I am writing a program to meet the following specifications:
You have a list of integers, initially the list is empty.
You have to process Q operations of three kinds:
add s: Add integer s to your list, note that an integer can exist
more than one time in the list
del s: Delete one copy of integer s from the list, it's guaranteed
that at least one copy of s will exist in the list.
cnt s: Count how many integers a are there in the list such that a
AND s = a , where AND is bitwise AND operator
Additional constraints:
1 ≤ Q ≤ 200000
0 ≤ s < 2 ^ 16
I have two approaches but both time out, as the constraints are quite large.
I used the fact that a AND s = a if and only if s has all the set bits of a, and the other bits can be arbitrarily assigned. So we can iterate over all these numbers and increase their count by one.
For example, if we have the number 10: 1010
Then the numbers 1011,1111,1110 will be such that when anded with 1010, they will give 1010. So we increase the count of 10,11,14 and 15 by 1. And for delete we delete one from their respective counts.
Is there a faster method? Should I use a different data structure?
Let's consider two ways to solve it that are two slow, and then merge them into one solution, that will be guaranteed to finish in milliseconds.
Approach 1 (slow)
Allocate an array v of size 2^16. Every time you add an element, do the following:
void add(int s) {
for (int i = 0; i < (1 << 16); ++ i) if ((s & i) == 0) {
v[s | i] ++;
}
}
(to delete do the same, but decrement instead of incrementing)
Then to answer cnt s you just need to return the value of v[s]. To see why, note that v[s] is incremented exactly once for every number a that is added such that a & s == a (I will leave it is an exercise to figure out why this is the case).
Approach 2 (slow)
Allocate an array v of size 2^16. When you add an element s, just increment v[s]. To query the count, do the following:
int cnt(int s) {
int ret = 0;
for (int i = 0; i < (1 << 16); ++ i) if ((s | i) == s) {
ret += v[s & ~i];
}
return ret;
}
(x & ~y is a number that has all the bits that are set in x that are not set in y)
This is a more straightforward approach, and is very similar to what you do, but is written in a slightly different fashion. You will see why I wrote it this way when we combine the two approaches.
Both these approaches are too slow, because in which of them one operation is constant, and one is O(s), so in the worst case, when the entire input consists of the slow operations, we spend O(Q * s), which is prohibitively slow. Now let's merge the two approaches using meet-in-the-middle to get a faster solution.
Fast approach
We will merge the two approaches in the following way: add will work similarly to the first approach, but instead of considering every number a such that a & s == a, we will only consider numbers, that differ from s only in the lowest 8 bits:
void add(int s) {
for (int i = 0; i < (1 << 8); ++ i) if ((i & s) == 0) {
v[s | i] ++;
}
}
For delete do the same, but instead of incrementing elements, decrement them.
For counts we will do something similar to the second approach, but we will account for the fact that each v[a] is already accumulated for all combinations of the lowest 8 bits, so we only need to iterate over all the combinations of the higher 8 bits:
int cnt(int s) {
int ret = 0;
for (int i = 0; i < (1 << 8); ++ i) if ((s | (i << 8)) == s) {
ret += v[s & ~(i << 8)];
}
return ret;
}
Now both add and cnt work in O(sqrt(s)), so the entire approach is O(Q * sqrt(s)), which for your constraints should be milliseconds.
Pay extra attention to overflows -- you didn't provide the upper bound on s, if it is too high, you might want to replace ints with long longs.
One of the ways to solve it is to break list of queries in blocks of about sqrt(S) queries each. This is a standard approach, usually called sqrt-decomposition.
You have to store separately:
Array A[v]: how much times s is present.
Array R[v]: sum of A[i] for all i supersets of v (i.e. result of cnt(v)).
List W of all changes (add, del operations) within current block of queries.
Note: arrays A and R are valid only for all the changes from the fully processed block of queries. All the changes that happened within the currently processed block of queries are stored in W and are not yet applied to A and R.
Now we process queries block by block, for each block of queries we do:
For each query within block:
add(v): store increment for v into W list.
del(v): store decrement for v into W list.
cnt(v): return R[v] + X(W), where X(W) is total changed calculated by trivial processing of all the changes in the list W.
Apply all the changes from W to array A, clear list W.
Recalculate completely array R from array A.
Note that add and del take O(1) time, and cnt takes O(|W|) = O(sqrt(S)) time. So step 1 takes O(Q sqrt(S)) time in total.
Step 2 takes O(|W|) time, which totals in O(Q) time overall.
The most important part is step 3. We need to implement it in O(S). Given that there are Q / sqrt(S) blocks, this would total in O(Q sqrt(S)) time as wanted.
Unfortunately, recalculating array S can be done in only O(S log S) time. That would mean O(Q sqrt(S) log (S)) time. If we choose block size O(sqrt(S log S)), then overall time is O(Q sqrt(S log S)). No perfect, but interesting nonetheless =)
Given the data structure that you described in one of the comments, you could try the following algorithm (I am giving it in pseudo-code):
count-how-many-integers(integer s) {
sum = 0
for i starting from s and increasing by 1 until s*2 {
if (i AND s) == i {
sum = sum + a[i]
}
}
return sum
}
More sophisticated optimizations should be possible in the inner loop to reduce the number of times the test is performed.
Related
I would like a function that will produce k pseudo-random values from a set of n integers, zero to n-1, without repeating any previous result. k is less than or equal to n. O(n) memory is unacceptable because of the large size of n and the frequency with which I'll need to re-shuffle.
These are the methods I've considered so far:
Array:
Normally if I wanted duplicate-free random values I'd shuffle an array, but that's O(n) memory. n is likely to be too large for that to work.
long nextvalue(void) {
static long array[4000000000];
static int s = 0;
if (s == 0) {
for (int i = 0; i < 4000000000; i++) array[i] = i;
shuffle(array, 4000000000);
}
return array[s++];
}
n-state PRNG:
There are a variety of random number generators that can be designed so as to have a period of n and to visit n unique states over that period. The simplest example would be:
long nextvalue(void) {
static long s = 0;
static const long i = 1009; // assumed co-prime to n
s = (s + i) % n;
return s;
}
The problem with this is that it's not necessarily easy to design a good PRNG on the fly for a given n, and it's unlikely that that PRNG will approximate a fair shuffle if it doesn't have a lot of variable parameters (even harder to design). But maybe there's a good one I don't know about.
m-bit hash:
If the size of the set is a power of two, then it's possible to devise a perfect hash function f() which performs a 1:1 mapping from any value in the range to some other value in the range, where every input produces a unique output. Using this function I could simply maintain a static counter s, and implement a generator as:
long nextvalue(void) {
static long s = 0;
return f(s++);
}
This isn't ideal because the order of the results is determined by f(), rather than random values, so it's subject to all the same problems as above.
