Related
I'm trying to draw and display an image(s) on a device context (variable: dc) by using CreateCompatibleDC(), SetPixel(), and BitBlt() as seen in the code below:
HDC Layout = CreateCompatibleDC(0);
HBITMAP image = CreateCompatibleBitmap(Layout, symbol->bitmap_width, symbol->bitmap_height);
// Draw the image
int bit = 0;
for (int j = 0; j < symbol->bitmap_height; j++) {
for (int k = 0; k < symbol->bitmap_width; k++) {
if (symbol->bitmap[bit] == '1')
SetPixel(Layout, j, k, rgbBlue);
else
SetPixel(Layout, j, k, rgbGreen);
bit++;
}
}
BOOL success = BitBlt(dc, 1000, 1000, 1000, 1000, BCLayout, 0, 0, SRCCOPY);
I expected the image to be displayed in said device context but the image does not display in the end. Does anyone know why that is?
A few things I should clarify:
the variable "symbol" is a struct variable that holds all the information for the image
the symbol->bitmap array is a character array that has characters that denote the color of a pixel on the bitmap representation of the image (why it's one-dimensional, I don't know. It was designed that way by a third party)
CreateCompatibleDC() creates an in-memory HDC with a 1x1 monochrome HBITMAP assigned to it by default. You need to use SelectObject() to replace that default HBITMAP with your own HBITMAP before you then use SetPixel() to change the HDC's pixels, eg:
// create an HDC...
HDC Layout = CreateCompatibleDC(0);
// create a bitmap for the HDC...
HBITMAP image = CreateCompatibleBitmap(Layout, symbol->bitmap_width, symbol->bitmap_height);
// replace the default bitmap with the new one...
// remember the old bitmap for later...
HBITMAP oldBmp = (HBITMAP) SelectObject(Layout, image);
// Draw the image as needed...
// restore the previous bitmap...
SelectObject(Layout, oldBmp);
// destroy the new bitmap...
DeleteObject(image);
// destroy the HDC...
DeleteDC(Layout);
I'm trying to implement anti-aliasing in my MFC app, I'm using the technique described in this tutorial.
Create a bitmap (2x, 4x, 8x) the size of the original bitmap.
Draw on the resized bitmap (I'm only using simple figures (lines, circles and etc)).
Set StretchBlt Mode to HalfTone.
And Resize with StretchBlt to the original size.
Using this way, drawing in the resized bitmap it works, but I want to create a more generic function that receives a bitmap with the drawing already made and return with the anti-aliasing, I tried this:
static HBITMAP AntiAliasing(HBITMAP hBitmap)
{
int escala = 4;
HBITMAP bmp = __copia(hBitmap); // Copy the bitmap.
HDC hMemDC = CreateCompatibleDC(NULL);
HBITMAP bmpAntigo1 = (HBITMAP)::SelectObject(hMemDC, bmp);
BITMAP bitmap;
::GetObject(hBitmap, sizeof(BITMAP), &bitmap);
// Create a bitmap (2x, 4x, 8x) the size of the original bitmap.
HDC hDCDimensionado = ::CreateCompatibleDC(hMemDC);
HBITMAP bmpDimensionado = ::CreateCompatibleBitmap(hDCDimensionado,
bitmap.bmWidth * escala,
bitmap.bmHeight * escala);
HBITMAP hBmpVelho = (HBITMAP)::SelectObject(hDCDimensionado, bmpDimensionado);
// I also tried with {BLACKONWHITE, HALFTONE, WHITEONBLACK}
int oldStretchBltMode2 = ::SetStretchBltMode(hDCDimensionado, COLORONCOLOR);
// Resize the bitmap to the new size.
::StretchBlt(hDCDimensionado,
0, 0, bitmap.bmWidth * escala, bitmap.bmHeight * escala,
hMemDC,
0, 0, bitmap.bmWidth, bitmap.bmHeight,
SRCCOPY);
/*
* Here the bitmap has lost his colors and became black and white.
