I'm using subplot2grid to display graphs. However, not all subplots are being displayed. Obviously it has to do with the if statement.
However, in my complete code I need those if statements because depending on some conditions plots have diffent formats. I want all 3 subplots to be displayed (one for each i). However, the first one is missing. How to display it correctly?
Here is the simplified code:
import matplotlib.pyplot as plt
fig=plt.figure()
for i in xrange(0,3):
if i==1:
ax=plt.subplot2grid((3,1),(i,0))
ax.plot([1,2],[1,2])
fig.autofmt_xdate()
else:
ax=plt.subplot2grid((3,1),(i,0), rowspan=2)
ax.plot([1,2],[1,2])
fig.autofmt_xdate()
plt.show()
I would just use the gridspec module from matplotlib. Then you can set the width/height ratios directly.
Then you can do something like this:
import numpy
from matplotlib import gridspec
import matplotlib.pyplot as plt
def do_plot_1(ax):
ax.plot([0.25, 0.5, 0.75], [0.25, 0.5, 0.75], 'k-')
def do_plot_2(ax):
ax.plot([0.25, 0.5, 0.75], [0.25, 0.5, 0.75], 'g--')
fig = plt.figure(figsize=(6, 4))
gs = gridspec.GridSpec(nrows=3, ncols=1, height_ratios=[2, 1, 2])
for n in range(3):
ax = fig.add_subplot(gs[n])
if n == 1:
do_plot_1(ax)
else:
do_plot_2(ax)
fig.tight_layout()
To use plt.subplot2grid, you'd need to effectively do something like this:
fig = plt.figure(figsize=(6, 4))
ax1 = plt.subplot2grid((5,1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((5,1), (2, 0), rowspan=1)
ax3 = plt.subplot2grid((5,1), (3, 0), rowspan=2)
Since you have two axes with a rowspan=2, your grid needs to be 2+1+2 = 5 blocks tall.
Related
Here is my code,here i don't want to use slider to change the intervals of
my plot.Instead of slider i want to use colorbar only,can any one please tell me is there any way to change colorbar i.e it exactly work like a slider.THank you in advance
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
import matplotlib.colors
ax = plt.subplot(111)
plt.subplots_adjust(left=0.25, bottom=0.25)
img_data = np.random.rand(50,50)
c_max = 2
img = ax.imshow(img_data, interpolation='nearest')
cb = plt.colorbar(img)
axcolor = 'lightgoldenrodyellow'
ax_cmax = plt.axes([0.25, 0.15, 0.65, 0.03])
s_cmax = Slider(ax_cmax, 'max', 0, 50, valfmt=c_max)
def update(val, s=None):
# _cmin = s_cmin.val
_cmax = s_cmax.val
img.set_clim(_cmax)
plt.draw()
s_cmax.on_changed(update)
plt.show()
I would like to add a separate colorbar to each subplot in a 2x2 plot.
fig , ( (ax1,ax2) , (ax3,ax4)) = plt.subplots(2, 2,sharex = True,sharey=True)
z1_plot = ax1.scatter(x,y,c = z1,vmin=0.0,vmax=0.4)
plt.colorbar(z1_plot,cax=ax1)
z2_plot = ax2.scatter(x,y,c = z2,vmin=0.0,vmax=40)
plt.colorbar(z1_plot,cax=ax2)
z3_plot = ax3.scatter(x,y,c = z3,vmin=0.0,vmax=894)
plt.colorbar(z1_plot,cax=ax3)
z4_plot = ax4.scatter(x,y,c = z4,vmin=0.0,vmax=234324)
plt.colorbar(z1_plot,cax=ax4)
plt.show()
I thought that this is how you do it, but the resulting plot is really messed up; it just has an all grey background and ignores the set_xlim , set_ylim commands I have (not shown here for simplicity). + it shows no color bars. Is this the right way to do it?
I also tried getting rid of the "cax = ...", but then the colorbar all goes on the bottom right plot and not to each separate plot!
This can be easily solved with the the utility make_axes_locatable. I provide a minimal example that shows how this works and should be readily adaptable:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
m1 = np.random.rand(3, 3)
m2 = np.arange(0, 3*3, 1).reshape((3, 3))
fig = plt.figure(figsize=(16, 12))
ax1 = fig.add_subplot(121)
im1 = ax1.imshow(m1, interpolation='None')
divider = make_axes_locatable(ax1)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im1, cax=cax, orientation='vertical')
ax2 = fig.add_subplot(122)
im2 = ax2.imshow(m2, interpolation='None')
divider = make_axes_locatable(ax2)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im2, cax=cax, orientation='vertical');
In plt.colorbar(z1_plot,cax=ax1), use ax= instead of cax=, i.e. plt.colorbar(z1_plot,ax=ax1)
Specify the ax argument to matplotlib.pyplot.colorbar(), e.g.