NPOT hash:
In principle I can use the same design principles as above to define a version of f() which works in an arbitrary base, or even a composite, that is compatible with the range needed; but that's potentially difficult, and I'm likely to get it wrong. Instead a function can be defined for the next power of two greater than or equal to n, and used in this construction:
long nextvalue(void) {
static long s = 0;
long x = s++;
do { x = f(x); } while (x >= n);
}
But this still have the same problem (unlikely to give a good approximation of a fair shuffle).
Is there a better way to handle this situation? Or perhaps I just need a good function for f() that is highly parameterisable and easy to design to visit exactly n discrete states.
One thing I'm thinking of is a hash-like operation where I contrive to have the first j results perfectly random through carefully designed mapping, and then any results between j and k would simply extrapolate on that pattern (albeit in a predictable way). The value j could then be chosen to find a compromise between a fair shuffle and a tolerable memory footprint.
First of all, it seems unreasonable to discount anything that uses O(n) memory and then discuss a solution that refers to an underlying array. You have an array. Shuffle it. If that doesn't work or isn't fast enough, come back to us with a question about it.
You only need to perform a complete shuffle once. After that, draw from index n, swap that element with an element located randomly before it and increase n, modulo element count. For example, with such a large dataset I'd use something like this.
Prime numbers are an option for hashes, but probably not the same way you think. Using two Mersenne primes (low and high, perhaps 0xefff and 0xefffffff) you should be able to come up with a much more general-purpose hashing algorithm.
size_t hash(unsigned char *value, size_t value_size, size_t low, size_t high) {
size_t x = 0;
while (value_size--) {
x += *value++;
x *= low;
}
return x % high;
}
#define hash(value, value_size, low, high) (hash((void *) value, value_size, low, high))
This should produce something fairly well distributed for all inputs larger than about two octets for example, with the minor troublesome exception for zero byte prefixes. You might want to treat those differently.
So... what I've ended up doing is digging deeper into pre-existing methods to
try to confirm their ability to approximate a fair shuffle.
I take a simple counter, which itself is guaranteed to visit
every in-range value exactly once, and then 'encrypt' it with an n-bit block
cypher. Rather, I round the range up to a power of two, and apply some 1:1
function; then if the result is out of range I repeat the permutation until the
result is in range.
This can be guaranteed to complete eventually because there are only a finite
number of out-of-range values within the power-of-two range, and they cannot
enter into a always-out-of-range cycle because that would imply that something
in the cycle was mapped from two different previous states (one from the
in-range set, and another from the out-of-range set), which would make the
function not bijective.
So all I need to do is devise a parameterisable function which I can tune to an
arbitrary number of bits. Like this one:
uint64_t mix(uint64_t x, uint64_t k) {
const int s0 = BITS * 4 / 5;
const int s1 = BITS / 5 + (k & 1);
const int s2 = BITS * 2 / 5;
k |= 1;
x *= k;
x ^= (x & BITMASK) >> s0;
x ^= (x << s1) & BITMASK;
x ^= (x & BITMASK) >> s2;
x += 0x9e3779b97f4a7c15;
return x & BITMASK;
}
I know it's bijective because I happen to have its inverse function handy:
uint64_t unmix(uint64_t x, uint64_t k) {
const int s0 = BITS * 4 / 5;
const int s1 = BITS / 5 + (k & 1);
const int s2 = BITS * 2 / 5;
k |= 1;
uint64_t kp = k * k;
while ((kp & BITMASK) > 1) {
k *= kp;
kp *= kp;
}
x -= 0x9e3779b97f4a7c15;
x ^= ((x & BITMASK) >> s2) ^ ((x & BITMASK) >> s2 * 2);
x ^= (x << s1) ^ (x << s1 * 2) ^ (x << s1 * 3) ^ (x << s1 * 4) ^ (x << s1 * 5);
x ^= (x & BITMASK) >> s0;
x *= k;
return x & BITMASK;
}
This allows me to define a simple parameterisable PRNG like this:
uint64_t key[ROUNDS];
uint64_t seed = 0;
uint64_t rand_no_rep(void) {
uint64_t x = seed++;
do {
for (int i = 0; i < ROUNDS; i++) x = mix(x, key[i]);
} while (x >= RANGE);
return x;
}
Initialise seed and key to random values and you're good to go.
Using the inverse function to lets me determine what seed must be to force
rand_no_rep() to produce a given output; making it much easier to test.
So far I've checked the cases where constant a, it is followed by constant
b. For ROUNDS==1 pairs collide on exactly 50% of the keys (and each
pair of collisions is with a different pair of a and b; they don't all converge on 0, 1 or whatever). That is, for
various k, a specific a-followed-by-b cases occurs for more than one k
(this must happen at least one). Subsequent values values do not collide in
that case, so different keys aren't falling into the same cycle at different
positions. Every k gives a unique cycle.
50% collisions comes from 25% being not unique when they're added to the list (count itself, and count the guy it ran into). That might sound bad but it's actually lower than birthday paradox logic would suggest. Selecting randomly, the percentage of new entries that fail to be unique looks to converge between 36% and 37%. Being "better than random" is obviously worse than random, as far as randomness goes, but that's why they're called pseudo-random numbers.
Extending that to ROUNDS==2, we want to make sure that a second round doesn't
cancel out or simply repeat the effects of the first.
This is important because it would mean that multiple rounds are a waste of
time and memory, and that the function cannot be paramaterised to any
substantial degree. It could happen trivially if mix() contained all linear
operations (say, multiply and add, mod RANGE). In that case all of the
parameters could be multiplied/added together to produce a single parameter for
a single round that would have the same effect. That would be disappointing,
as it would reduce the number of attainable permutations to the size of just
that one parameter, and if the set is as small as that then more work would be
needed to ensure that it's a good, representative set.
