Difference between let and let* in Clojure - clojure

Consider the following macro:
(defmacro somemacro []
(list 'let ['somevar "Value"] 'somevar))
Expanding it yields the following result:
(macroexpand '(somemacro))
Result:
(let* [somevar "Value"] somevar)
I have two questions about let* (with the asterisk):
What does it mean? (In particular: is it documented somewhere?)
Why is the macro not expanded with the 'normal' let? (I.e., let without the asterisk.) Both yield the same result (in my experimentation). Is there a counter example?
Unluckily I could not find any 'official' documentation about let*, that's why I'm asking here.
Sources I've already considered:
(doc let*) ; --> nil
(source let*) ; --> source not found
https://clojuredocs.org/clojure.core --> I see not let* here
(although there is e.g. list*)
https://clojuredocs.org/clojure.core/let --> only mentioned once in
a comment, that is not totally clear to me:
Nota Bene: let in Clojure is like let* in Scheme -- each init-expr has access to the preceding binding forms. (There is also a let*, but it is more or less let without destructuring, and in fact is the underlying implementation.)
LET versus LET* in Common Lisp
--> this question is about common lisp, but maybe it's the same in Clojure?
This answer: https://stackoverflow.com/a/5084339/3398271
In Clojure it basically means "foo* is like foo, but somehow different, and you probably want foo". In other words, it means that the author of that code couldn't come up with a better name for the second function, so they just slapped a star on it.
--> Is this the case for let and let*? But if so, still the question remains, what is exactly the difference?
What is the difference between let and let* in Scheme? --> Is this the same in Clojure?

let* is an internal implementation detail. let is a macro implemented in terms of let*. https://github.com/clojure/clojure/blob/clojure-1.7.0/src/clj/clojure/core.clj#L4301
The macro let adds parameter destructuring to let*. This is the standard pattern for xyz and xyz* in Clojure, with the * version not being documented. An exception being list and list*.

I thought I would add that the reason why macroexpand returns let* instead of let can be found in the documentation of macroexpand:
Repeatedly calls macroexpand-1 on form until it no longer
represents a macro form, then returns it.
So what happens is the first call of macroexpand-1 returns (let [somevar "Value"] somevar), and the second expands let into let*.
Indeed,
user=> (println (clojure.string/join "\n" (take 3 (iterate macroexpand-1 '(somemacro)))))
(somemacro)
(let [somevar "Value"] somevar)
(let* [somevar "Value"] somevar)
nil
If you were to use destructuring in your macro, the output would be more interesting:
user=> (defmacro destructuring-macro [] `(let [[x y z] [:x :y :z]] y))
#'user/destructuring-macro
user=> (println (clojure.string/join "\n" (take 3 (iterate macroexpand-1 '(destructuring-macro)))))
(destructuring-macro)
(clojure.core/let [[testing.core/x testing.core/y testing.core/z] [:x :y :z]] testing.core/y)
(let* [vec__8356 [:x :y :z] x (clojure.core/nth vec__8356 0 nil) y (clojure.core/nth vec__8356 1 nil) z (clojure.core/nth vec__8356 2 nil)] testing.core/y)
nil
Notice that let is fully qualified by the syntax quote, because it is not a special form (even though its documentation says it is). The underlying special form is let*, which is not fully qualified by the syntax quote.

Related

How can I iterate over a list with a macro?