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 2)
for i in range(2):
for j in range(2):
data = np.array([[i, j], [i+0.5, j+0.5]])
im = ax[i, j].imshow(data)
plt.colorbar(im, ax=ax[i, j])
plt.show()
Please have a look at this matplotlib example page. There it is shown how to get the following plot with four individual colorbars for each subplot:
I hope this helps.
You can further have a look here, where you can find a lot of what you can do with matplotlib.
Try to use the func below to add colorbar:
def add_colorbar(mappable):
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt
last_axes = plt.gca()
ax = mappable.axes
fig = ax.figure
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = fig.colorbar(mappable, cax=cax)
plt.sca(last_axes)
return cbar
Then you codes need to be modified as:
fig , ( (ax1,ax2) , (ax3,ax4)) = plt.subplots(2, 2,sharex = True,sharey=True)
z1_plot = ax1.scatter(x,y,c = z1,vmin=0.0,vmax=0.4)
add_colorbar(z1_plot)
When using iPyWidgets and Matplotlib in a Jupyter notebook, it is fairly easy to get a live-updating figure, even with multiple subplots, and multiple variables with multiple sliders. Simply set an interact to contain the activated plot function, and constructors for two slider variables:
%pylab inline
from ipywidgets import *
from IPython.display import display
import numpy as np
import matplotlib
t = np.arange(0.0, 4*pi, 0.01)
def pltsin(f1, f2):
ax11 = plt.subplot(121)
ax11.set_title('Plot 1')
ax11.plot(t, sin(2*pi*t*f1/4/pi), 'k'); ax11.grid(True)
ax11.plot(t, cos(2*pi*t*f1/4/pi), 'r'); ax11.grid(True)
ax12 = plt.subplot(122)
ax12.set_title('Plot 2')
ax12.plot(t, sin(2*pi*t*f2/4/pi), 'k'); ax12.grid(True)
ax12.plot(t, cos(2*pi*t*f2/4/pi), 'r'); ax11.grid(True)
plt.show()
interact(pltsin, f1 = (1, 2, 0.01), f2 = (1, 2, 0.01))
This could easily be extended to a plot where (say) three sliders control three polynomial coefficients all in a single window (i.e., no subplots).
But, it would be highly useful to have a reset button, which returns all variables to their default condition. How can I cause an ipywidget button's on_click method to affect the variables of the slider, and the figure itself?
This can be done by leveraging the interactive function.
%pylab inline
from ipywidgets import widgets
from IPython.display import display
import numpy as np
import matplotlib
t = np.arange(0.0, 4*pi, 0.01)
def pltsin(f1, f2):
ax11 = plt.subplot(121)
ax11.set_title('Plot 1')
ax11.plot(t, sin(2*pi*t*f1/4/pi), 'k'); ax11.grid(True)
ax11.plot(t, cos(2*pi*t*f1/4/pi), 'r'); ax11.grid(True)
ax12 = plt.subplot(122)
ax12.set_title('Plot 2')
ax12.plot(t, sin(2*pi*t*f2/4/pi), 'k'); ax12.grid(True)
ax12.plot(t, cos(2*pi*t*f2/4/pi), 'r'); ax11.grid(True)
plt.show()
def reset_values(b):
"""Reset the interactive plots to inital values."""
my_plts.children[0].value = 1
my_plts.children[1].value = 1
reset_button = widgets.Button(description = "Reset")
reset_button.on_click(reset_values)
my_plts = widgets.interactive(pltsin, f1 = (1, 2, 0.01), f2 = (1, 2, 0.01))
display(my_plts, reset_button)
Can't stand hard-coded variables? Then replace the reset_values function with this more elastic version:
def reset_values(b):
"""Reset the interactive plots to inital values."""
my_plts.children[0].value = my_plts.children[0].min
my_plts.children[1].value = my_plts.children[1].min
Hope that helps.