So what we want to see from two rounds is a large set of outcomes that could
never be achieved by one round. One way to demonstrate this is to look for the
original b-follows-a cases with an additional parameter c, where we want
to see every possible c following a and b.
We know from the one-round testing that in 50% of cases there is only one c
that can follow a and b because there is only one k that places b
immediately after a. We also know that 25% of the pairs of a and b were
unreachable (being the gap left behind by half the pairs that went into
collisions rather than new unique values), and the last 25% appear for two
different k.
The result that I get is that given a free choice of both keys, it's possible
to find about five eights of the values of c following a given a and b.
About a quarter of the a/b pairs are unreachable (it's a less predictable,
now, because of the potential intermediate mappings into or out of the
duplicate or unreachable cases) and a quarter have a, b, and c appear
together in two sequences (which diverge afterwards).
I think there's a lot to be inferred from the difference between one round and
two, but I could be wrong about that and I need to double-check. Further
testing gets harder; or at least slower unless I think more carefully about how
I'm going to do it.
I haven't yet demonstrated that amongst the set of permutations it can produce, that they're all equally likely; but this is normally not guaranteed for any other PRNG either.
It's fairly slow for a PRNG, but it would fit SIMD trivially.
Suppose you are given an n sized array A and a integer k
Now you have to follow this function:
long long sum(int k)
{
long long sum=0;
for(int i=0;i<n;i++){
sum+=min(A[i],k);
}
return sum;
}
what is the most efficient way to find sum?
EDIT: if I am given m(<=100000) queries, and given a different k every time, it becomes very time consuming.
If set of queries changes with each k then you can't do better than in O(n). Your only options for optimizing is to use multiple threads (each thread sums some region of array) or at least ensure that your loop is properly vectorized by compiler (or write vectorized version manually using intrinsics).
But if set of queries is fixed and only k is changed, then you may do in O(log n) by using following optimization.
Preprocess array. This is done only once for all ks:
Sort elements
Make another array of the same length which contains partial sums
For example:
inputArray: 5 1 3 8 7
sortedArray: 1 3 5 7 8
partialSums: 1 4 9 16 24
Now, when new k is given, you need to perform following steps:
Make binary search for given k in sortedArray -- returns index of maximal element <= k
Result is partialSums[i] + (partialSums.length - i) * k
You can do way better than that if you can sort the array A[i] and have a secondary array prepared once.
The idea is:
Count how many items are less than k, and just compute the equivalent sum by the formula: count*k
Prepare an helper array which will give you the sum of the items superior to k directly
Preparation
Step 1: sort the array
std::sort(begin(A), end(A));
Step 2: prepare an helper array
std::vector<long long> p_sums(A.size());
std::partial_sum(rbegin(A), rend(A), begin(p_sums));
Query
long long query(int k) {
// first skip all items whose value is below k strictly
auto it = std::lower_bound(begin(A), end(A), k);
// compute the distance (number of items skipped)
auto index = std::distance(begin(A), it);
// do the sum
long long result = index*k + p_sums[index];
return result;
}
The complexity of the query is: O(log(N)) where N is the length of the array A.
The complexity of the preparation is: O(N*log(N)). We could go down to O(N) with a radix sort but I don't think it is useful in your case.
References
std::sort()
std::partial_sum()
std::lower_bound()
What you do seems absolutely fine. Unless this is really absolutely time critical (that is customers complain that your app is too slow and you measured it, and this function is the problem, in which case you can try some non-portable vector instructions, for example).
Often you can do things more efficiently by looking at them from a higher level. For example, if I write
for (n = 0; n < 1000000; ++n)
printf ("%lld\n", sum (100));
then this will take an awful long time (half a trillion additions) and can be done a lot quicker. Same if you change one element of the array A at a time and recalculate sum each time.
Suppose there are x elements of array A which are no larger than k and set B contains those elements which are larger than k and belongs to A.
Then the result of function sum(k) equals
k * x + sum_b
,where sum_b is the sum of elements belonging to B.
You can firstly sort the the array A, and calculate the array pre_A, where
pre_A[i] = pre_A[i - 1] + A[i] (i > 0),
or 0 (i = 0);
Then for each query k, use binary search on A to find the largest element u which is no larger than k. Assume the index of u is index_u, then sum(k) equals
k * index_u + pre_A[n] - pre_A[index_u]
. The time complex for each query is log(n).
In case array A may be dynamically changed, you can use BST to handle it.
After watching some Terence Tao videos, I wanted to try implementing algorithms into c++ code to find all the prime numbers up to a number n. In my first version, where I simply had every integer from 2 to n tested to see if they were divisible by anything from 2 to sqrt(n), I got the program to find the primes between 1-10,000,000 in ~52 seconds.
Attempting to optimize the program, and implementing what I now know to be the Sieve of Eratosthenes, I assumed the task would be done much faster than 51 seconds, but sadly, that wasn't the case. Even going up to 1,000,000 took a considerable amount of time (didn't time it, though)
#include <iostream>
#include <vector>
using namespace std;
void main()
{
vector<int> tosieve = {};
for (int i = 2; i < 1000001; i++)
{
tosieve.push_back(i);
}
for (int j = 0; j < tosieve.size(); j++)
{
for (int k = j + 1; k < tosieve.size(); k++)
{
if (tosieve[k] % tosieve[j] == 0)
{
tosieve.erase(tosieve.begin() + k);
}
}
}
//for (int f = 0; f < tosieve.size(); f++)
//{
// cout << (tosieve[f]) << endl;
//}
cout << (tosieve.size()) << endl;
system("pause");
}
Is it the repeated referencing of the vectors or something? Why is this so slow? Even if I'm completely overlooking something (could be, complete beginner at this :I) I would think that finding the primes between 2 and 1,000,000 with this horrible inefficient method would be faster than my original way of finding them from 2 to 10,000,000.
Hope someone has a clear answer to this - hopefully I can use whatever knowledge is gleaned in the future when optimizing programs using a lot of recursion.
The problem is that 'erase' moves every element in the vector down one, meaning it is an O(n) operation.
There are three alternative choices:
1) Just mark deleted elements as 'empty' (make them 0, for example). This will mean future passes have to pass over those empty positions, but that isn't that expensive.