*/
::SetStretchBltMode(hDCDimensionado, oldStretchBltMode2);
// Set StretchBltMode to halfTone so can mimic the anti aliasing effect.
int oldStretchBltMode = ::SetStretchBltMode(hMemDC, HALFTONE);
// resize to the original size.
::StretchBlt(hMemDC,
0, 0, bitmap.bmWidth, bitmap.bmHeight,
hDCDimensionado,
0, 0, escala * bitmap.bmWidth, escala * bitmap.bmHeight,
SRCCOPY);
::SetStretchBltMode(hMemDC, oldStretchBltMode);
::SelectObject(hMemDC, bmpAntigo1);
::DeleteDC(hMemDC);
::SelectObject(hDCDimensionado, hBmpVelho);
DeleteDC(hDCDimensionado);
return bmp;
}
But this function doesn't work, the result loses its colors (all drawings became black) and there isn't anti aliasing.
Any help will be appreciated!
From documentation for CreateCompatibleBitmap:
Note: When a memory device context is created, it initially has a
1-by-1 monochrome bitmap selected into it. If this memory device
context is used in CreateCompatibleBitmap, the bitmap that is created
is a monochrome bitmap. To create a color bitmap, use the HDC that was
used to create the memory device context, as shown in the following
code:
Change the code and supply hdc for the desktop as show below:
HDC hdc = ::GetDC(0);
HBITMAP bmpDimensionado = ::CreateCompatibleBitmap(hdc, ...)
::ReleaseDC(0, hdc);
This will show the image, however this method will not produce the desired effect because it simply magnifies each pixel to larger size and reduces it back to the original pixel. There is no blending with neighboring pixels.
Use other methods such Direct2D with Gaussian blur effect, or use GDI+ instead with interpolation mode:
Gdiplus::GdiplusStartup...
void foo(HDC hdc)
{
Gdiplus::Bitmap bitmap(L"file.bmp");
if(bitmap.GetLastStatus() != 0)
return 0;
auto w = bitmap.GetWidth();
auto h = bitmap.GetHeight();
auto maxw = w * 2;
auto maxh = h * 2;
Gdiplus::Bitmap membmp(maxw, maxh);
Gdiplus::Graphics memgr(&membmp);
memgr.SetInterpolationMode(Gdiplus::InterpolationModeHighQualityBilinear);
memgr.DrawImage(&bitmap, 0, 0, maxw, maxh);
Gdiplus::Graphics gr(hdc);
gr.SetInterpolationMode(Gdiplus::InterpolationModeHighQualityBilinear);
gr.DrawImage(&membmp, 0, 0, w, h);
}
If target window is at least Vista, use GDI+ version 1.1 with blur effect. See also How to turn on GDI+ 1.1 in MFC project
#define GDIPVER 0x0110 //add this to precompiled header file
void blur(HDC hdc)
{
Gdiplus::Graphics graphics(hdc);
Gdiplus::Bitmap bitmap(L"file.bmp");
if(bitmap.GetLastStatus() != 0)
return;
Gdiplus::Blur blur;
Gdiplus::BlurParams blur_param;
blur_param.radius = 3; //change the radius for different result
blur_param.expandEdge = TRUE;
blur.SetParameters(&blur_param);
bitmap.ApplyEffect(&blur, NULL);
graphics.DrawImage(&bitmap, 0, 0);
}
My goal is to dynamically put some arbitrary text into an HICON image (at runtime.) I'm using the following code:
//Error checks are omitted for brevity
//First create font
LOGFONT lf = {0};
lf.lfHeight = -58;
lf.lfWeight = FW_NORMAL;