I'm attempting to make use of twinx() to create a bar/line combo graph with the line visible on top of the bar. Currently this is how it appears:
I also need the line chart to be plotted on the left vertical axis (ax) and the bar on the right (ax2) as it currently is. If I plot the line on the second axis it does appear on top, but obviously it appears on the wrong axis (right)
Here's my code:
self.ax2=ax.twinx()
df[['Opportunities']].plot(kind='bar', stacked=False, title=get_title, color='grey', ax=self.ax2, grid=False)
ax.plot(ax.get_xticks(),df[['Percentage']].values, linestyle='-', marker='o', color='k', linewidth=1.0)
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = self.ax2.get_legend_handles_labels()
ax.legend(lines + lines2, labels + labels2, loc='lower right')
Also having trouble with the labels, but one thing at a time.
It appears, by default, that the artists are drawn on ax first, then the
artists on the twin axes ax2 on top. So since in your code the line plot was drawn on ax and the bar plot on ax2, the bar plot sits on top of (and obscures) the line.
(I thought I could change this by specifying zorder, but that attempt did not
work... )
So one way to solve the problem is to use ax to draw the bar plot and ax2 to draw the line. That will place the line on top of the bars. It will also, by default, place the ytick labels for ax (the bar plot) on the left, and the ytick labels for ax2 (the line) on the right. However, you can use
ax.yaxis.set_ticks_position("right")
ax2.yaxis.set_ticks_position("left")
to swap the location of the left and right ytick labels.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas as pd
np.random.seed(2015)
N = 16
df = pd.DataFrame({'Opportunities': np.random.randint(0, 30, size=N),
'Percentage': np.random.randint(0, 100, size=N)},
index=pd.date_range('2015-3-15', periods=N, freq='B').date)
fig, ax = plt.subplots()
df[['Opportunities']].plot(kind='bar', stacked=False, title='get_title',
color='grey', ax=ax, grid=False)
ax2 = ax.twinx()
ax2.plot(ax.get_xticks(), df[['Percentage']].values, linestyle='-', marker='o',
color='k', linewidth=1.0, label='percentage')
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines + lines2, labels + labels2, loc='best')
ax.yaxis.set_ticks_position("right")
ax2.yaxis.set_ticks_position("left")
fig.autofmt_xdate()
plt.show()
yields
Alternatively, the zorder of the axes can be set so as to draw ax above ax2. Paul Ivanov shows how:
ax.set_zorder(ax2.get_zorder()+1) # put ax in front of ax2
ax.patch.set_visible(False) # hide the 'canvas'
ax2.patch.set_visible(True) # show the 'canvas'
Thus,
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas as pd
np.random.seed(2015)
N = 16
df = pd.DataFrame({'Opportunities': np.random.randint(0, 30, size=N),
'Percentage': np.random.randint(0, 100, size=N)},
index=pd.date_range('2015-3-15', periods=N, freq='B').date)
fig, ax = plt.subplots()
ax2 = ax.twinx()
df[['Opportunities']].plot(kind='bar', stacked=False, title='get_title',
color='grey', ax=ax2, grid=False)
ax.plot(ax.get_xticks(), df[['Percentage']].values, linestyle='-', marker='o',
color='k', linewidth=1.0, label='percentage')
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines + lines2, labels + labels2, loc='best')
ax.set_zorder(ax2.get_zorder()+1) # put ax in front of ax2
ax.patch.set_visible(False) # hide the 'canvas'
ax2.patch.set_visible(True) # show the 'canvas'
fig.autofmt_xdate()
plt.show()
yields the same result without having to swap the roles played by ax and ax2.
Is it possible to automatically generate multiple subplots in matplotlib? An example of the process I want to automate is:
import matplotlib.pyplot as plt
figure = plt.figure()
ax1 = figure.add_subplot(2, 3, 1)
ax2 = figure.add_subplot(2, 3, 2)
ax3 = figure.add_subplot(2, 3, 3)
ax4 = figure.add_subplot(2, 3, 4)
ax5 = figure.add_subplot(2, 3, 5)
ax6 = figure.add_subplot(2, 3, 6)
The subplots need unique names, as this will allow me to do stuff like:
for ax in [ax1, ax2, ax3, ax4, ax5, ax6]:
ax.set_title("example")
Many thanks.
Addition: Are there any functions that automate the generation of multiple subplots? What if I needed to repeat the above process 100 times? Would I have to type out every ax1 to ax100?
You can use:
fig, axs = plt.subplots(2,3)
axs will be an array containing the subplots.
Or unpack the array instantly:
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2,3)