2) Make a new vector, and push_back new values into there.
3) Use std::remove_if: This will move the elements down, but do it in a single pass so will be more efficient. If you use std::remove_if, then you will have to remember it doesn't resize the vector itself.
Most of vector operations, including erase() have a O(n) linear time complexity.
Since you have two loops of size 10^6, and a vector of size 10^6, your algorithm executes up to 10^18 operations.
Qubic algorithms for such a big N will take a huge amount of time.
N = 10^6 is even big enough for quadratic algorithms.
Please, read carefully about Sieve of Eratosthenes. The fact that both full search and Sieve of Eratosthenes algorithms took the same time, means that you have done the second one wrong.
I see two performanse issues here:
First of all, push_back() will have to reallocate the dynamic memory block once in a while. Use reserve():
vector<int> tosieve = {};
tosieve.resreve(1000001);
for (int i = 2; i < 1000001; i++)
{
tosieve.push_back(i);
}
Second erase() has to move all Elements behind the one you try to remove. You set the elements to 0 instead and do a run over the vector in the end (untested code):
for (auto& x : tosieve) {
for (auto y = tosieve.begin(); *y < x; ++y) // this check works only in
// the case of an ordered vector
if (y != 0 && x % y == 0) x = 0;
}
{ // this block will make sure, that sieved will be released afterwards
auto sieved = vector<int>{};
for(auto x : tosieve)
sieved.push_back(x);
swap(tosieve, sieved);
} // the large memory block is released now, just keep the sieved elements.
consider to use standard algorithms instead of hand written loops. They help you to state your intent. In this case I see std::transform() for the outer loop of the sieve, std::any_of() for the inner loop, std::generate_n() for filling tosieve at the beginning and std::copy_if() for filling sieved (untested code):
vector<int> tosieve = {};
tosieve.resreve(1000001);
generate_n(back_inserter(tosieve), 1000001, []() -> int {
static int i = 2; return i++;
});
transform(begin(tosieve), end(tosieve), begin(tosieve), [](int i) -> int {
return any_of(begin(tosieve), begin(tosieve) + i - 2,
[&i](int j) -> bool {
return j != 0 && i % j == 0;
}) ? 0 : i;
});
swap(tosieve, [&tosieve]() -> vector<int> {
auto sieved = vector<int>{};
copy_if(begin(tosieve), end(tosieve), back_inserter(sieved),
[](int i) -> bool { return i != 0; });
return sieved;
});
EDIT:
Yet another way to get that done:
vector<int> tosieve = {};
tosieve.resreve(1000001);
generate_n(back_inserter(tosieve), 1000001, []() -> int {
static int i = 2; return i++;
});
swap(tosieve, [&tosieve]() -> vector<int> {
auto sieved = vector<int>{};
copy_if(begin(tosieve), end(tosieve), back_inserter(sieved),
[](int i) -> bool {
return !any_of(begin(tosieve), begin(tosieve) + i - 2,
[&i](int j) -> bool {
return i % j == 0;
});
});
return sieved;
});
Now instead of marking elements, we don't want to copy afterwards, but just directly copy only the elements, we want to copy. This is not only faster than the above suggestion, but also better states the intent.
Very interesting task you have. Thanks!
With pleasure I implemented from scratch my own versions of solving it.
I created 3 separate (independent) functions, all based on Sieve of Eratosthenes. These 3 versions are different in their complexity and speed.
Just a quick note, my simplest (slowest) version finds all primes below your desired limit of 10'000'000 within just 0.025 sec (i.e. 25 milli-seconds).
I also tested all 3 versions to find primes below 2^32 (4'294'967'296), which is solved by "simple" version within 47 seconds, by "intermediate" version within 30 seconds, by "advanced" within 12 seconds. So within just 12 seconds it finds all primes below 4 Billion (there are 203'280'221 such primes below 2^32, see OEIS sequence)!!!
For simplicity I will describe in details only Simple version out of 3. Here's code:
template <typename T>
std::vector<T> GenPrimes_SieveOfEratosthenes(size_t end) {
// https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
if (end <= 2)
return {};
size_t const cnt = end >> 1;
std::vector<u8> composites((cnt + 7) / 8);
auto Get = [&](size_t i){ return bool((composites[i / 8] >> (i % 8)) & 1); };
auto Set = [&](size_t i){ composites[i / 8] |= u8(1) << (i % 8); };
std::vector<T> primes = {2};
size_t i = 0;
for (i = 1; i < cnt; ++i) {
if (Get(i))
continue;
size_t const p = 2 * i + 1, start = (p * p) >> 1;
primes.push_back(p);
if (start >= cnt)
break;
for (size_t j = start; j < cnt; j += p)
Set(j);
}
for (i = i + 1; i < cnt; ++i)
if (!Get(i))
primes.push_back(2 * i + 1);
return primes;
}
This code implements simplest but fast algorithm of finding primes, called Sieve of Eratosthenes. As a small optimization of speed and memory, I search only over odd numbers. This odd numbers optimization gives me ability to store 2x times less memory and do 2x times less steps, hence improves both speed and memory consumption exactly 2 times.
Algorithm is simple, we allocate array of bits, this array at position K has bit 1 if K is composite, or has 0 if K is probably prime. At the end all 0 bits in array signify Definite primes (that are for sure primes). Also due to odd numbers optimization this bit-array stores only odd numbers, so K-th bit is actually a number 2 * K + 1.
Then left to right we go over this array of bits and if we meet 0 bit at position K then it means we found a prime number P = 2 * K + 1 and now starting from position (P * P) / 2 we mark every P-th bit with 1. It means we mark all numbers bigger than P*P that are composite, because they are divisible by P.
We do this procedure only until P * P becomes greater or equal to our limit End (we're finding all primes < End). This limit guarantees that after reaching it ALL zero bits inside array signify prime numbers.
Second version of code does only one optimization to this Simple version, it makes all multi-core (multi-threaded). But this only optimization makes code much bigger and more complex. Basically it slices whole range of bits into all cores, so that they write bits to memory in parallel.
I'll explain only my third Advanced version, it is most complex of 3 versions. It does not only multi-threaded optimization, but also so-called Primorial optimization.
What is Primorial, it is a product of first smallest primes, for example I take primorial 2 * 3 * 5 * 7 = 210.