lf.lfOutPrecision = OUT_TT_PRECIS; //Use TrueType fonts for anti-alliasing
lf.lfQuality = CLEARTYPE_QUALITY;
lstrcpy(lf.lfFaceName, L"Segoe UI");
HFONT hFont = ::CreateFontIndirect(&lf);
//HICON hIcon = original icon to use as a source
//I'm using a large 256x256 pixel icon
hIcon = (HICON)::LoadImage(theApp.m_hInstance, MAKEINTRESOURCE(IDI_ICON_GREEN_DIAMOND), IMAGE_ICON, 256, 256, LR_DEFAULTCOLOR);
ICONINFO ii = {0};
::GetIconInfo(hIcon, &ii);
BITMAP bm = {0};
::GetObject(ii.hbmColor, sizeof(bm), &bm);
SIZE szBmp = {bm.bmWidth, bm.bmHeight};
HDC hDc = ::GetDC(hWnd);
HDC hMemDC = ::CreateCompatibleDC(hDc);
HGDIOBJ hOldBmp = ::SelectObject(hMemDC, ii.hbmColor);
HGDIOBJ hOldFont = ::SelectObject(hMemDC, hFont);
::SetBkMode(hMemDC, TRANSPARENT);
::SetTextColor(hMemDC, RGB(255, 0, 0)); //Red text
//Draw text
//NOTE that DrawText API behaves in a similar way
::TextOut(hMemDC, 0, 0, L"Hello", 5);
::SelectObject(hMemDC, hOldFont);
::SelectObject(hMemDC, hOldBmp);
//We need a simple mask bitmap for the icon
HBITMAP hBmpMsk = ::CreateBitmap(szBmp.cx, szBmp.cy, 1, 1, NULL);
ICONINFO ii2 = {0};
ii2.fIcon = TRUE;
ii2.hbmColor = ii.hbmColor;
ii2.hbmMask = hBmpMsk;
//Create updated icon
HICON hIcon2 = ::CreateIconIndirect(&ii2);
//Cleanup
::DeleteObject(hBmpMsk);
::DeleteDC(hMemDC);
::ReleaseDC(hWnd, hDc);
::DeleteObject(ii.hbmColor);
::DeleteObject(ii.hbmMask);
::DeleteObject(hFont);
and then I can display the icon in my window from OnPaint() handler (so that I can see how it turns out) as such:
::DrawIconEx(dc.GetSafeHdc(), 0, 0,
hIcon2,
256, 256, NULL,
::GetSysColorBrush(COLOR_BTNFACE),
DI_NORMAL);
So here's what I get:
To see what's going on pixel-wise in my hIcon2 I called GetDIBits on its ii.hbmColor from the code above. The resulting pixel array where my word "Hello" was supposed to be shown looked like this:
The pixels are encoded as BGRA in that memory dump, so the 4th byte in each DWORD stands for transparency: 0=transparent, FF=opaque. But in this case TextOut doesn't fill out transparency, or leaves it as 0, which is interpreted as "fully transparent." Instead it seems to pre-multiply it into the RGB colors themselves.
Note that if I keep looking further down the same bitmap, where the green diamond begins, the image pixels seem to have transparency bytes set correctly:
Any idea how to draw text so that the API could set those transparency bytes?
EDIT: As was suggested below I tried the following GDI+ method:
HGDIOBJ hOldBmp = ::SelectObject(hMemDC, ii.hbmColor);
Graphics grpx(hMemDC);
RectF rcfTxt(0.0f, 0.0f, (REAL)szBmp.cx, (REAL)szBmp.cy);
Font gdiFont(L"Segoe UI", 58.0f, FontStyleRegular, UnitPixel);
SolidBrush gdiBrush(Color(255, 0, 0));
StringFormat gdiSF;
gdiSF.SetAlignment(StringAlignmentNear);
gdiSF.SetFormatFlags(StringFormatFlagsNoWrap);
gdiSF.SetHotkeyPrefix(HotkeyPrefixNone);
//The reason I was using GDI was because I was setting
//spacing between letters using SetTextCharacterExtra()
//Unfortunately with GDI+ this does not work!
