Meaning of weird side-effectless statement inside if - c++

I was browsing through a project and came across this:
if(!StaticAnimatedEntities)
int esko = esko = 2;
(The type of StaticAnimatedEntities here is a plain unsigned short.)
It struck me as very odd so I grepped the project for esko and found other similar ifs with nothing but that line inside them, f.ex. this:
if(ItemIDMap.find(ID) != ItemIDMap.end())
int esko = esko = 2;
(Note that there are no other variables named esko outside those ifs.)
What is the meaning of this cryptic piece of code?

You can sometimes see code like this just to serve as an anchor location to put a breakpoint on in an interactive debugger in order to trap some "unusual" (most often - erroneous) conditions.
Debugger-provided conditional breakpoints are usually very slow and/or primitive, so people often deliberately plan ahead and provide such conditional branches in order to create a compiled-in location for a breakpoint. Such a compiled-in conditional breakpoint does not slow down program execution nearly as much as a debugger-provided conditional breakpoint would.
In many cases such code is surrounded by #ifndef NDEBUG/#endif to prevent it from getting into the production builds. In other cases people just leave it unprotected, believing that optimizing compiler will remove it anyway.
In order for it to work the code under if should generate some machine code in debug builds. Otherwise, it would be impossible to put a breakpoint on it. Different people have different preferences in that regard, but the code virtually always looks weird and meaningless.
It is the meaninglessness of that code that provides programmers with full freedom to write anything they want there. And I'd say that it often becomes a part of each programmer's signature style, a fingerprint of sorts. The guy in question does int esko = esko = 2;, apparently.

Related

C++ Way to remove Debugging "Flags" from executables

I am building somewhat larger c++ code bases than I'm used to. I have a need for both good logging and debugging, at least to the console, and also speed.
Generally, I like to do something like this
// Some header file
bool DEBUG = true;
And then in some other file
if (DEBUG) cout << "Some debugging information" << endl;
The issue with this (among others) is that the branching lowers the speed of the final executable. In order to fix this, I'd have to go into the files at the end and remove all these, and then I couldn't use them again later without saving them to some other file and then putting them back in.
What is the most efficient solution to this quandry? Python decorators provide a nice approach that I'm not certain exists in CPP.
Thanks!
The classic way is to make that DEBUG not a variable, but a preprocessor macro. Then you can have two builds: one with the macro defined to 1, the other with it defined to 0 (or not defined at all, depending on how you plan to use it). Then you can either do #ifdef to completely remove the debug code from being seen by the compiler, or just put it into a regular if, the optimizer will take care of removing the branch with the constant conditional.

Tools to refactor names of types, functions and variables?

struct Foo{
Bar get(){
}
}
auto f = Foo();
f.get();
For example you decide that get was a very poor choice for a name but you have already used it in many different files and manually changing ever occurrence is very annoying.
You also can't really make a global substitution because other types may also have a method called get.
Is there anything for D to help refactor names for types, functions, variables etc?
Here's how I do it:
Change the name in the definition
Recompile
Go to the first error line reported and replace old with new
Goto 2
That's semi-manual, but I find it to be pretty easy and it goes quickly because the compiler error message will bring you right to where you need to be, and most editors can read those error messages well enough to dump you on the correct line, then it is a simple matter of telling it to repeat the last replacement again. (In my vim setup with my hotkeys, I hit F4 for next error message, then dot for repeat last change until it is done. Even a function with a hundred uses can be changed reliably* in a couple minutes.)
You could probably write a script that handles 90% of cases automatically too by just looking for ": Error: " in the compiler's output, extracting the file/line number, and running a plain text replace there. If the word shows up only once and outside a string literal, you can automatically replace it, and if not, ask the user to handle the remaining 10% of cases manually.
But I think it is easy enough to do with my editor hotkeys that I've never bothered trying to script it.
The one case this doesn't catch is if there's another function with the same name that might still compile. That should never happen if you do this change in isolation, because an ambiguous name wouldn't compile without it.
In that case, you could probably do a three-step compiler-assisted change:
Make sure your code compiles before. Then add #disable to the thing you want to rename.
Compile. Every place it complains about it being unusable for being disabled, do the find/replace.
Remove #disable and rename the definition. Recompile again to make sure there's nothing you missed like child classes (the compiler will then complain "method foo does not override any function" so they stand right out too.
So yeah, it isn't fully automated, but just changing it and having the compiler errors help find what's left is good enough for me.
Some limited refactoring support can be found in major IDE plugins like Mono-D or VisualD. I remember that Brian Schott had plans to add similar functionality to his dfix tool by adding dependency on dsymbol but it doesn't seem implemented yet.
Not, however, that all such options are indeed of a very limited robustness right now. This is because figuring out the fully qualified name of any given symbol is very complex task in D, one that requires full semantics analysis to be done 100% correctly. Think about local imports, templates, function overloading, mixins and how it all affects identifying the symbol.
In the long run it is quite certain that we need to wait before reference D compiler frontend becomes available as a library to implement such refactoring tool in clean and truly reliable way.
A good find all feature can be better than a bad refactoring which, as mentioned previously, requires semantic.
Personally I have a find all feature in Coedit which displays the context of a match and works on all the project sources.
It's fast to process the results.

