have a tool which parses source code, extracting a list of functions with a certain marker. You can define such a marker as an empty macro.

#define bla
simply defines bla.
you can use it with
#ifdef bla
...
place some code here
...
#endif
a typical use case is #define DEBUG to enable special code parts in debugging mode.
Another way to set such things from "outside" is:
g++ -DDEBUG x.cpp
which also sets the macro DEBUG defined.
And every header file should have something like:
#ifndef THIS_HEADER_INCLUDE_GUARD
#define THIS_HEADER_INCLUDE_GUARD
...
rest of header file
...
#endif
This simply protects your header file for (recursivly) read more the once.
Some can be done with implementation specific #pragma once.

the preprocessor processes it, removing it and replacing it with nothing
could be a variety of reasons, including readability, portability, custom compiler features, etc.

Related

How does #define know when to stop looking?

I use a macro in C++ to switch between compiling logging or not:
#define MAYBE_LOG(msg)
#ifdef PRINT_MSGS
ALWAYS_LOG(msg)
#endif
How does the #define know where the ending is? The #endif refers to the #ifdef, not the #define.
#define ends at end of the line (which might be extended with final \)
The code in the question does two separate things: it defines a macro named MAYBE_LOG with no body and, if PRINT_MSGS is defined, it uses a macro named ALWAYS_LOG. If that's not what it's supposed to do, then, yes, it needs to be changed. Since the question doesn't say what the code is supposed to do, this is just a guess:
#ifdef PRINT_MSGS
#define MAYBE_LOG(msg) ALWAYS_LOG(msg)
#else
#define MAYBE_LOG(msg)
#endif
The reason for doing it this way (and not using \ on each line to extend the macro definition is that you can't put #if conditions inside the definition of a macro.

What does #define do if you only have an identifer

typically #define would be used to define a constant or a macro. However it is valid code to use #define in the following way.
#define MAX // does this do anything?
#define MAX 10 // I know how to treat this.
So, if I #define MAX 10, I know my pre-processor replaces all instances of MAX with 10. If someone uses #define MAX by itself however with no following replacement value, it's valid. Does this actually DO anything?
My reason for asking is that I am writing a compiler for c in c++ and handling preprocessor directives is required but I haven't been able to find out if there is any functionality I need to have when this occurs or if I just ignore this once my preprocess is done.
My first instinct is that this will create a symbol in my symbol table with no value named MAX, but it is equally possible it will do nothing.
As an add in question which is kind of bad form I know, but I'm really curious. Are there situations in real code where something like this would be used?
Thanks,
Binx
A typical example are header guards:
#ifndef MYHEADER
#define MYHEADER
...
#endif
You can test if something is defined with #ifdef / ifndef.
It creates a symbol with a blank definition, which can later be used in other preprocessor operations. There are a few things it can be used for:
1) Branching.
Consider the following:
#define ARBITRARY_SYMBOL
// ...
#ifdef ARBITRARY_SYMBOL
someCode();
#else /* ARBITRARY_SYMBOL */
someOtherCode();
#endif /* ARBITRARY_SYMBOL */
The existence of a symbol can be used to branch, selectively choosing the proper code for the situation. A good use of this is handling platform-specific equivalent code:
#if defined(_WIN32) || defined(_WIN64)
windowsCode();
#elif defined(__unix__)
unixCode();
#endif /* platform branching */
This can also be used to dummy code out, based on the situation. For example, if you want to have a function that only exists while debugging, you might have something like this:
#ifdef DEBUG
return_type function(parameter_list) {
function_body;
}
#endif /* DEBUG */
1A) Header guards.
Building on the above, header guards are a means of dummying out an entire header if it's already included in a project that spans multiple source files.
#ifndef HEADER_GUARD
#define HEADER_GUARD
// Header...
#endif /* HEADER_GUARD */
2) Dummying out a symbol.
You can also use defines with blank definitions to dummy out a symbol, when combined with branching. Consider the following:
#ifdef _WIN32
#define STDCALL __stdcall
#define CDECL __cdecl
// etc.
#elif defined(__unix__)
#define STDCALL
#define CDECL
#endif /* platform-specific */
// ...
void CDECL cdeclFunc(int, int, char, const std::string&, bool);
// Compiles as void __cdecl cdeclFunc(/* args */) on Windows.
// Compiles as void cdeclFunc(/* args */) on *nix.
Doing something like this allows you to write platform-independent code, but with the ability to specify the calling convention on Windows platforms. [Note that the header windef.h does this, defining CDECL, PASCAL, and WINAPI as blank symbols on platforms that don't support them.] This can also be used in other situations, whenever you need a preprocessor symbol to only expand to something else under certain conditions.
3) Documentation.
Blank macros can also be used to document code, since the preprocessor can strip them out. Microsoft is fond of this approach, using it in windef.h for the IN and OUT symbols often seen in Windows function prototypes.
There are likely other uses as well, but those are the only ones I can think of off the top of my head.
It doesn't "do" anything in the sense that it will not add anything to a line of code
#define MAX
int x = 1 + 2; MAX // here MAX does nothing
but what an empty define does is allow you to conditionally do certain things like
#ifdef DEBUG
// do thing
#endif
Similarly header guards use the existance of a macro to indicate if a file has already been included in a translation unit or not.
The C Preprocessor (CPP) creates a definitions table for all variables defined with the #define macro. As the CPP passes through the code, it does at least two things with this information.
First, it does a token replacement for the defined macro.
#define MAX(a,b) (a > b) ? (a) : (b)
MAX(1,2); // becomes (1 > 2) ? (1) : (2);
Second, it allows for those definitions to be searched for with other preprocessor macros such as #ifdef, #ifndef, #undef, or CPP extensions like #if defined(MACRO_NAME).
This allows for flexibility in using macro definitions in those cases when the value is not important, but the fact that a token is defined is important.
This allows for code like the following:
// DEBUG is never defined, so this code would
// get excluded when it reaches the compiler.
#ifdef DEBUG
// ... debug printing statements
#endif
#define does a character-for-character replacement. If you give no value, then the identifier is replaced by...nothing. Now this may seem strange. We often use this just to create an identifier whose existence can be checked with #ifdef or #ifndef. The most common use is in what are called "inclusion guards".
In your own preprocessor implementation, I see no reason to treat this as a special case. The behavior is the same as any other #define statement:
Add a symbol/value pair to the symbol table.
Whenever there is an occurrence of the symbol, replace it with its value.
Most likely, step 2 will never occur for a symbol with no value. However, if it does, the symbol is simply removed since its value is empty.

