Considering the following toy example, where I declare a class which encapsulates ublas from boost libraries:
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <iostream>
namespace ublas = boost::numeric::ublas;
class UblasEncapsulated {
public:
ublas::compressed_matrix<float>::reference operator()(int i, int j){
std::cout << "Non const reference" << std::endl;
MtrUpdated_ = true;
return mtr_(i, j);
}
ublas::compressed_matrix<float>::const_reference operator()(
int i, int j) const {
std::cout << "Const reference" << std::endl;
return mtr_(i, j);
}
UblasEncapsulated() { MtrUpdated = false; }
private:
ublas::compressed_matrix<float> mtr_(3, 3);
bool MtrUpdated_;
};
int main() {
UblasEncapsulated foo;
foo(2, 0) = 1.0f;
float const foo_float = foo(2, 0);
return 0;
}
I was expecting the output
Non constant reference
Constant reference
But I got
Non constant reference
Non constant reference
What am I doing wrong? How can I properly track when mtr_ could have its values changed?
foo is non-const, so the non-const version of foo.operator() will be called. It doesn't matter how the value it returns is used.
If you really want to know that MtrUpdated_ is only set true if an element is actually assigned to, you will need to use a proxy class:
class UblasEncapsulated {
public:
class proxy {
public:
proxy(UblasEncapsulated* ptr, int i, int j)
: ptr_(ptr), i_(i), j_(j)
{}
proxy& operator=(float f) {
ptr_->MtrUpdated_ = true;
ptr_->mtr_(i_, j_) = f;
return *this;
}
operator float() {
return ptr_->mtr_(i_, j_);
}
private:
UblasEncapsulated* ptr_;
int i_;
int j_;
};
proxy operator()(int i, int j) {
return proxy(this, i, j);
}
ublas::compressed_matrix<float>::const_reference operator() (int i, int j) const {
return mtr_(i, j);
}
UblasEncapsulated()
: mtr_(3, 3),
MtrUpdated_(false)
{}
private:
ublas::compressed_matrix<float> mtr_;
bool MtrUpdated_;
};
Live Demo
Note that you should avoid using a proxy class if you can get away with it since it doesn't play nicely with things like auto or template argument deduction.
I am using GNU Scientific Library in my C++ project. For convience, I would like to trasparently wrap gsl_vector* in a C++ class (to add a bunch of domain specific functions and to simplify interface). But I am getting perplexed with how to deal with const gsl_vector*. Let me explain. Let me start with this minimalistic wrapper.
class Vector {
gsl_vector* vector_;
public:
Vector(gsl_vector* vector): vector_(vector) {}
double& operator()(int i) {
return *gsl_vector_ptr(vector_, i);
}
};
Suppose, further, that I have two functions. One is defined as follows:
int f(Vector& x) {
\\ do some math, e.g. x(0) = 0.0;
return 0;
}
Another one is a callback function that has to use GSL types, and is defined as follows:
int gsl_f(gsl_vector* x) {
Vector xx(x);
return f(xx);
}
This works fine. Now, suppose the callback has a constant signature:
int gsl_f(const gsl_vector* x);
Then I can redefine my Vector class and my f function accordingly:
class Vector {
const gsl_vector* vector_;
public:
Vector(const gsl_vector* vector): vector_(vector) {}
const double& operator()(int i) const {
return *gsl_vector_const_ptr(vector_, i);
}
};
int f(const Vector& x) {
\\ do some math
return 0;
}
Also works. Now, I want my wrapper class to suit both situations. For example, I want to be able to do the following, preserving the safety of const:
int f(const Vector& x, Vector& y) {
\\ do some math
return 0;
}
int gsl_f(const gsl_vector* x, gsl_vector* y) {
Vector yy(y);
return f(x, yy);
}
I can do it by having a Vector with two pointers, const and non-const, and remembering whether it was initialized from a const or non-const member. My question is, can I do it without runtime checks? After all, all the information is there at the compile time.