HDC hTmpDC = grpx.GetHDC();
::SetTextCharacterExtra(hTmpDC, -4); //This doesn't do anything!
grpx.ReleaseHDC(hTmpDC);
grpx.DrawString(L"Hello", 5, &gdiFont, rcfTxt, &gdiSF, &gdiBrush);
::SelectObject(hMemDC, hOldBmp);
and besides not being able to set character spacing (which I could with GDI using SetTextCharacterExtra) here's what I got (slightly enlarged for visibility):
So clearly still an issue with transparency.
Taken from an old post by Microsoft MVP Mike D Sutton here.
When you create a DC it initially has default 'stock' objects selected
into it, including the stock 1*1*1 Bitmap. Since there is a Bitmap
already selected into the DC when you call DrawText() it will still
try and render to it even though pretty much everything (apart from
one pixel) will be clipped.
What you need to do is to create a Bitmap,
either DDB or DIBSection, and select that into your DC before drawing
to it.
First though you need to find the size of your Bitmap since you
want it large enough to display your text in, so for that you use the
DrawText() call again on the initial DC but include the DT_CALCRECT
flag. What this does is rather than drawing anything it simply
measures how large the text is and dumps that into the RECT you pass
the call. From here you can go ahead and create your DIBSection using
those dimensions and select it into your DC. Finally perform your
existing DrawText ()call (you may also want to use SetBkMode/Color())
which will render the text to the DIBSection from which you can get at
the data.
This seems to work pretty well here:
HBITMAP CreateAlphaTextBitmap(LPCSTR inText, HFONT inFont, COLORREF inColour) {
int TextLength = (int)strlen(inText);
if (TextLength <= 0) return NULL;
// Create DC and select font into it
HDC hTextDC = CreateCompatibleDC(NULL);
HFONT hOldFont = (HFONT)SelectObject(hTextDC, inFont);
HBITMAP hMyDIB = NULL;
// Get text area
RECT TextArea = {0, 0, 0, 0};
DrawText(hTextDC, inText, TextLength, &TextArea, DT_CALCRECT);
if ((TextArea.right > TextArea.left) && (TextArea.bottom > TextArea.top)) {
BITMAPINFOHEADER BMIH;
memset(&BMIH, 0x0, sizeof(BITMAPINFOHEADER));
void *pvBits = NULL;
// Specify DIB setup
BMIH.biSize = sizeof(BMIH);
BMIH.biWidth = TextArea.right - TextArea.left;
BMIH.biHeight = TextArea.bottom - TextArea.top;
BMIH.biPlanes = 1;
BMIH.biBitCount = 32;
BMIH.biCompression = BI_RGB;
// Create and select DIB into DC
hMyDIB = CreateDIBSection(hTextDC, (LPBITMAPINFO)&BMIH, 0, (LPVOID*)&pvBits, NULL, 0);
HBITMAP hOldBMP = (HBITMAP)SelectObject(hTextDC, hMyDIB);
if (hOldBMP != NULL) {
// Set up DC properties
SetTextColor(hTextDC, 0x00FFFFFF);
SetBkColor(hTextDC, 0x00000000);
SetBkMode(hTextDC, OPAQUE);
// Draw text to buffer
DrawText(hTextDC, inText, TextLength, &TextArea, DT_NOCLIP);
BYTE* DataPtr = (BYTE*)pvBits;
BYTE FillR = GetRValue(inColour);
BYTE FillG = GetGValue(inColour);
BYTE FillB = GetBValue(inColour);
BYTE ThisA;
for (int LoopY = 0; LoopY < BMIH.biHeight; LoopY++) {
for (int LoopX = 0; LoopX < BMIH.biWidth; LoopX++) {
ThisA = *DataPtr; // Move alpha and pre-multiply with RGB
*DataPtr++ = (FillB * ThisA) >> 8;
*DataPtr++ = (FillG * ThisA) >> 8;
*DataPtr++ = (FillR * ThisA) >> 8;
*DataPtr++ = ThisA; // Set Alpha
}
}
// De-select bitmap
SelectObject(hTextDC, hOldBMP);
}
}
// De-select font and destroy temp DC
SelectObject(hTextDC, hOldFont);