Win32 logic block preprocessor shows inactive

I tried to use a library on visual studio in different ways by modify its macros on preprocessor directives. However a logic block inside an #if directive is shown to me inactive as it was comment. Here is the code:
#if defined EBML_DLL
#if defined EBML_DLL_EXPORT
#define EBML_DLL_API __declspec(dllexport)
#else // EBML_DLL_EXPORT
#define EBML_DLL_API __declspec(dllimport)
#endif // EBML_DLL_EXPORT
#else // EBML_DLL
#define EBML_DLL_API
#endif // EBML_DLL
The problems is that visual studio shows the code within if ebml_dll block inactive (as commented). As result, the dll doesn't show the functions in the object browser of VS.
A Hint: if a backslash is added at the end of #if defined EBML_DLL's line, it active the else block only.
There was a bug in older versions of VS about this, but it was just a display issue. VS was not reading the defines correctly (in your case EBML_DLL, etc).
It could also be that the constants you are using in your preprocessor statements are not correct and the are missing characters (usually the ones the compiler uses have underscores at the beginning and end)
To really know for sure which one it is, you can add a random string inside the branch the preprocessor is expected to take and see if the code compiles.
#if defined EBML_DLL
this_should_not_compile //you should get an error on this line
#endif
Hope this helps...

C++ - Two names in class declaration (macros)

I'm working on existing C++ code, which is using a kind of API.
While browsing the code I found a strange syntax that I saw now for the first time and I can't figure out what it does or how such is called.
It goes like this:
class KINDA_API foobar : public foo {
// Some class declarations
};
Everything after foobar is understandable for me. But what means that KINDA_API? What does this do? Is that any kind of advanced derivation or something like that?
Maybe there is any other Thread that answers this, and I also searched for it, but I don't even know how this is called ^^'
Usually when you see OMGWFT_API declarations in this exact way, this is a 'magic switch' for building a library in correct "mode":
static linking - OMGWFT_API replaced by "" (empty string)
dynamic linking - DLL - OMGWFT_API replaced by declspec(dllexport)
dynamic linking - EXE - OMGWFT_API replaced by declspec(dllimport)
i.e.
#ifdef BUILD_ME_AS_STATICLIB
#define OMGWFT_API
#else
#ifdef BUILD_ME_AS_DLL
#define OMGWFT_API declspec(dllexport)
#else
#define OMGWFT_API declspec(dllimport)
#endif
#endif
This is of course just an sketch of example, but I think you get the point now. Keywords are taken from MSVC not GCC< because I accidentially happen to remember them.
The "BUILD_ME_AS...." macros would be then defined via project options or -D command line switch.
However, it the OMGWFT_API can be set to have any meaning, so be sure to grep/search for a #define that sets this.
I guess it is a #define-d macro that does some "magic" before compile.
If you look through the existing call you are likely to find somthing like:
#ifdef _WIN32
#define KINDA_API <windows specific attribute>
#elif __linux
#define KINDA_API <linux specific attribute>
etc...
These macros are more likely conditioned on compilers and/or their versions rather than operating system but you get the idea...

Does Visual Studio have a namespace-sensitive macro-substitution option?

What I'm talking about is to find a way to avoid the macros in <windows.h> from polluting whatever project I'm writing.
Excerpts from windows.h:
#ifdef UNICODE
#define LoadImage LoadImageW
#else
#define LoadImage LoadImageA
#endif // !UNICODE
#ifdef UNICODE
#define GetMessage GetMessageW
#else
#define GetMessage GetMessageA
#endif // !UNICODE
The majority of macros (over 99%) I'm okay with, but some of them I just couldn't find a way to avoid.
My idea is that since I always qualify the functions calls in my particular framework, e.g. ImageTool::LoadImage, Visual Studio should have enough clue that I'm not referencing the Windows API, which are all in the root namespace, i.e. ::LoadImage. But the MACRO system does not seem to be that smart.
Is there a compiler or preprocessor option that will just enable that?
Macro substitution are basically simple textual replacements, done before the proper compiler even starts to parse the code. Therefore they are not aware of namespaces or any other parts of the C++ syntax above the pure lexical level.
The straight forward way to avoid replacement of your identifiers is to remove the macros:
#ifdef LoadImage
#undef LoadImage
#endif
This of course will also stop following code from accessing the Windows API with the name LoadImage.
You will to live with it - you cannot avoid these macros on Windows platform. There is no macro-name-spacing in C/C++ pre-processor world. You may however, have all of your code defined and implemented before including any windows header - but that's wouldn't be possible, I believe.