We can see that any primorial splits infinite range of integers into wheels by modulus of this primorial. For example primorial 210 splits into ranges [0; 210), [210; 2210), [2210; 3*210), etc.
Now it is easy to mathematically prove that inside All ranges of primorial we can mark same positions of numbers as complex, exactly we can mark all numbers that are multiple of 2 or 3 or 5 or 7 as composite.
We can see that out of 210 remainders there are 162 remainders that are for sure composite, and only 48 remainders are probably prime.
Hence it is enough for us to check primality of only 48/210=22.8% of whole search space. This reduction of search space makes task more than 4x times faster, and 4x times less memory consuming.
One can see that my first Simple version in fact due to odd-only optimization was actually using Primorial equal to 2 optimization. Yes, if we take primorial 2 instead of primorial 210, then we gain exactly first version (Simple) algorithm.
All of my 3 versions are tested for correctness and speed. Although still some tiny bugs can remain. Note. Yet it is recommended not to use my code straight away in production, unless it is tested thoroughly.
All 3 versions are tested for correctness by re-using each other answers. I thoroughly test correctness by feeding all limits (end value) from 0 to 2^18. It takes some time to do this.
See main() function to figure out how to use my functions.
Try it online!
SOURCE CODE GOES HERE. Due to StackOverflow limit of 30K symbols per post, I can't inline source code here, as it is almost 30K in size and together with English post above it takes more than 30K. So I'm providing source code on separate Github Gist server, link below. Note that Try it online! link above also contains full source code, but I reduced search limit of 2^32 to smaller one due to GodBolt limit of running time to 3 seconds.
Github Gist code
Output:
10M time 'Simple' 0.024 sec
Time 2^32 'Simple' 46.924 sec, number of primes 203280221
Time 2^32 'Intermediate' 30.999 sec
Time 2^32 'Advanced' 11.359 sec
All checked till 0
All checked till 5000
All checked till 10000
All checked till 15000
All checked till 20000
All checked till 25000
I have an array of given size. I want to traverse it in pseudorandom order, keeping array intact and visiting each element once. It will be best if current state can be stored in a few integers.
I know you can't have full randomness without storing full array, but I don't need the order to be really random. I need it to be perceived as random by user. The solution should use sub-linear space.
One possible suggestion - using large prime number - is given here. The problem with this solution is that there is an obvious fixed step (taken module array size). I would prefer a solution which is not so obviously non-random. Is there a better solution?
How about this algorithm?
To pseudo-pseudo randomly traverse an array of size n.
Create a small array of size k
Use the large prime number method to fill the small array, i = 0
Randomly remove a position using a RNG from the small array, i += 1
if i < n - k then add a new position using the large prime number method
if i < n goto 3.
the higher k is the more randomness you get. This approach will allow you to delay generating numbers from the prime number method.
A similar approach can be done to generate a number earlier than expected in the sequence by creating another array, "skip-list". Randomly pick items later in the sequence, use them to traverse the next position, and then add them to the skip-list. When they naturally arrive they are searched for in the skip-list and suppressed and then removed from the skip-list at which point you can randomly add another item to the skip-list.
The idea of a random generator that simulates a shuffle is good if you can get one whose maximum period you can control.
A Linear Congruential Generator calculates a random number with the formula:
x[i + 1] = (a * x[i] + c) % m;
The maximum period is m and it is achieved when the following properties hold:
The parameters c and m are relatively prime.
For every prime number r dividing m, a - 1 is a multiple of r.
If m is a multiple of 4 then also a - 1 is multiple of 4.
My first darft involved making m the next multiple of 4 after the array length and then finding suitable a and c values. This was (a) a lot of work and (b) yielded very obvious results sometimes.
I've rethought this approach. We can make m the smallest power of two that the array length will fit in. The only prime factor of m is then 2, which will make every odd number relatively prime to it. With the exception of 1 and 2, m will be divisible by 4, which means that we must make a - 1 a multiple of 4.
Having a greater m than the array length means that we must discard all values that are illegal array indices. This will happen at most every other turn and should be negligible.
The following code yields pseudo random numbers with a period of exaclty m. I've avoided trivial values for a and c and on my (not too numerous) spot cheks, the results looked okay. At least there was no obvious cycling pattern.
So:
class RandomIndexer
{
public:
RandomIndexer(size_t length) : len(length)
{
m = 8;
while (m < length) m <<= 1;
c = m / 6 + uniform(5 * m / 6);
c |= 1;
a = m / 12 * uniform(m / 6);
a = 4*a + 1;
x = uniform(m);
}
size_t next()
{
do { x = (a*x + c) % m; } while (x >= len);
return x;
}
private:
static size_t uniform(size_t m)
{
double p = std::rand() / (1.0 + RAND_MAX);
return static_cast<int>(m * p);
}
size_t len;
size_t x;
size_t a;
size_t c;
size_t m;
};
You can then use the generator like this:
std::vector<int> list;
for (size_t i = 0; i < 3; i++) list.push_back(i);
RandomIndexer ix(list.size());
for (size_t i = 0; i < list.size(); i++) {
std::cout << list[ix.next()]<< std::endl;
}
I am aware that this still isn't a great random number generator, but it is reasonably fast, doesn't require a copy of the array and seems to work okay.
If the approach of picking a and c randomly yields bad results, it might be a good idea to restrict the generator to some powers of two and to hard-code literature values that have proven to be good.
As pointed out by others, you can create a sort of "flight plan" upfront by shuffling an array of array indices and then follow it. This violates the "it will be best if current state can be stored in a few integers" constraint but does it really matter? Are there tight performance constraints? After all, I believe that if you don't accept repetitions, than you need to store the items you already visited somewhere or somehow.
Alternatively, you can opt for an intrusive solution and store a bool inside each element of the array, telling you whether the element was already selected or not. This can be done in an almost clean way by employing inheritance (multiple as needed).
Many problems come with this solution, e.g. thread safety, and of course it violates the "keep the array intact" constraint.
Quadratic residues which you have mentioned ("using a large prime") are well-known, will work, and guarantee iterating each and every element exactly once (if that is required, but it seems that's not strictly the case?). Unluckily they are not "very random looking", and there are a few other requirements to the modulo in addition to being prime for it to work.