Proposal (not wonderful, but should work):
class Vector {
gsl_vector* vector_;
const gsl_vector* const_vector_;
public:
Vector(const gsl_vector* vector): vector_(nullptr), const_vector_(vector) {}
Vector(gsl_vector* vector): vector_(vector), const_vector_(vector) {}
const double& operator()(int i) const {
return *gsl_vector_ptr(const_vector_, i);
}
double& operator () (int i) {
return *gsl_vector_ptr(vector_, i);
}
};
Second possibility:
class Vector {
private:
gsl_vector* vector_;
Vector(gsl_vector* vector): vector_(vector) {}
public:
static const Vector* Create (const gsl_vector* vector) {
return new Vector (const_cast<Vector *> vector);
}
static Vector* Create (gsl_vector* vector) {
return new Vector (vector);
}
const double& operator()(int i) const {
return *gsl_vector_ptr(vector_, i);
}
double& operator () (int i) {
return *gsl_vector_ptr(vector_, i);
}
};
Combining both classes should work as expected, have you tried it?
class Vector {
gsl_vector* vector_;
public:
Vector(gsl_vector* vector): vector_(vector) {}
const double& operator()(int i) const {
return *gsl_vector_ptr(vector_, i);
}
double& operator()(int i) {
return *gsl_vector_ptr(vector_, i);
}
operator const_Vector()
{
return const_Vector(vector_);
}
};
class const_Vector {
const gsl_vector* vector_;
public:
const_Vector(const gsl_vector* vector): vector_(vector) {}
const double& operator()(int i) const {
return *gsl_vector_ptr(vector_, i);
}
};
Function signature needs to look this way:
int f(const_Vector& x, Vector& y) {
\\ do some math
return 0;
}
This followes a similar scheme like the iterator and const_iterator.
Maybe you have a situation which this will not work,. you should post this situation and we can try to solve it.
You can also use some kind of inheritance with pointer to data. further - templates can be used to create overloaded function returning either one or second version depending on input pointer types.
class JSONChannelFullConfigConst:
public JSONObjectRenderer {
public:
JSONChannelFullConfigConst(const uint8_t * channel_id,
const sensors_single_channel_config_t * cfg) :
j_channel_id(channel_id),
j_cfg(cfg) {
}
private:
const uint8_t * const j_channel_id;
const sensors_single_channel_config_t * const j_cfg;
void renderFields(rlf::UcOstreamBase& os) const;
public:
uint8_t getId() const {
return *j_channel_id;
}
};
class JSONChannelFullConfig:
public JSONChannelFullConfigConst,
public JSONObjectParser {
public:
JSONChannelFullConfig(uint8_t * channel_id, sensors_single_channel_config_t * cfg) :
JSONChannelFullConfigConst(channel_id, cfg),
j_channel_id(channel_id),
j_cfg(cfg) {
}
void setId(uint8_t id) {
*j_channel_id = id;
}
private:
uint8_t * const j_channel_id;
sensors_single_channel_config_t * const j_cfg;
virtual bool parseNameValuePair(const char * name, rlf::UcIstream & value);
};
There is something that is troubling my brain since a moment: I am trying to overload the [] operator based on the return type. Here is what I need to do:
class A {
private:
double* data_;
int N_;
public:
A (N=0):N_(N){
data_ = new double[N];
}
~A {delete[] data_;}
double operator[] (const int i) {
return data_[i];
}
double* operator[] (const int i) {
return &data[i]; // for example; in fact here i need to return some block of data_
}
};
This code won't compile; and that is my problem. Can someone help me to solve this problem?
PS: I know how to overload normal functions on the return type for example:
int foo ();
string foo ();
I used some tricks that I read in this forum. In this way:
struct func {
operator string() { return "1";}
operator int() { return 2; }
};
int main( ) {
int x = func(); // calls int version
string y = func(); // calls string version
double d = func(); // calls int version
cout << func() << endl; // calls int version
func(); // calls neither
}
Thank you.
Two method overloads must have different signatures. The return type is not part of the signature of a method.