Writing an MCVE (minimal source code that reproduces an error) automatically?

When I want to ask a question on e.g. stackoverflow I usually have to post the source code.
The problem is, I am using quite a big custom framework, classes structure etc. and the problem-related parts may be localized in many places (sometimes it's very hard to detect which parts of code are important for question). I cannot post the full source code (it would be too big to read efficiently).
For that reason I usually make an effort to write an minimal code (usually in one main.cpp instead of tons of classes) that reproduces the problem.
I wonder - is it possible to automate that process?
The typical things to do here is to replace methods/functions' calls with their bodies, merge files into one .cpp, remove all the "not called" methods & classes, unused variables etc.
The real difficulty here is telling the difference between "it doesn't do what I want", "the bug went away because I removed the essential code" and the case of "it now crashes because I removed something important". And really, hitting the delete key after marking some code "don't need it" is the easy part.
Finding out what is essential to show a problem is the hard part, and it's very difficult to automate this - because it is necessary to understand the difference between what the code should do and what it actually does. Just randomly removing code will not work, because the "new" code may be broken because you removed some essential step, not because you remove unused crud - only humans [that understand the problem] can do that.
Consider this:
Object* something;
void Initialize()
{
something = new Object(1, 2, 3);
}
int main()
{
Initialize();
// Some more code, some of which SOMETIMES sets something = NULL.
something->doStuff(); // Will crash if object is NULL.
}
If we remove Initialize, the code will fail every time, not just every third time. But it's because the Object has not been initialized, rather than the bug in the code [which may be that we should add if (something) before something->doStuff(), or because we shouldn't set it to NULL in the "some more code", so "don't do that"].
When I work on a tricky problem, especially at work where we have test systems that automatically produce code for testing different functionality under different conditions, my first step is to make [or take some existing] code a "small standalone test", which is small and simple, and only does "what is necessary", rather than trying to reduce many thousands of lines of complex code that does lots of extra stuff.
For some projects, there are tools around that helps with identifying "which bit of the code is the problem", for example [bugpoint][1] that finds which "pass" in LLVM is guily of causing a crash.
If you have a version control system that supports this you can "bisect" code to come up with the version that introduced a particular fault [at least sometimes]. However, I had a case at work where some of my code "apparently broke things", but it turns out that some other code was "broken all the time since a long time back" because the other code was not clearing a pointer field that the API manual says should be set to NULL, and my code was inspecting the pointer to find out if it was pointing at the right type thing - which goes horribly wrong when the value is "whatever happens to be in that part of the stack", so it is not NULL and not a valid pointer. I just added the code that made this bug apparent rather than hiding itself.
[1] http://llvm.org/docs/CommandGuide/bugpoint.html