There is a page on Jeff Preshing's site which describes the technique in detail and suggests to feed the output of the residue generator into the generator again with a fixed offset.
However, since you said that you merely need "perceived as random by user", it seems that you might be able to do with feeding a hash function (say, cityhash or siphash) with consecutive integers. The output will be a "random" integer, and at least so far there will be a strict 1:1 mapping (since there are a lot more possible hash values than there are inputs).
Now the problem is that your array is most likely not that large, so you need to somehow reduce the range of these generated indices without generating duplicates (which is tough).
The obvious solution (taking the modulo) will not work, as it pretty much guarantees that you get a lot of duplicates.
Using a bitmask to limit the range to the next greater power of two should work without introducing bias, and discarding indices that are out of bounds (generating a new index) should work as well. Note that this needs non-deterministic time -- but the combination of these two should work reasonably well (a couple of tries at most) on the average.
Otherwise, the only solution that "really works" is shuffling an array of indices as pointed out by Kamil Kilolajczyk (though you don't want that).
Here is a java solution, which can be easily converted to C++ and similar to M Oehm's solution above, albeit with a different way of choosing LCG parameters.
import java.util.Enumeration;
import java.util.Random;
public class RandomPermuteIterator implements Enumeration<Long> {
int c = 1013904223, a = 1664525;
long seed, N, m, next;
boolean hasNext = true;
public RandomPermuteIterator(long N) throws Exception {
if (N <= 0 || N > Math.pow(2, 62)) throw new Exception("Unsupported size: " + N);
this.N = N;
m = (long) Math.pow(2, Math.ceil(Math.log(N) / Math.log(2)));
next = seed = new Random().nextInt((int) Math.min(N, Integer.MAX_VALUE));
}
public static void main(String[] args) throws Exception {
RandomPermuteIterator r = new RandomPermuteIterator(100);
while (r.hasMoreElements()) System.out.print(r.nextElement() + " ");
//output:50 52 3 6 45 40 26 49 92 11 80 2 4 19 86 61 65 44 27 62 5 32 82 9 84 35 38 77 72 7 ...
}
#Override
public boolean hasMoreElements() {
return hasNext;
}
#Override
public Long nextElement() {
next = (a * next + c) % m;
while (next >= N) next = (a * next + c) % m;
if (next == seed) hasNext = false;
return next;
}
}
maybe you could use this one: http://www.cplusplus.com/reference/algorithm/random_shuffle/ ?
I use C++ and CUDA/C and want to write code for a specific problem and I ran into a quite tricky reduction problem.
My experience in parallel programming isn't negligible but quite limited and I cannot totally forsee the specificity of this problem.
I doubt there is a convenient or even "easy" way to handle the problems I am facing but perhaps I am wrong.
If there are any resources (i.e. articles, books, web-links, ...) or key-words covering this or similar problems, please let me know.
I tried to generalize the whole case as good as possible and keep it abstract instead of posting too much code.
The Layout ...
I have a system of N inital elements and N result elements. (I'll use N=8 for example but N can be any integral value greater than three.)
static size_t const N = 8;
double init_values[N], result[N];
I need to calculate almost every (not all i'm afraid) unique permutation of the init-values without self-interference.
This means calculation f(init_values[0],init_values[1]), f(init_values[0],init_values[2]), ..., f(init_values[0],init_values[N-1]), f(init_values[1],init_values[2]), ..., f(init_values[1],init_values[N-1]), ... and so on.
This is in fact a virtual triangular matrix which has the shape seen in the following illustration.
P 0 1 2 3 4 5 6 7
|---------------------------------------
0| x
|
1| 0 x
|
2| 1 2 x
|
3| 3 4 5 x
|
4| 6 7 8 9 x
|
5| 10 11 12 13 14 x
|
6| 15 16 17 18 19 20 x
|
7| 21 22 23 24 25 26 27 x
Each element is a function of the respective column and row elements in init_values.
P[i] (= P[row(i)][col(i]) = f(init_values[col(i)], init_values[row(i)])
i.e.
P[11] (= P[5][1]) = f(init_values[1], init_values[5])
There are (N*N-N)/2 = 28 possible, unique combinations (Note: P[1][5]==P[5][1], so we only have a lower (or upper) triangular matrix) using the example N = 8.
The basic problem
The result array is computed from P as a sum of the row elements minus the sum of the respective column elements.
For example the result at position 3 will be calculated as a sum of row 3 minus the sum of column three.
result[3] = (P[3]+P[4]+P[5]) - (P[9]+P[13]+P[18]+P[24])
result[3] = sum_elements_row(3) - sum_elements_column(3)
I tried to illustrate it in a picture with N = 4.
As a consequence the following is true:
N-1 operations (potential concurrent writes) will be performed on each result[i]
result[i] will have N-(i+1) writes from subtractions and i additions
Outgoing from each P[i][j] there will be a subtraction to r[j] and a addition to r[i]
This is where the main problems come into place:
Using one thread to compute each P and updating the result directly will result in multiple kernels trying to write to the same result location (N-1 threads each).
Storing the whole matrix P for a subsequent reduction step on the other hand is very expensive in terms of memory consumption and therefore impossible for very large systems.
The idea of having a unqiue, shared result vector for each thread-block is impossible, too.
(N of 50k makes 2.5 billion P elements and therefore [assuming a maximum number of 1024 threads per block] a minimal number of 2.4 million blocks consuming over 900GiB of memory if each block has its own result array with 50k double elements.)
I think I could handle reduction for a more static behaviour but this problem is rather dynamic in terms of potential concurrent memory write-access.
(Or is it possible to handle it by some "basic" type of reduction?)
Adding some complications ...
Unfortunatelly, depending on (arbitrary user) input, which is independant of the initial values, some elements of P need to be skipped.
Let's assume we need to skip permutations P[6], P[14] and P[18]. Therefore we have 24 combinations left, which need to be calculated.
How to tell the kernel which values need to be skipped?
I came up with three approaches, each having notable downsides if N is very large (like several ten thousands of elements).
