Modern opengl rendering pipeline - c++

Okay i have been studying opengl online, however most tutorials i have been seeing only cover the fixed pipeline. I am trying to add it into an object oriented project, however i am not quiet sure the modern process with shaders and such. Is the process as easy as binding a buffer, as well as a shader? And what exactly are handles used for? I have added glew and glfw, even though now my log is saying glew failed to initialize, error 1282, thats a whole different topic, unless glew and glfw are incompatable. Can anyone shine a light on this subject?

The handles in opengl are just GLInts, which for example could be used to work with a VBO, VAO, stuff like that.
As for the shader, it uses the glsl shading language. Then they give the functions to compile and link the shader to your opengl context.
Asking how shaders, handles, and setting up the environment work for opengl is a very broad question, you would be better off following a tutorial. A good one would be OpenglDev which covers all the basic concepts, as well as some advanced ones. It's not opengl-es, but if you understand those tutorials opengl-es should be no problem transitioning to. The Visual Studio solution project is available for download Here, which will come with the project already setup with the required libraries.

Related

OpenGL version and programming

I am using VS2010 and freeGlut2.8.1, it seems that the openGL version on computer is 4, (also I am new to openGL) I have kept reading the many of the openGL features of earlier version are no longer used in recent version and the pipeline has changed ... , how come I am coding, using the tutorials on openGL red book which is for version 1 and every thing is working ok???
You shouldn't be using a deprecated version of OpenGL while serious about programming on it. Since glut is old and its design rather rusty, I suggest using a recent windowing API that allows you to program with OpenGL 3.3+. Examples of such windowing APIs include SDL, SFML, GLFW to name a few. Also, the red book on OpenGL although is useful in understanding how OpenGL works doesn't implement it in the most up-to-date manner. There are plenty of other books out there like OpenGL SuperBible or Shader Cookbook that can get you started.
You should have a look at modern OpenGL tutorials
IMHO using glbegin / glend pairs allows one to see the big picture. But their usage is never encouraged any more.

Accessing Modern OpenGL functions from Qt creator

I am using Open GL 3.0
I am trying to update this example to modern OpenGL :
http://qt-project.org/doc/qt-4.8/opengl-hellogl-es.html
I am also looking at this example:
http://qt-project.org/doc/qt-5/qtopengl-cube-example.html
I am looking at the OpenGL ES examples, because they compiled and rendered easily on my machine, and the OpenGL ES 2 example uses some programmable pipelining.
I want to use the pipeline functions referenced in this tutorial:
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-2-the-first-triangle/
For instance glGenBuffers()
However, this does not seem to come up in open Qt. If I try to compile a program that uses glGenBuffers, or glBindBuffer.
Why can I use some Open GL functions but not others?
Looking at the second example (OpenGL ES2) There is a type "QGLShaderProgram" which seems to wrap some of the shading functions, but I am at loss as to how to follow even a simple open GL tutorial with full access to the rendering functions.
For instance, the openGL tutorial references at least half a dozen functions I can't seem to use. I would be fine with this, but I can't seem to find where the Qt folks have explained what functions are wrapped, or covered up, or are absent.
Could I be missing an include or something?
I am including #QGLWidget and #QtOpenGL
See below for my answer to your question. However, it seems likely you are looking for a simpler OpenGL example with Qt like the triangle one you linked to. I also made an introductory post here where you can learn the basics of how Qt and OpenGL work together before you start an example.
First of all use Qt 5.5 now. It is configured with the -opengl dynamic option by default which might solve your problem. If you don't have -opengl desktop configure option set in your pre 5.5 build of Qt then you won't have access to modern OpenGL functions other than the subset of OpenGL ES 2 that is supported by all the platforms Qt supports.
Second, don't use the QGL* functions or classes as they are old/deprecated now. They were replaced by the QOpenGL* functions and classes.
As for includes, you will need a QOpenGLFunctions or QOpenGLFunctions_3_0 to know for sure which set of functions you are getting. You will also need any other classes like QOpenGLBuffer QOpenGLVertexArrayObject... or just include QtGui as that is where all the OpenGL functions and classes are now.