DeleteDC(hTextDC);
// Return DIBSection
return hMyDIB;
}
If you need an example of how to call it then try something like this
(inDC is the DC to render to):
void TestAlphaText(HDC inDC, int inX, int inY) {
const char *DemoText = "Hello World!\0";
RECT TextArea = {0, 0, 0, 0};
HFONT TempFont = CreateFont(50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "Arial\0");
HBITMAP MyBMP = CreateAlphaTextBitmap(DemoText, TempFont, 0xFF);
DeleteObject(TempFont);
if (MyBMP) { // Create temporary DC and select new Bitmap into it
HDC hTempDC = CreateCompatibleDC(inDC);
HBITMAP hOldBMP = (HBITMAP)SelectObject(hTempDC, MyBMP);
if (hOldBMP) {
BITMAP BMInf; // Get Bitmap image size
GetObject(MyBMP, sizeof(BITMAP), &BMInf);
// Fill blend function and blend new text to window
BLENDFUNCTION bf;
bf.BlendOp = AC_SRC_OVER;
bf.BlendFlags = 0;
bf.SourceConstantAlpha = 0x80;
bf.AlphaFormat = AC_SRC_ALPHA;
AlphaBlend(inDC, inX, inY, BMInf.bmWidth, BMInf.bmHeight,
hTempDC, 0, 0, BMInf.bmWidth, BMInf.bmHeight, bf);
// Clean up
SelectObject(hTempDC, hOldBMP);
DeleteObject(MyBMP);
DeleteDC(hTempDC);
}
}
}
All credit to answer and code go to original posters on that forum, I've simply reposted it so that this answer will be valid if the links die.
This reply is coming almost 3 years after the question was posted, but people still consult these things long into the future. So I'll explain what's happening.
DrawText (and other GDI text functions) will work on a transparent bitmap. The text is not coming out black even though it displays that way. The alpha channel is set to 0 on all pixels the text draws to, overriding whatever alpha you had set previously. If you set an alpha value in SetTextColor the text will render all black. If you're feeling ambitious you can run through pixel by pixel and target anything not your fill color (which requires a single fill color) but the problem then becomes one of the nature of ClearType being overridden and all alphas are set to whatever you set them to. The text ends up looking very funky. If you use a constant alpha for your background fill you can simply do a blanket run across the entire bitmap's bits after the text is drawn and reset all the alpha values. Since you have to read a byte to determine if it's background or not, you might as well just set every pixel's alpha to whatever the standard alpha is for that image and bypass the slow compares. This works reasonably well and I've found it to be very acceptable. In this day and age, MS should have taken care of this long ago but it's not to be.
https://learn.microsoft.com/en-us/windows/win32/gdiplus/-gdiplus-antialiasing-with-text-use
Gdiplus::Bitmap bmp( your_Width, your_Height, PixelFormat64bppARGB);
//PixelFormat64bppARGB ARGB needed
FontFamily fontFamily(L"Arial");
Font font(&fontFamily, 29, FontStyleRegular, UnitPoint);
Gdiplus::RectF rectF(00.0f, 10.0f, your_Width, your_Height);
StringFormat stringFormat;
SolidBrush solidBrush(Color(63, 0, 0, 255));
stringFormat.SetAlignment(StringAlignmentCenter);
//solidBrush Color(63, 0, 0, 255) ARGB neede
graphics.SetTextRenderingHint(TextRenderingHintAntiAlias);
graphics.DrawString("your_text", -1, &font, rectF, &stringFormat, &solidBrush);
//TextRenderingHintAntiAlias this needed
I have a two dimensional array of data that I want to display as an image.