I am trying to print the documentation for all functions in a given namespace by invoking the following expression in a REPL:
(doseq
[f (dir-fn 'clojure.repl)]
(doc f))
However the invocation of this expression returns nil without printing the documentation to the REPL. I know this might have to do with doc being a macro, but I'm a Clojure novice and am not entirely sure how to understand the problem.
Why does this expression return nil without printing the documentation?
How can this expression be modified so that it prints the documentation for each function in a given namespace?
Thanks!
Update: Combined both provided answers:
(defn ns-docs [ns']
(doseq [[symbol var] (ns-interns ns')]
(newline)
(println symbol)
(print " ")
(println (:doc (meta var)))))
(ns-docs 'clojure.repl)
I would, instead, start here:
The Clojure CheatSheet
ClojureDocs.org
Clojure-Doc.org (similar name, but different)
The API & Reference sections at Clojure.org
Note that doc is in the namespace clojure.repl, which reflects its intended usage (by a human in a repl). Here is some code that will also iterate on a namespace & print doc strings (using a different technique):
(doseq [[fn-symbol fn-var] (ns-interns 'demo.core)]
(newline)
(println fn-symbol)
(println (:doc (meta fn-var))))
where demo.core is the namespace of interest.
Note that ns-interns gives you both a symbol and var like:
fn-symbol => <#clojure.lang.Symbol -main>
fn-var => <#clojure.lang.Var #'demo.core/-main>
The meta function has lots of other info you may want to use someday:
(meta fn-var) =>
<#clojure.lang.PersistentArrayMap
{ :arglists ([& args]),
:doc "The Main Man!",
:line 9, :column 1,
:file "demo/core.clj",
:name -main,
:ns #object[clojure.lang.Namespace 0x14c35a06 "demo.core"]}>
While this probably won't help you with answering your question, the problem of evaluating macro's comes up a lot when you are learning Clojure.
Macros are responsible for the evaluation of their arguments. In this case clojure.repl/doc will ignore the current lexical context and assume that the symbol f that you're giving it is the name of a function you want to see the documentation for. It does this because it's intended to be used at the REPL, and is assuming you wouldn't want to type quotes all the time.
As f doesn't exist, it prints nothing. Then doseq returns nil, since it exists to do something for side effects only - hence starting in do. In order to pass an argument to a macro that refuses to respect the lexical context like this, you need to write the code for each element in the list.
You can do this by hand, or by constructing the code as data, and passing it to eval to execute. You can do this in an imperative style, using doseq:
(doseq [f (ns-interns 'clojure.repl)]
(eval `(doc ~(symbol "clojure.repl" (str (first f))))))
or in a slightly more Clojurey way (which will allow you to see the code that it would execute by removing eval from the end and running it at the REPL):
(->> (ns-interns 'clojure.repl)
(map #(list 'clojure.repl/doc (symbol "clojure.repl" (str (first %)))))
(cons `do)
eval)
In both of these we use quote and syntax-quote to construct some code from the list of symbols reflected from the namespace, and pass it to eval to actually execute it. This page on Clojure's weird characters should point you in the right direction for understanding what's going on here.
This an example of why you shouldn't write macro's, unless you've got no other options. Macro's do not compose, and are often difficult to work with. For a more in depth discussion, Fogus's talk and Christophe Grand's talk are both good talks.
Why does this expression return nil without printing the documentation?
Because the doc macro is receiving the symbol f from your loop, instead of a function symbol directly.
How can this expression be modified so that it prints the documentation for each function in a given namespace?
(defn ns-docs [ns']
(let [metas (->> (ns-interns ns') (vals) (map meta) (sort-by :name))]
(for [m metas :when (:doc m)] ;; you could filter here if you want fns only
(select-keys m [:name :doc]))))
(ns-docs 'clojure.repl)
=>
({:name apropos,
:doc "Given a regular expression or stringable thing, return a seq of all
public definitions in all currently-loaded namespaces that match the
str-or-pattern."}
...
)
Then you can print those maps/strings if you want.