Tesselation in Go-GL

I'm trying to tesselate a simple triangle using the Golang OpenGL bindings
The library doesn't claim support for the tesselation shaders, but I looked through the source code, and adding the correct bindings didn't seem terribly tricky. So I branched it and tried adding the correct constants in gl_defs.go.
The bindings still compile just fine and so does my program, it's when I actually try to use the new bindings that things go strange. The program goes from displaying a nicely circling triangle to a black screen whenever I actually try to include the tesselation shaders.
I'm following along with the OpenGL Superbible (6th edition) and using their shaders for this project, so I don't image I'm using broken shaders (they don't spit out an error log, anyway). But in case the shaders themselves could be at fault, they can be found in the setupProgram() function here.
I'm pretty sure my graphics card supports tesselation because printing the openGL version returns 4.4.0 NVIDIA 331.38
.
So my questions:
Is there any reason adding go bindings for tesselation wouldn't work? The bindings seem quite straightforward.
Am I adding the new bindings incorrectly?
If it should work, why is it not working for me?
What am I doing wrong here?
Steps that might be worth taking:
Your driver and video card may support tessellation shaders, but the GL context that your binding is returning for you might be for an earlier version of OpenGL. Try glGetString​(GL_VERSION​) and see what you get.
Are you calling glGetError basically everywhere and actually checking its values? Does this binding provide error return values? If so, are you checking those?

Replicating Cathode retro terminal effect?

I'm trying to replicate the effect of Cathode but i'm not really aware of any rendering effects in SDL. Does anyone know the technique used in Cathode? Are they using OpenGL and shaders maybe?
If you are still interested in the subject I'm working on a similar project. The effects were obtained by using GLSL shaders.
You can grab the source code here: https://github.com/Swordifish90/cool-old-term/
The shaders strings might not be extremely readable due to the extensive use of the ternary operators (needed to customize the appearance) but they should give you a really good idea.
If you poke around a bit in the application bundle, you'll find that the only relevant framework is GLKit which, according to Apple, will "reduce the effort required to create new shader-based apps".
There's also a bunch of ".fragdata", ".vertdata", and ".glsldata" files, which are encrypted.
Very unfortunate for you.
So I would say: Yes, it's OpenGL shaders all the way.
Unfortunately, since the shaders are encrypted, you're going to have to locate suitable algorithms elsewhere.
(Perhaps it's possible to use the OpenGL debugging and profiling tools to capture the shader source as it is compiled, but I doubt it.)
You may have realized that Android phones have (had?) such animations when you put them to sleep. That code is available under in file named ElectronBeam.java.
However it is Java code and uses GLES 1.0 with GLES 1.1 Extenstions but algorithm for bending screen should be understandable.
Seems to be based on GLTerminal which uses OpenGL, it would have to use OpenGL and shaders for speed.
I guess the fastest approximation would be to render the text to buffers within OpenGL and use a deformed 2d grid to create the "rounded corners" radial distortion.
But it would take a lot of work to add all the features that cathode has, not to mention to run them quickly.
I suspect emulating a CRT perfectly is a bit like emulating an analog synth perfectly - hard to impossible.
If you want to work quickly and not killing the CPU, the GPU is the best solution! So pixel shaders. pixel shaders can do all of these effects. Once I made such an application. I wrote it in Silverlight, but it does not matter, I used the pixel shader.
Suggests to write this in Qt4 and add to the QWidget pixel shader effects.