You can use the same "trick" that you use for functions, that is use a proxy object with conversion operators:
class A
{
private:
double* data_;
int N_;
public:
A (int N = 0)
: N_(N), data_(new double[N])
{}
~A() { delete[] data_; }
struct proxy
{
int i;
double * data;
operator double() const
{
return data[i];
}
operator double*()
{
return &data[i];
}
operator double const *() const
{
return &data[i];
}
};
proxy operator[] (int const i) {
proxy p { i, data_ };
return p;
}
proxy const operator[] (int const i) const {
proxy p { i, data_ };
return p;
}
};
int main()
{
{
A a(12);
double d = a[0];
double * pd = a[0];
}
{
A const ca(12);
double d = ca[0];
//double * pd = ca[0]; // does not compile thanks to overloads on const
double const * pcd = ca[0];
}
}
However, I would argue that this is a terrible idea. Having your operator[] return either a value or a pointer to this value is guaranteed to confuse the users of your class, in addition to making it impractical to use in expressions where both types are possible. For instance, std::cout << a[0]; would not compile (ambiguous overloads).
Probably you need something like that:
class A {
private:
double* data_;
int N_;
... // other stuff
public:
double operator[] (const int i) const { // note const here
return data_[i];
}
double& operator[] (const int i) { // note reference here
return data_[i];
}
};
also operator should be public to have a sense.
Is it possible to overload [] operator twice? To allow, something like this: function[3][3](like in a two dimensional array).
If it is possible, I would like to see some example code.
You can overload operator[] to return an object on which you can use operator[] again to get a result.
class ArrayOfArrays {
public:
ArrayOfArrays() {
_arrayofarrays = new int*[10];
for(int i = 0; i < 10; ++i)
_arrayofarrays[i] = new int[10];
}
class Proxy {
public:
Proxy(int* _array) : _array(_array) { }
int operator[](int index) {
return _array[index];
}
private:
int* _array;
};
Proxy operator[](int index) {
return Proxy(_arrayofarrays[index]);
}
private:
int** _arrayofarrays;
};
Then you can use it like:
ArrayOfArrays aoa;
aoa[3][5];
This is just a simple example, you'd want to add a bunch of bounds checking and stuff, but you get the idea.
For a two dimensional array, specifically, you might get away with a single operator[] overload that returns a pointer to the first element of each row.
Then you can use the built-in indexing operator to access each element within the row.
An expression x[y][z] requires that x[y] evaluates to an object d that supports d[z].
This means that x[y] should be an object with an operator[] that evaluates to a "proxy object" that also supports an operator[].
This is the only way to chain them.
Alternatively, overload operator() to take multiple arguments, such that you might invoke myObject(x,y).
It is possible if you return some kind of proxy class in first [] call. However, there is other option: you can overload operator() that can accept any number of arguments (function(3,3)).
One approach is using std::pair<int,int>:
class Array2D
{
int** m_p2dArray;
public:
int operator[](const std::pair<int,int>& Index)
{
return m_p2dArray[Index.first][Index.second];
}
};
int main()
{
Array2D theArray;
pair<int, int> theIndex(2,3);
int nValue;
nValue = theArray[theIndex];
}
Of course, you may typedef the pair<int,int>
You can use a proxy object, something like this:
#include <iostream>
struct Object
{
struct Proxy
{
Object *mObj;
int mI;
Proxy(Object *obj, int i)
: mObj(obj), mI(i)
{
}
int operator[](int j)
{
return mI * j;
}
};
Proxy operator[](int i)
{
return Proxy(this, i);
}
};
int main()
{
Object o;
std::cout << o[2][3] << std::endl;
}
If, instead of saying a[x][y], you would like to say a[{x,y}], you can do like this:
struct Coordinate { int x, y; }
class Matrix {
int** data;
operator[](Coordinate c) {
return data[c.y][c.x];
}
}
It 'll be great if you can let me know what function, function[x] and function[x][y] are. But anyway let me consider it as an object declared somewhere like
SomeClass function;
(Because you said that it's operator overload, I think you won't be interested at array like SomeClass function[16][32];)
So function is an instance of type SomeClass. Then look up declaration of SomeClass for the return type of operator[] overload, just like
ReturnType operator[](ParamType);
Then function[x] will have the type ReturnType. Again look up ReturnType for the operator[] overload. If there is such a method, you could then use the expression function[x][y].