Conditional "assignment" in functional programming

I am programming something that doesn't have side-effects, but my code is not very readable.
Consider the following piece of code:
(let [csv_data (if header_row (cons header_row data_rows) data_rows)]
)
I'm trying to use csv_data in a block of code. What is a clean way of conditioning on the presence of a header_row? I've looked at if-let, but couldn't see how that could help here.
I have run into similar situations with functional for-loops as well where I'm binding the result to a local variable, and the code looks like a pile of expressions.
Do I really have to create a separate helper function in so many cases?
What am I missing here?
Use the cond->> macro
(let [csv_data (cond->> data_rows
header_row (cons header-row)]
)
It works like the regular ->> macro, but before each threading form a test expression has to be placed that determines whether the threading form will be used.
There is also cond->. Read more about threading macros here: Official threading macros guide
First, don't use underscore, prefer dashes.
Second, there is nothing wrong with a little helper function; after all, this seems to be a requirement for handling your particular data format.
Third, if you can change your data so that you can skip those decisions and have a uniform representation for all corner cases, this is even better. A header row contains a different kind of data (column names?), so you might prefer to keep them separate:
(let [csv {:header header :rows rows}]
...)
Or maybe at some point you could have "headers" and "rows" be of the same type: sequences of rows. Then you can concat them directly.
The ensure-x idiom is a very common way to normalize your data:
(defn ensure-list [data]
(and data (list data)))
For example:
user=> (ensure-list "something")
("something")
user=> (ensure-list ())
(())
user=> (ensure-list nil)
nil
And thus:
(let [csv (concat (ensure-list header) rows)]
...)
i would propose an utility macro. Something like this:
(defmacro update-when [check val-to-update f & params]
`(if-let [x# ~check]
(~f x# ~val-to-update ~#params)
~val-to-update))
user> (let [header-row :header
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows cons)]
csv-data))
;;=> (:header :data1 :data2)
user> (let [header-row nil
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows cons)]
csv-data))
;;=> [:data1 :data2]
it is quite universal, and lets you fulfill more complex tasks then just simple consing. Like for example you want to reverse some coll if check is trueish, and concat another list...
user> (let [header-row :header
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows
(fn [h d & params] (apply concat (reverse d) params))
[1 2 3] ['a 'b 'c])]
csv-data))
;;=> (:data2 :data1 1 2 3 a b c)
update
as noticed by #amalloy , this macro should be a function:
(defn update-when [check val-to-update f & params]
(if check
(apply f check val-to-update params)
val-to-update))
After thinking about the "cost" of a one-line helper function in the namespace I've came up with a local function instead:
(let [merge_header_fn (fn [header_row data_rows]
(if header_row
(cons header_row data_rows)
data_rows))
csv_data (merge_header_fn header_row data_rows) ]
...
<use csv_data>
...
)
Unless someone can suggest a more elegant way of handling this, I will keep this as an answer.

How can I evaluate "symbol" and "(symbol 1)" with the same name?

I want to get following results when I evaluate edit-url and (edit-url 1).
edit-url --> "/articles/:id/edit"
(edit-url 1) --> "/articles/1/edit"
Is it possible to define such a Var or something?
Now, I use following function, but I don't want to write (edit-url) to get const string.
(defn edit-url
([] "/articles/:id/edit")
([id] (str "/articles/" id "/edit")))
Thanks in advance.
If those behaviors are exactly what you want, print-method and tagged literals may be used to imitate them.
(defrecord Path [path]
clojure.lang.IFn
(invoke [this n]
(clojure.string/replace path ":id" (str n))))
(defmethod print-method Path [o ^java.io.Writer w]
(.write w (str "#path\"" (:path o) "\"")))
(set! *data-readers* (assoc *data-readers* 'path ->Path))
(comment
user=> (def p #path"/articles/:id/edit")
#'user/p
user=> p
#path"/articles/:id/edit"
user=> (p 1)
"/articles/1/edit"
user=>
)
edit-url will either have the value of an immutable string or function. Not both.
The problem will fade when you write a function with better abstraction that takes a string and a map of keywords to replace with words. It should work like this
(generate-url "/articles/:id/edit" {:id 1})
Clojure is a "Lisp 1" which means that is has a single namespace for all symbols, including both data scalars and functions. What you have written shows the functionally of both a string and a function but for a single name, which you can do in Common Lisp but not Clojure (not that a "Lisp 2" has its own inconveniences as well).
In general this type of "problem" is a non issue if you organize your vars better. Why not just make edit-url a function with variable arity? Without arguments it returns something, with arguments it returns something else. Really the possibilities are endless, even more so when you consider making a macro instead of a function (not that I'm advocating that).

How to get the metadata of clojure function arguments?

Is there a way to generically get metadata for arguments to a function in clojure? The answer posted in this question does not, actually, work in general:
user> (defn foo "informative dox!" [] 1)
#'user/foo
user> (defmacro get-docs [func] `(:doc (meta (var ~func))))
#'user/get-docs
user> (get-docs foo)
"informative dox!"
user> (get-docs (identity foo))
; Evaluation aborted.
user> (defn process-docs [f] (let [docs (get-docs f)] (reverse docs)))
; Evaluation aborted.
The second-to-last line doesn't work because you can't call var on the list (identity foo), and the last line doesn't even compile because the compiler complains about being unable to resolve f.
Most of the solutions for this problem I've found rely on the idea that you have access to the symbol in the function's definition, or something like that, so that you can do something like (resolve 'f) or (var f). But I want something that I can use on the argument to a function, where you don't know that information.
Essentially, I'd like an expression I can put in place of the question marks below to get the metadata of #'map:
(let [x map] (??? x))
its a mouthful though possible:
(let [x map]
(:doc (meta (second (first (filter #(and (var? (second %))
(= x (var-get (second %))))
(ns-map *ns*)))))))
produces the desired result:
"Returns a lazy sequence consisting of the result of applying f to the
set of first items of each coll, followed by applying f to the set
of second items in each coll, until any one of the colls is\n exhausted. Any remaining items in other colls are ignored. Function
f should accept number-of-colls arguments."
under the hood Namespaces are essentially maps of names to vars and the vars contain functions. you can search the contents of these vars for the one that matches the function you are seeking and then look at it's associated var and get the metadata from that var.