Insert text into C++ code between functions

I have following requirement:
Adding text at the entry and exit point of any function.
Not altering the source code, beside inserting from above (so no pre-processor or anything)
For example:
void fn(param-list)
{
ENTRY_TEXT (param-list)
//some code
EXIT_TEXT
}
But not only in such a simple case, it'd also run with pre-processor directives!
Example:
void fn(param-list)
#ifdef __WIN__
{
ENTRY_TEXT (param-list)
//some windows code
EXIT_TEXT
}
#else
{
ENTRY_TEXT (param-list)
//some any-os code
if (condition)
{
return; //should become EXIT_TEXT
}
EXIT_TEXT
}
So my question is: Is there a proper way doing this?
I already tried some work with parsers used by compilers but since they all rely on running a pre-processor before parsing, they are useless to me.
Also some of the token generating parser, which do not need a pre-processor are somewhat useless because they generate a memory-mapping of tokens, which then leads to a complete new source code, instead of just inserting the text.
One thing I am working on is to try it with FLEX (or JFlex), if this is a valid option, I would appreciate some input on it. ;-)
EDIT:
To clarify a little bit: The purpose is to allow something like a stack trace.
I want to trace every function call, and in order to follow the call-hierachy, I need to place a macro at the entry-point of a function and at the exit point of a function.
This builds a function-call trace. :-)
EDIT2: Compiler-specific options are not quite suitable since we have many different compilers to use, and many that are propably not well supported by any tools out there.
Unfortunately, your idea is not only impractical (C++ is complex to parse), it's also doomed to fail.
The main issue you have is that exceptions will bypass your EXIT_TEXT macro entirely.
You have several solutions.
As has been noted, the first solution would be to use a platform dependent way of computing the stack trace. It can be somewhat imprecise, especially because of inlining: ie, small functions being inlined in their callers, they do not appear in the stack trace as no function call was generated at assembly level. On the other hand, it's widely available, does not require any surgery of the code and does not affect performance.
A second solution would be to only introduce something on entry and use RAII to do the exit work. Much better than your scheme as it automatically deals with multiple returns and exceptions, it suffers from the same issue: how to perform the insertion automatically. For this you will probably want to operate at the AST level, and modify the AST to introduce your little gem. You could do it with Clang (look up the c++11 migration tool for examples of rewrites at large) or with gcc (using plugins).
Finally, you also have manual annotations. While it may seem underpowered (and a lot of work), I would highlight that you do not leave logging to a tool... I see 3 advantages to doing it manually: you can avoid introducing this overhead in performance sensitive parts, you can retain only a "summary" of big arguments and you can customize the summary based on what's interesting for the current function.
I would suggest using LLVM libraries & Clang to get started.
You could also leverage the C++ language to simplify your process. If you just insert a small object into the code that is constructed on function scope entrance & rely on the fact that it will be destroyed on exit. That should massively simplify recording the 'exit' of the function.
This does not really answer you question, however, for your initial need, you may use the backtrace() function from execinfo.h (if you are using GCC).
How to generate a stacktrace when my gcc C++ app crashes

Visual Studio 2005 C compiler problem when optimizing a switch statement

General Question which may be of interest to others:
I ran into a, what I believe, C++-compiler optimization (Visual Studio 2005) problem with a switch statement. What I'd want to know is if there is any way to satisfy my curiosity and find out what the compiler is trying to but failing to do. Is there any log I can spend some time (probably too much time) deciphering?
My specific problem for those curious enough to continue reading - I'd like to hear your thoughts on why I get problems in this specific case.
I've got a tiny program with about 500 lines of code containing a switch statement. Some of its cases contain some assignment of pointers.
double *ptx, *pty, *ptz;
double **ppt = new double*[3];
//some code initializing etc ptx, pty and ptz
ppt[0]=ptx;
ppt[1]=pty; //<----- this statement causes problems
ppt[2]=ptz;
The middle statement seems to hang the compiler. The compilation never ends. OK, I didn't wait for longer than it took to walk down the hall, talk to some people, get a cup of coffee and return to my desk, but this is a tiny program which usually compiles in less than a second. Remove a single line (the one indicated in the code above) and the problem goes away, as it also does when removing the optimization (on the whole program or using #pragma on the function).
Why does this middle line cause a problem? The compilers optimizer doesn't like pty.
There is no difference in the vectors ptx, pty, and ptz in the program. Everything I do to pty I do to ptx and ptz. I tried swapping their positions in ppt, but pty was still the line causing a problem.
I'm asking about this because I'm curious about what is happening. The code is rewritten and is working fine.
Edit:
Almost two weeks later, I check out the closest version to the code I described above and I can't edit it back to make it crash. This is really annoying, embarrassing and irritating. I'll give it another try, but if I don't get it breaking anytime soon I guess this part of the question is obsolete and I'll remove it. Really sorry for taking your time.
If you need to make this code compilable without changing it too much consider using memcpy where you assign a value to ppt[1]. This should at least compile fine.
However, you problem seems more like another part of the source code causes this behaviour.
What you can also try is to put this stuff:
ppt[0]=ptx;
ppt[1]=pty; //<----- this statement causes problems
ppt[2]=ptz;
in another function.
This should also help compiler a bit to avoid the path it is taking to compile your code.
Did you try renaming pty to something else (i.e. pt_y)? I encountered a couple of times (i.e. with a variable "rect2") the problem that some names seem to be "reserved".
It sounds like a compiler bug. Have you tried re-ordering the lines? e.g.,
ppt[1]=pty;
ppt[0]=ptx;
ppt[2]=ptz;
Also what happens if you juggle about the values that are assigned (which will introduce bugs in your code, but may indicator whether its the pointer or the array that's the issue), e.g.:
ppt[0] = pty;
ppt[1] = ptz;
ppt[2] = ptx;
(or similar).
It's probably due to your declaration of ptx, pty and ptz with them being optimised out to use the same address. Then this action is causing your compiler problems later in your code.
Try
static double *ptx;
static double *pty;
static double *ptz;