Note, unlike function(x, y), function[x][y] are 2 separate calls. So it's hard for compiler or runtime garantees the atomicity unless you use a lock in the context. A similar example is, libc says printf is atomic while successively calls to the overloaded operator<< in output stream are not. A statement like
std::cout << "hello" << std::endl;
might have problem in multi-thread application, but something like
printf("%s%s", "hello", "\n");
is fine.
template<class F>
struct indexer_t{
F f;
template<class I>
std::result_of_t<F const&(I)> operator[](I&&i)const{
return f(std::forward<I>(i))1;
}
};
template<class F>
indexer_t<std::decay_t<F>> as_indexer(F&& f){return {std::forward<F>(f)};}
This lets you take a lambda, and produce an indexer (with [] support).
Suppose you have an operator() that supports passing both coordinates at onxe as two arguments. Now writing [][] support is just:
auto operator[](size_t i){
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
auto operator[](size_t i)const{
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
And done. No custom class required.
#include<iostream>
using namespace std;
class Array
{
private: int *p;
public:
int length;
Array(int size = 0): length(size)
{
p=new int(length);
}
int& operator [](const int k)
{
return p[k];
}
};
class Matrix
{
private: Array *p;
public:
int r,c;
Matrix(int i=0, int j=0):r(i), c(j)
{
p= new Array[r];
}
Array& operator [](const int& i)
{
return p[i];
}
};
/*Driver program*/
int main()
{
Matrix M1(3,3); /*for checking purpose*/
M1[2][2]=5;
}
struct test
{
using array_reference = int(&)[32][32];
array_reference operator [] (std::size_t index)
{
return m_data[index];
}
private:
int m_data[32][32][32];
};
Found my own simple solution to this.
vector< vector< T > > or T** is required only when you have rows of variable length
and way too inefficient in terms of memory usage/allocations
if you require rectangular array consider doing some math instead!
see at() method:
template<typename T > class array2d {
protected:
std::vector< T > _dataStore;
size_t _sx;
public:
array2d(size_t sx, size_t sy = 1): _sx(sx), _dataStore(sx*sy) {}
T& at( size_t x, size_t y ) { return _dataStore[ x+y*sx]; }
const T& at( size_t x, size_t y ) const { return _dataStore[ x+y*sx]; }
const T& get( size_t x, size_t y ) const { return at(x,y); }
void set( size_t x, size_t y, const T& newValue ) { at(x,y) = newValue; }
};
The shortest and easiest solution:
class Matrix
{
public:
float m_matrix[4][4];
// for statements like matrix[0][0] = 1;
float* operator [] (int index)
{
return m_matrix[index];
}
// for statements like matrix[0][0] = otherMatrix[0][0];
const float* operator [] (int index) const
{
return m_matrix[index];
}
};
It is possible to overload multiple [] using a specialized template handler. Just to show how it works :
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
// the number '3' is the number of [] to overload (fixed at compile time)
struct TestClass : public SubscriptHandler<TestClass,int,int,3> {
// the arguments will be packed in reverse order into a std::array of size 3
// and the last [] will forward them to callSubscript()
int callSubscript(array<int,3>& v) {
return accumulate(v.begin(),v.end(),0);
}
};
int main() {
TestClass a;
cout<<a[3][2][9]; // prints 14 (3+2+9)
return 0;
}
And now the definition of SubscriptHandler<ClassType,ArgType,RetType,N> to make the previous code work. It only shows how it can be done. This solution is optimal nor bug-free (not threadsafe for instance).