1. Store all combinations ...
... with their respective row and column index struct combo { size_t row,col; };, that need to be calculated in a vector<combo> and operate on this vector. (used by the current implementation)
std::vector<combo> elements;
// somehow fill
size_t const M = elements.size();
for (size_t i=0; i<M; ++i)
{
// do the necessary computations using elements[i].row and elements[i].col
}
This solution consumes is consuming lots of memory since only "several" (may even be ten thousands of elements but that's not much in contrast to several billion in total) but it avoids
indexation computations
finding of removed elements
for each element of P which is the downside of the second approach.
2. Operate on all elements of P and find removed elements
If I want to operate on each element of P and avoid nested loops (which i couldn't reproduce very well in cuda) I need to do something like this:
size_t M = (N*N-N)/2;
for (size_t i=0; i<M; ++i)
{
// calculate row indices from `i`
double tmp = sqrt(8.0*double(i+1))/2.0 + 0.5;
double row_d = floor(tmp);
size_t current_row = size_t(row_d);
size_t current_col = size_t(floor(row_d*(ict-row_d)-0.5));
// check whether the current combo of row and col is not to be removed
if (!removes[current_row].exists(current_col))
{
// do the necessary computations using current_row and current_col
}
}
The vector removes is very small in contrast to the elements vector in the first example but the additional computations to obtain current_row, current_col and the if-branch are very inefficient.
(Remember we're still talking about billions of evaluations.)
3. Operate on all elements of P and remove elements afterwards
Another idea I had was to calculate all valid and invalid combinations independently.
But unfortunately, due to summation errors the following statement is true:
calc_non_skipped() != calc_all() - calc_skipped()
Is there a convenient, known, high performance way to get the desired results from the initial values?
I know that this question is rather complicated and perhaps limited in relevance. Nevertheless, I hope some illuminative answers will help me to solve my problems.
The current implementation
Currently this is implemented as CPU Code with OpenMP.
I first set up a vector of the above mentioned combos storing every P that needs to be computed and pass it to a parallel for loop.
Each thread is provided with a private result vector and a critical section at the end of the parallel region is used for a proper summation.
First, I was puzzled for a moment why (N**2 - N)/2 yielded 27 for N=7 ... but for indices 0-7, N=8, and there are 28 elements in P. Shouldn't try to answer questions like this so late in the day. :-)
But on to a potential solution: Do you need to keep the array P for any other purpose? If not, I think you can get the result you want with just two intermediate arrays, each of length N: one for the sum of the rows and one for the sum of the columns.
Here's a quick-and-dirty example of what I think you're trying to do (subroutine direct_approach()) and how to achieve the same result using the intermediate arrays (subroutine refined_approach()):
#include <cstdlib>
#include <cstdio>
const int N = 7;
const float input_values[N] = { 3.0F, 5.0F, 7.0F, 11.0F, 13.0F, 17.0F, 23.0F };
float P[N][N]; // Yes, I'm wasting half the array. This way I don't have to fuss with mapping the indices.
float result1[N] = { 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F };
float result2[N] = { 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F };
float f(float arg1, float arg2)
{
// Arbitrary computation
return (arg1 * arg2);
}
float compute_result(int index)
{
float row_sum = 0.0F;
float col_sum = 0.0F;
int row;
int col;
// Compute the row sum
for (col = (index + 1); col < N; col++)
{
row_sum += P[index][col];
}
// Compute the column sum
for (row = 0; row < index; row++)
{
col_sum += P[row][index];
}
return (row_sum - col_sum);
}
void direct_approach()
{
int row;
int col;
for (row = 0; row < N; row++)
{
for (col = (row + 1); col < N; col++)
{
P[row][col] = f(input_values[row], input_values[col]);
}
}
int index;
for (index = 0; index < N; index++)
{
result1[index] = compute_result(index);
}
}
void refined_approach()
{
float row_sums[N];
float col_sums[N];
int index;
// Initialize intermediate arrays
for (index = 0; index < N; index++)
{
row_sums[index] = 0.0F;
col_sums[index] = 0.0F;
}
// Compute the row and column sums
// This can be parallelized by computing row and column sums
// independently, instead of in nested loops.
int row;
int col;
for (row = 0; row < N; row++)
{
for (col = (row + 1); col < N; col++)
{
float computed = f(input_values[row], input_values[col]);
row_sums[row] += computed;
col_sums[col] += computed;
}
}
// Compute the result
for (index = 0; index < N; index++)
{
result2[index] = row_sums[index] - col_sums[index];
}
}
void print_result(int n, float * result)
{
int index;
for (index = 0; index < n; index++)
{
printf(" [%d]=%f\n", index, result[index]);
}
}
int main(int argc, char * * argv)
{
printf("Data reduction test\n");
direct_approach();
printf("Result 1:\n");
print_result(N, result1);
refined_approach();
printf("Result 2:\n");
print_result(N, result2);
return (0);
}
Parallelizing the computation is not so easy, since each intermediate value is a function of most of the inputs. You can compute the sums individually, but that would mean performing f(...) multiple times. The best suggestion I can think of for very large values of N is to use more intermediate arrays, computing subsets of the results, then summing the partial arrays to yield the final sums. I'd have to think about that one when I'm not so tired.
To cope with the skip issue: If it's a simple matter of "don't use input values x, y, and z", you can store x, y, and z in a do_not_use array and check for those values when looping to compute the sums. If the values to be skipped are some function of row and column, you can store those as pairs and check for the pairs.
Hope this gives you ideas for your solution!
Update, now that I'm awake: Dealing with "skip" depends a lot on what data needs to be skipped. Another possibility for the first case - "don't use input values x, y, and z" - a much faster solution for large data sets would be to add a level of indirection: create yet another array, this one of integer indices, and store only the indices of the good inputs. F'r instance, if invalid data is in inputs 2 and 5, the valid array would be:
int valid_indices[] = { 0, 1, 3, 4, 6 };
Interate over the array valid_indices, and use those indices to retrieve the data from your input array to compute the result. On the other paw, if the values to skip depend on both indices of the P array, I don't see how you can avoid some kind of lookup.
Back to parallelizing - No matter what, you'll be dealing with (N**2 - N)/2 computations
of f(). One possibility is to just accept that there will be contention for the sum
arrays, which would not be a big issue if computing f() takes substantially longer than
the two additions. When you get to very large numbers of parallel paths, contention will
again be an issue, but there should be a "sweet spot" balancing the number of parallel
paths against the time required to compute f().