Learning modern OpenGL

I am aware that there were similar questions in past few years, but after doing some researches I still can't decide where from and what should I learn.
I would also like to see your current, actual view on modern OpenGL programming with more C++ OOP and shader approach. And get sure that my actual understanding on some things is valid.
So... currently we have OpenGL 4.2 out, which as I read somewhere requires dx11 hardware
(what does it mean?) and set of 'side' libraries, to for example create window.
There is the most common GLUT, which I extremely hate. One of main reason are function calls, which doesn't allow freedom in the way how we create main loop. As some people were telling, it was not meant for games.
There is also GLFW, which actually is quite nice and straight-forward to me. For some reason people use it with GLUT. ( which provides not only window initialisation, but also other utilities? )
And there is also SFML and SDL ( SDL < SFML imo ), whereas both of them sometimes need strange approach to work with OGL and in some cases are not really fast.
And we have also GLEW, which is extension loading utility... wait... isn't GLUT/GLFW already an extension? Is there any reason to use it, like are there any really important extensions to get interested with?
Untill now we have window creation (and some utilities), but... OGL doesn't take care of loading textures, neither 3D models. How many other libs do I need?
Let's mention education part now. There is (in)famous NeHe tutorial. Written in C with use of WinApi, with extremely unclear code and outdated solutions, yet still the most popular one. Some stuff like Red Book can be found, which are related to versions like 2.x or 3.x, however there are just few (and unfinished) tutorials mentioning 4.x.
What to go with?
So... currently we have OpenGL 4.2 out, which as I read somewhere requires dx11 hardware (what does it mean?) and set of 'side' libraries, to for example create window.
DX11 hardware is... hardware that has "supports DirectX 11" written on the side of the box. I'm not sure what it is you're asking here; are you unclear on what Direct3D is, what D3D 11 is, or what separates D3D 11 from prior versions?
FYI: D3D is a Windows-only alternative to using OpenGL to access rendering hardware. Version 11 is just the most recent version of the API. And D3D11 adds a few new things compared to D3D10, but nothing much that a beginner would need.
OpenGL is a specification that describes a certain interface for graphics operations. How this interface is created is not part of OpenGL. Therefore, every platform has its own way for creating an OpenGL context. Windows uses the Win32 API with WGL. X-Windows uses the X-Windows API with GLX functions. And so forth.
Libraries like GLUT, GLFW, etc are libraries that abstract all of these differences. They create and manage an OpenGL window for you, so that you don't have to dirty your code with platform-specific details. You do not have to use any of them.
Granted, if you're interested in learning OpenGL, it's best to avoid dealing with platform-specific minutae like how to take care of a HWND and such.
And we have also GLEW, which is extension loading utility... wait... isn't GLUT/GLFW already an extension? Is there any reason to use it, like are there any really important extensions to get interested with?
This is another misunderstanding. GLUT is a library, not an extension. An OpenGL extension is part of OpenGL. See, OpenGL is just a specification, a document. The implementation of OpenGL that you're currently using implements the OpenGL graphics system, but it may also implement a number of extensions to that graphics system.
GLUT is not part of OpenGL; it's just a library. The job of GLUT is to create and manage an OpenGL window. GLEW is also a library, which is used for loading OpenGL functions. It's not the only alternative, but it is a popular one.
Untill now we have window creation (and some utilities), but... OGL doesn't take care of loading textures, neither 3D models. How many other libs do I need?
OpenGL is not a game engine. It is a graphics system, designed for interfacing with dedicated graphics hardware. This job has nothing to do with things like loading anything from any kind of file. Yes, making a game requires this, but as previously stated, OpenGL is not a game engine.
If you need to load a file format to do something you wish to do, then you will need to either write code to do the loading (and format adjustment needed to interface with GL) or download a library that does it for you. The OpenGL Wiki maintains a pretty good list of tools for different tasks.
There is (in)famous NeHe tutorial. Written in C with use of WinApi, with extremely unclear code and outdated solutions, yet still the most popular one. Some stuff like Red Book can be found, which are related to versions like 2.x or 3.x, however there are just few (and unfinished) tutorials mentioning 4.x.
What to go with?
The OpenGL Wiki maintains a list of online materials for learning OpenGL stuff, both old-school and more modern.
WARNING: Shameless Self-Promotion Follows!
My tutorials on learning graphics are pretty good, with many sections and is still actively being worked on. It doesn't teach any OpenGL 4.x-specific functionality, but OpenGL 3.3 is completely compatible with 4.2. All of those programs will run just fine on 4.x hardware.