In Clojure, how to define a variable named by a string?

Given a list of names for variables, I want to set those variables to an expression.
I tried this:
(doall (for [x ["a" "b" "c"]] (def (symbol x) 666)))
...but this yields the error
java.lang.Exception: First argument to def must be a Symbol
Can anyone show me the right way to accomplish this, please?
Clojure's "intern" function is for this purpose:
(doseq [x ["a" "b" "c"]]
(intern *ns* (symbol x) 666))
(doall (for [x ["a" "b" "c"]] (eval `(def ~(symbol x) 666))))
In response to your comment:
There are no macros involved here. eval is a function that takes a list and returns the result of executing that list as code. ` and ~ are shortcuts to create a partially-quoted list.
` means the contents of the following lists shall be quoted unless preceded by a ~
~ the following list is a function call that shall be executed, not quoted.
So ``(def ~(symbol x) 666)is the list containing the symboldef, followed by the result of executingsymbol xfollowed by the number of the beast. I could as well have written(eval (list 'def (symbol x) 666))` to achieve the same effect.
Updated to take Stuart Sierra's comment (mentioning clojure.core/intern) into account.
Using eval here is fine, but it may be interesting to know that it is not necessary, regardless of whether the Vars are known to exist already. In fact, if they are known to exist, then I think the alter-var-root solution below is cleaner; if they might not exist, then I wouldn't insist on my alternative proposition being much cleaner, but it seems to make for the shortest code (if we disregard the overhead of three lines for a function definition), so I'll just post it for your consideration.
If the Var is known to exist:
(alter-var-root (resolve (symbol "foo")) (constantly new-value))
So you could do
(dorun
(map #(-> %1 symbol resolve (alter-var-root %2))
["x" "y" "z"]
[value-for-x value-for-y value-for z]))
(If the same value was to be used for all Vars, you could use (repeat value) for the final argument to map or just put it in the anonymous function.)
If the Vars might need to be created, then you can actually write a function to do this (once again, I wouldn't necessarily claim this to be cleaner than eval, but anyway -- just for the interest of it):
(defn create-var
;; I used clojure.lang.Var/intern in the original answer,
;; but as Stuart Sierra has pointed out in a comment,
;; a Clojure built-in is available to accomplish the same
;; thing
([sym] (intern *ns* sym))
([sym val] (intern *ns* sym val)))
Note that if a Var turns out to have already been interned with the given name in the given namespace, then this changes nothing in the single argument case or just resets the Var to the given new value in the two argument case. With this, you can solve the original problem like so:
(dorun (map #(create-var (symbol %) 666) ["x" "y" "z"]))
Some additional examples:
user> (create-var 'bar (fn [_] :bar))
#'user/bar
user> (bar :foo)
:bar
user> (create-var 'baz)
#'user/baz
user> baz
; Evaluation aborted. ; java.lang.IllegalStateException:
; Var user/baz is unbound.
; It does exist, though!
;; if you really wanted to do things like this, you'd
;; actually use the clojure.contrib.with-ns/with-ns macro
user> (binding [*ns* (the-ns 'quux)]
(create-var 'foobar 5))
#'quux/foobar
user> quux/foobar
5
Evaluation rules for normal function calls are to evaluate all the items of the list, and call the first item in the list as a function with the rest of the items in the list as parameters.
But you can't make any assumptions about the evaluation rules for special forms or macros. A special form or the code produced by a macro call could evaluate all the arguments, or never evaluate them, or evaluate them multiple times, or evaluate some arguments and not others. def is a special form, and it doesn't evaluate its first argument. If it did, it couldn't work. Evaluating the foo in (def foo 123) would result in a "no such var 'foo'" error most of the time (if foo was already defined, you probably wouldn't be defining it yourself).
I'm not sure what you're using this for, but it doesn't seem very idiomatic. Using def anywhere but at the toplevel of your program usually means you're doing something wrong.
(Note: doall + for = doseq.)