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
template <typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler;
template<typename ClassType,typename ArgType,typename RetType, int N,int Recursion> class SubscriptHandler_ {
ClassType*obj;
array<ArgType,N+1> *arr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion-1> Subtype;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion+1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.obj = obj;
s.arr = arr;
arr->at(Recursion)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType,int N> class SubscriptHandler_<ClassType,ArgType,RetType,N,0> {
ClassType*obj;
array<ArgType,N+1> *arr;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
RetType operator[](const ArgType& arg){
arr->at(0) = arg;
return obj->callSubscript(*arr);
}
};
template<typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler{
array<ArgType,N> arr;
ClassType*ptr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N-1,N-2> Subtype;
protected:
SubscriptHandler() {
ptr=(ClassType*)this;
}
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.arr=&arr;
s.obj=ptr;
s.arr->at(N-1)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType> struct SubscriptHandler<ClassType,ArgType,RetType,1>{
RetType operator[](const ArgType&arg) {
array<ArgType,1> arr;
arr.at(0)=arg;
return ((ClassType*)this)->callSubscript(arr);
}
};
With a std::vector<std::vector<type*>>, you can build the inside vector using custom input operator that iterate over your data and return a pointer to each data.
For example:
size_t w, h;
int* myData = retrieveData(&w, &h);
std::vector<std::vector<int*> > data;
data.reserve(w);
template<typename T>
struct myIterator : public std::iterator<std::input_iterator_tag, T*>
{
myIterator(T* data) :
_data(data)
{}
T* _data;
bool operator==(const myIterator& rhs){return rhs.data == data;}
bool operator!=(const myIterator& rhs){return rhs.data != data;}
T* operator*(){return data;}
T* operator->(){return data;}
myIterator& operator++(){data = &data[1]; return *this; }
};
for (size_t i = 0; i < w; ++i)
{
data.push_back(std::vector<int*>(myIterator<int>(&myData[i * h]),
myIterator<int>(&myData[(i + 1) * h])));
}
Live example
This solution has the advantage of providing you with a real STL container, so you can use special for loops, STL algorithms, and so on.
for (size_t i = 0; i < w; ++i)
for (size_t j = 0; j < h; ++j)
std::cout << *data[i][j] << std::endl;
However, it does create vectors of pointers, so if you're using small datastructures such as this one you can directly copy the content inside the array.
Sample code:
template<class T>
class Array2D
{
public:
Array2D(int a, int b)
{
num1 = (T**)new int [a*sizeof(int*)];
for(int i = 0; i < a; i++)
num1[i] = new int [b*sizeof(int)];
for (int i = 0; i < a; i++) {
for (int j = 0; j < b; j++) {
num1[i][j] = i*j;
}
}
}
class Array1D
{
public:
Array1D(int* a):temp(a) {}
T& operator[](int a)
{
return temp[a];
}
T* temp;
};
T** num1;
Array1D operator[] (int a)
{
return Array1D(num1[a]);
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Array2D<int> arr(20, 30);
std::cout << arr[2][3];
getchar();
return 0;
}
Using C++11 and the Standard Library you can make a very nice two-dimensional array in a single line of code:
std::array<std::array<int, columnCount>, rowCount> myMatrix {0};
std::array<std::array<std::string, columnCount>, rowCount> myStringMatrix;
std::array<std::array<Widget, columnCount>, rowCount> myWidgetMatrix;
By deciding the inner matrix represents rows, you access the matrix with an myMatrix[y][x] syntax:
myMatrix[0][0] = 1;
myMatrix[0][3] = 2;
myMatrix[3][4] = 3;
std::cout << myMatrix[3][4]; // outputs 3
myStringMatrix[2][4] = "foo";
myWidgetMatrix[1][5].doTheStuff();
And you can use ranged-for for output:
for (const auto &row : myMatrix) {
for (const auto &elem : row) {
std::cout << elem << " ";
}
std::cout << std::endl;
}
(Deciding the inner array represents columns would allow for an foo[x][y] syntax but you'd need to use clumsier for(;;) loops to display output.)