If you are writing a game, I would avoid things like GLUT, and write your own wrappers that will make the most sense for your game rendering architecture.
I would also avoid OpenGL 4.2 at this point, unless you only want to target specific hardware on specific platforms, because support is minimal. i.e., the latest version of Mac OSX Lion just added support for OpenGL 3.2.
For the most comprehensive coverage of machines made in the last few years, build your framework around OpenGL 2.1 and add additional support for newer OpenGL features where they make sense. The overall design should be the same. If you're only interested in targeting "current" machines, i.e. machines from late 2011 and forward, build your framework around OpenGL 3. Only the newest hardware supports 4.2, and only on Windows and some Linux. If you're interested in targeting mobile devices and consoles, use OpenGL ES 2.0.
GLEW loads and manages OpenGL Extensions, which are hardware extensions from different vendors, as opposed to GLUT which is a toolkit for building OpenGL applications, completely different things. I would highly recommend using GLEW, as it will provide a clean mechanism for determining which features are available on the hardware it is being run on, and will free you from the task of having to manually assign function pointers to the appropriate functions.
OpenGL SuperBible is a pretty good book, also check OpenGL Shading Language. Everything you do with modern OpenGL is going to involve the use of shaders - no more fixed functionality - so your biggest challenge is going to be understanding GLSL and how the shader pipelines work.
I'm currently learning modern OpenGL as well. I've also had hard time finding good resources, but here's what I've discovered so far.
I searched for a good book and ended up with OpenGL ES 2.0 Programming Guide, which I think is the best choice for learning modern OpenGL right now. Yes, the book is about OpenGL ES, but don't let that scare you. The good thing about OpenGL ES 2.0 is that all the slow parts of the API have been removed so you don't get any bad habits from learning it while it's still very close to desktop OpenGL otherwise, with only a few features missing, which I think you can learn rather easily after you've mastered OpenGL ES 2.0.
On the other hand, you don't have the mess with windowing libraries etc. that you have with desktop OpenGL and so the book on OpenGL ES won't help you there. I think it's very subjective which libraries to use, but so far I've managed fine with SDL, ImageMagick and Open Asset Import Library.
Now, the book has been a good help, but apart from that, there's also a nice collection of tutorials teaching modern OpenGL from ground up at OpenGL development on Linux. (I think it's valid on other OSes the name nevertheless.) The book, the tutorials and a glance or two every now and then to the Orange Book have been enough in getting me understand the basics of modern OpenGL. Note that I'm still not a master in the area, but it's definitely got me started.
I agree that it's king of hard to get in to OpenGL these days when all the tutorials and examples use outdated project files, boken links etc, and if you ask for help you are just directed to those same old tutorials.
I was really confused with the NeHe tutorials at first, but when I got a little better understanding of C, compiling libraries on UNIX and other basic stuff, it all fell into place.
As far as texture loading, I can recommend SOIL:
http://www.lonesock.net/soil.html
I'm not sure but I recall I had trouble compiling it correctly, but that may have been my low experience at the time. Give me a shout if you run into trouble!
Another usefull tip is to get a Linux VM running and then you can download the NeHe Linux example code and compile it out of the box. I think you just need GLUT for it to work.
I also prefer GLFW before GLUT, mainly because GLUT isn't maintained actively.
Good luck!
The major point of modern OpenGL is tesselation and new type of shader programs so i would like to recommend to start from a standalone tutorial on OpenGL 4 tesselation, i.e: http://prideout.net/blog/?p=48
After manuals and tutorials a good follow-up is to take a look at the open-source engines out there that are based on top of "new" OpenGL 3/4. As one of the developers, I would point at Linderdaum Engine.
"Modern OpenGL programming with more C++ OOP and shader approach" makes me mention Qt. It hasn't been mentioned yet but Qt is a library that is worth learning and is the easiest way to write cross platform C++ apps. I also found it the easiest way to learn OpenGL in general since it easily handles the initialization and hardware specific code for you. Qt has it's own math libraries as well so all you need to get started with OpenGL is Qt. VPlay is a library that uses Qt to help people make games easily so there are obviously some people using Qt to make games as well.
For a short introduction to Qt and OpenGL see my post here.
I will mention that since Qt abstracts some OpenGL code, if you are trying to use the Qt wrappers, the API is slightly different than just OpenGL (although arguably simpler).
As for my vote for good tutorials or book check out Anton's OpenGL tutorials and Swiftless tutorials. Anton's ebook on Amazon is also rated higher than any other OpenGL published resource I have seen so far (and far cheaper).