If contention is still an issue, you can partition the problem several ways. One way is
to compute a row or column at a time: for a row at a time, each column sum can be
computed independently and a running total can be kept for each row sum.
Another approach would be to divide the data space and, thus, the computation into
subsets, where each subset has its own row and column sum arrays. After each block
is computed, the independent arrays can then be summed to produce the values you need
to compute the result.
This probably will be one of those naive and useless answers, but it also might help. Feel free to tell me that I'm utterly and completely wrong and I have misunderstood the whole affair.
So... here we go!
The Basic Problem
It seems to me that you can define you result function a little differently and it will lift at least some contention off your intermediate values. Let's suppose that your P matrix is lower-triangular. If you (virtually) fill the upper triangle with the negative of the lower values (and the main diagonal with all zeros,) then you can redefine each element of your result as the sum of a single row: (shown here for N=4, and where -i means the negative of the value in the cell marked as i)
P 0 1 2 3
|--------------------
0| x -0 -1 -3
|
1| 0 x -2 -4
|
2| 1 2 x -5
|
3| 3 4 5 x
If you launch independent threads (executing the same kernel) to calculate the sum of each row of this matrix, each thread will write a single result element. It seems that your problem size is large enough to saturate your hardware threads and keep them busy.
The caveat, of course, is that you'll be calculating each f(x, y) twice. I don't know how expensive that is, or how much the memory contention was costing you before, so I cannot judge whether this is a worthwhile trade-off to do or not. But unless f was really really expensive, I think it might be.
Skipping Values
You mention that you might have tens of thousands elements of the P matrix that you need to ignore in your calculations (effectively skip them.)
To work with the scheme I've proposed above, I believe you should store the skipped elements as (row, col) pairs, and you have to add the transposed of each coordinate pair too (so you'll have twice the number of skipped values.) So your example skip list of P[6], P[14] and P[18] becomes P(4,0), P(5,4), P(6,3) which then becomes P(4,0), P(5,4), P(6,3), P(0,4), P(4,5), P(3,6).
Then you sort this list, first based on row and then column. This makes our list to be P(0,4), P(3,6), P(4,0), P(4,5), P(5,4), P(6,3).
If each row of your virtual P matrix is processed by one thread (or a single instance of your kernel or whatever,) you can pass it the values it needs to skip. Personally, I would store all these in a big 1D array and just pass in the first and last index that each thread would need to look at (I would also not store the row indices in the final array that I passed in, since it can be implicitly inferred, but I think that's obvious.) In the example above, for N = 8, the begin and end pairs passed to each thread will be: (note that the end is one past the final value needed to be processed, just like STL, so an empty list is denoted by begin == end)
Thread 0: 0..1
Thread 1: 1..1 (or 0..0 or whatever)
Thread 2: 1..1
Thread 3: 1..2
Thread 4: 2..4
Thread 5: 4..5
Thread 6: 5..6
Thread 7: 6..6
Now, each thread goes on to calculate and sum all the intermediate values in a row. While it is stepping through the indices of columns, it is also stepping through this list of skipped values and skipping any column number that comes up in the list. This is obviously an efficient and simple operation (since the list is sorted by column too. It's like merging.)
Pseudo-Implementation
I don't know CUDA, but I have some experience working with OpenCL, and I imagine the interfaces are similar (since the hardware they are targeting are the same.) Here's an implementation of the kernel that does the processing for a row (i.e. calculates one entry of result) in pseudo-C++:
double calc_one_result (
unsigned my_id, unsigned N, double const init_values [],
unsigned skip_indices [], unsigned skip_begin, unsigned skip_end
)
{
double res = 0;
for (unsigned col = 0; col < my_id; ++col)
// "f" seems to take init_values[column] as its first arg
res += f (init_values[col], init_values[my_id]);
for (unsigned row = my_id + 1; row < N; ++row)
res -= f (init_values[my_id], init_values[row]);
// At this point, "res" is holding "result[my_id]",
// including the values that should have been skipped
unsigned i = skip_begin;
// The second condition is to check whether we have reached the
// middle of the virtual matrix or not
for (; i < skip_end && skip_indices[i] < my_id; ++i)
{
unsigned col = skip_indices[i];
res -= f (init_values[col], init_values[my_id]);
}
for (; i < skip_end; ++i)
{
unsigned row = skip_indices[i];
res += f (init_values[my_id], init_values[row]);
}
return res;
}
Note the following:
The semantics of init_values and function f are as described by the question.
This function calculates one entry in the result array; specifically, it calculates result[my_id], so you should launch N instances of this.
The only shared variable it writes to is result[my_id]. Well, the above function doesn't write to anything, but if you translate it to CUDA, I imagine you'd have to write to that at the end. However, no one else writes to that particular element of result, so this write will not cause any contention of data race.
The two input arrays, init_values and skipped_indices are shared among all the running instances of this function.
All accesses to data are linear and sequential, except for the skipped values, which I believe is unavoidable.
skipped_indices contain a list of indices that should be skipped in each row. It's contents and structure are as described above, with one small optimization. Since there was no need, I have removed the row numbers and left only the columns. The row number will be passed into the function as my_id anyways and the slice of the skipped_indices array that should be used by each invocation is determined using skip_begin and skip_end.
For the example above, the array that is passed into all invocations of calc_one_result will look like this:[4, 6, 0, 5, 4, 3].
As you can see, apart from the loops, the only conditional branch in this code is skip_indices[i] < my_id in the third for-loop. Although I believe this is innocuous and totally predictable, even this branch can be easily avoided in the code. We just need to pass in another parameter called skip_middle that tells us where the skipped items cross the main diagonal (i.e. for row #my_id, the index at skipped_indices[skip_middle] is the first that is larger than my_id.)
In Conclusion
I'm by no means an expert in CUDA and HPC. But if I have understood your problem correctly, I think this method might eliminate any and all contentions for memory. Also, I don't think this will cause any (more) numerical stability issues.
The cost of implementing this is:
Calling f twice as many times in total (and keeping track of when it is called for row < col so you can multiply the result by -1.)
Storing twice as many items in the list of skipped values. Since the size of this list is in the thousands (and not billions!) it shouldn't be much of a problem.
Sorting the list of skipped values; which again due to its size, should be no problem.
(UPDATE: Added the Pseudo-Implementation section.)