The plan goes something like this -
Create a bitmap using CreateCompatibleBitmap (this results in a solid black bitmap and I can display this with no problems)
Edit the pixels of this bitmap to match my data
BitBlt the bitmap to the window
I think that I need a pointer to the place in memory where the pixel data begins. I've tried many different methods of doing this and googled it for 3 days and still haven't been able to even edit a single pixel.
Using a loop of SetPixel(HDC, x, y, Color) to set each pixel works but VERY slowly.
I have accomplished this in C# by locking the bitmap and editing the bits, but I am new to C++ and can't seem to figure out how to do something similar.
I have mostly been trying to use memset(p, value, length)
For "p" I have tried using the handle returned from CreateCompatibleBitmap, the DC for the bitmap, and the DC for the window. I have tried all sorts of values for the value and length.
I'm not sure if this is the right thing to use though.
I don't have to use a bitmap, that's just the only thing I know to do. Actually it would be awesome to find a way to directly change the main window's DC.
I do want to avoid libraries though. I am doing this purely for learning C++.
This took QUITE a bit of research so I'll post exactly how it is done for anyone else who may be looking.
This colors every pixel red.
hDC = BeginPaint(hWnd, &Ps);
const int
width = 400,
height = 400,
size = width * height * 3;
byte * data;
data = new byte[size];
for (int i = 0; i < size; i += 3)
{
data[i] = 0;
data[i + 1] = 0;
data[i + 2] = 255;
}
BITMAPINFOHEADER bmih;
bmih.biBitCount = 24;
bmih.biClrImportant = 0;
bmih.biClrUsed = 0;
bmih.biCompression = BI_RGB;
bmih.biWidth = width;
bmih.biHeight = height;
bmih.biPlanes = 1;
bmih.biSize = 40;
bmih.biSizeImage = size;
BITMAPINFO bmpi;
bmpi.bmiHeader = bmih;
SetDIBitsToDevice(hDC, 0, 0, width, height, 0, 0, 0, height, data, &bmpi, DIB_RGB_COLORS);
delete[] data;
memset can be used on the actually RGB information array (but you need to also know the format of the bitmap, if a pixel has 32 or 24 bits ).
From a bit of research on msdn, it seems that what you want to get is the BITMAP structure :
http://msdn.microsoft.com/en-us/library/k1sf4cx2.aspx
There you have the bmBits on which you can memset.
How to get there from your function ?
Well, CreateCompatibleBitmap returns a HBITMAP structure and it seems you can get BITMAP from HBITMAP with the following code :
BITMAP bmp;
GetObject(hBmp, sizeof(BITMAP), &bmp);
This however seems to get a you copy of the existing bitmap info, which only solves your memset problem (you can now set the bitmap information with memset, eventhou I don't see any other use for memeset besides making the bmp all white or black).
There should be a function that allows you to set the DC bites to a bitmap thou, so you should be able to use the new bitmap as a parameter.
I want to read a rectangular area, or whole screen pixels. As if screenshot button was pressed.
How i do this?
Edit: Working code:
void CaptureScreen(char *filename)
{
int nScreenWidth = GetSystemMetrics(SM_CXSCREEN);
int nScreenHeight = GetSystemMetrics(SM_CYSCREEN);
HWND hDesktopWnd = GetDesktopWindow();
HDC hDesktopDC = GetDC(hDesktopWnd);
HDC hCaptureDC = CreateCompatibleDC(hDesktopDC);
HBITMAP hCaptureBitmap = CreateCompatibleBitmap(hDesktopDC, nScreenWidth, nScreenHeight);
SelectObject(hCaptureDC, hCaptureBitmap);
BitBlt(hCaptureDC, 0, 0, nScreenWidth, nScreenHeight, hDesktopDC, 0,0, SRCCOPY|CAPTUREBLT);
BITMAPINFO bmi = {0};
bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);
bmi.bmiHeader.biWidth = nScreenWidth;
bmi.bmiHeader.biHeight = nScreenHeight;
bmi.bmiHeader.biPlanes = 1;
bmi.bmiHeader.biBitCount = 32;
bmi.bmiHeader.biCompression = BI_RGB;
RGBQUAD *pPixels = new RGBQUAD[nScreenWidth * nScreenHeight];
GetDIBits(
hCaptureDC,
hCaptureBitmap,
0,
nScreenHeight,
pPixels,
&bmi,
DIB_RGB_COLORS
);
// write:
int p;
int x, y;
FILE *fp = fopen(filename, "wb");
for(y = 0; y < nScreenHeight; y++){
for(x = 0; x < nScreenWidth; x++){
p = (nScreenHeight-y-1)*nScreenWidth+x; // upside down
unsigned char r = pPixels[p].rgbRed;
unsigned char g = pPixels[p].rgbGreen;
unsigned char b = pPixels[p].rgbBlue;
fwrite(fp, &r, 1);
fwrite(fp, &g, 1);
fwrite(fp, &b, 1);
}
}
fclose(fp);
delete [] pPixels;
ReleaseDC(hDesktopWnd, hDesktopDC);
DeleteDC(hCaptureDC);
DeleteObject(hCaptureBitmap);
}
Starting with your code and omitting error checking ...
// Create a BITMAPINFO specifying the format you want the pixels in.
// To keep this simple, we'll use 32-bits per pixel (the high byte isn't
// used).
BITMAPINFO bmi = {0};
bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);
bmi.bmiHeader.biWidth = nScreenWidth;
bmi.bmiHeader.biHeight = nScreenHeight;
bmi.bmiHeader.biPlanes = 1;
bmi.bmiHeader.biBitCount = 32;
bmi.bmiHeader.biCompression = BI_RGB;
// Allocate a buffer to receive the pixel data.
RGBQUAD *pPixels = new RGBQUAD[nScreenWidth * nScreenHeight];
// Call GetDIBits to copy the bits from the device dependent bitmap
// into the buffer allocated above, using the pixel format you
// chose in the BITMAPINFO.
::GetDIBits(hCaptureDC,
hCaptureBitmap,
0, // starting scanline
nScreenHeight, // scanlines to copy
pPixels, // buffer for your copy of the pixels
&bmi, // format you want the data in
DIB_RGB_COLORS); // actual pixels, not palette references
// You can now access the raw pixel data in pPixels. Note that they are
// stored from the bottom scanline to the top, so pPixels[0] is the lower
// left pixel, pPixels[1] is the next pixel to the right,
// pPixels[nScreenWidth] is the first pixel on the second row from the
// bottom, etc.
// Don't forget to free the pixel buffer.
delete [] pPixels;
Rereading your question, it sounds like we may have gotten off on a tangent with the screen capture. If you just want to check some pixels on the screen, you can use GetPixel.
HDC hdcScreen = ::GetDC(NULL);
COLORREF pixel = ::GetPixel(hdcScreen, x, y);
ReleaseDC(NULL, hdcScreen);
if (pixel != CLR_INVALID) {
int red = GetRValue(pixel);
int green = GetGValue(pixel);
int blue = GetBValue(pixel);
...
} else {
// Error, x and y were outside the clipping region.
}
If you're going to read a lot of pixels, then you're better off with a screen capture and then using GetDIBits. Calling GetPixel zillions of times will be slow.
You make a screenshot with BitBlt(). The size of the shot is set with the nWidth and nHeight arguments. The upper left corner is set with the nXSrc and nYSrc arguments.
You can use the code below to read the screen pixels:
HWND desktop = GetDesktopWindow();
HDC desktopHdc = GetDC(desktop);
COLORREF color = GetPixel(desktopHdc, x, y);
HBITMAP is not a pointer or an array, it is a handle that is managed by Windows and has meaning only to Windows. You must ask Windows to copy the pixels somewhere for use.
To get an individual pixel value, you can use GetPixel without even needing a bitmap. This will be slow if you need to access many pixels.
To copy a bitmap to memory you can access, use the GetDIBits function.