Generate all combinations in bit version - c++

I'd like to generate all possible combination (without repetitions) in bit representation. I can't use any library like boost or stl::next_combination - it has to be my own code (computation time is very important).
Here's my code (modified from ones StackOverflow user):
int combination = (1 << k) - 1;
int new_combination = 0;
int change = 0;
while (true)
{
// return next combination
cout << combination << endl;
// find first index to update
int indexToUpdate = k;
while (indexToUpdate > 0 && GetBitPositionByNr(combination, indexToUpdate)>= n - k + indexToUpdate)
indexToUpdate--;
if (indexToUpdate == 1) change = 1; // move all bites to the left by one position
if (indexToUpdate <= 0) break; // done
// update combination indices
new_combination = 0;
for (int combIndex = GetBitPositionByNr(combination, indexToUpdate) - 1; indexToUpdate <= k; indexToUpdate++, combIndex++)
{
if(change)
{
new_combination |= (1 << (combIndex + 1));
}
else
{
combination = combination & (~(1 << combIndex));
combination |= (1 << (combIndex + 1));
}
}
if(change) combination = new_combination;
change = 0;
}
where n - all elements, k - number of elements in combination.
GetBitPositionByNr - return position of k-th bit.
GetBitPositionByNr(13,2) = 3 cause 13 is 1101 and second bit is on third position.
It gives me correct output for n=4, k=2 which is:
0011 (3 - decimal representation - printed value)
0101 (5)
1001 (9)
0110 (6)
1010 (10)
1100 (12)
Also it gives me correct output for k=1 and k=4, but gives me wrong outpu for k=3 which is:
0111 (7)
1011 (11)
1011 (9) - wrong, should be 13
1110 (14)
I guess the problem is in inner while condition (second) but I don't know how to fix this.
Maybe some of you know better (faster) algorithm to do want I want to achieve? It can't use additional memory (arrays).
Here is code to run on ideone: IDEONE

When in doubt, use brute force. Alas, generate all variations with repetition, then filter out the unnecessary patterns:
unsigned bit_count(unsigned n)
{
unsigned i = 0;
while (n) {
i += n & 1;
n >>= 1;
}
return i;
}
int main()
{
std::vector<unsigned> combs;
const unsigned N = 4;
const unsigned K = 3;
for (int i = 0; i < (1 << N); i++) {
if (bit_count(i) == K) {
combs.push_back(i);
}
}
// and print 'combs' here
}
Edit: Someone else already pointed out a solution without filtering and brute force, but I'm still going to give you a few hints about this algorithm:
most compilers offer some sort of intrinsic population count function. I know of GCC and Clang which have __builtin_popcount(). Using this intrinsic function, I was able to double the speed of the code.
Since you seem to be working on GPUs, you can parallelize the code. I have done it using C++11's standard threading facilities, and I've managed to compute all 32-bit repetitions for arbitrarily-chosen popcounts 1, 16 and 19 in 7.1 seconds on my 8-core Intel machine.
Here's the final code I've written:
#include <vector>
#include <cstdio>
#include <thread>
#include <utility>
#include <future>
unsigned popcount_range(unsigned popcount, unsigned long min, unsigned long max)
{
unsigned n = 0;
for (unsigned long i = min; i < max; i++) {
n += __builtin_popcount(i) == popcount;
}
return n;
}
int main()
{
const unsigned N = 32;
const unsigned K = 16;
const unsigned N_cores = 8;
const unsigned long Max = 1ul << N;
const unsigned long N_per_core = Max / N_cores;
std::vector<std::future<unsigned>> v;
for (unsigned core = 0; core < N_cores; core++) {
unsigned long core_min = N_per_core * core;
unsigned long core_max = core_min + N_per_core;
auto fut = std::async(
std::launch::async,
popcount_range,
K,
core_min,
core_max
);
v.push_back(std::move(fut));
}
unsigned final_count = 0;
for (auto &fut : v) {
final_count += fut.get();
}
printf("%u\n", final_count);
return 0;
}

Related

Efficiently find indices of 1-bits in large array, using SIMD

If I have very large array of bytes and want to find indices of all 1-bits, indices counting from leftmost bit, how do I do this efficiently, probably using SIMD.
(For finding the first 1-bit, see an earlier question. This question produces an array of outputs instead of 1 index.)
Of course I can do following 512-bit non-SIMD version using C++20:
Try it online!
#include <cstdint>
#include <iostream>
#include <bit>
int Find1s512(uint64_t const * p, uint16_t * idxs) {
int rpos = 0;
for (int i = 0; i < 8; ++i) {
uint64_t n = p[i];
while (true) {
int const j = std::countr_zero(n);
if (j >= 64)
break;
idxs[rpos++] = i * 64 + j;
n &= n - 1;
}
}
return rpos;
}
int main() {
uint64_t a[8] = {(1ULL << 17) | (1ULL << 63),
1ULL << 19, 1ULL << 23};
uint16_t b[512] = {};
int const cnt = Find1s512(a, b);
for (int i = 0; i < cnt; ++i)
std::cout << int(b[i]) << " ";
// Printed result: 17 63 83 151
}
And use above 512-bit version as building block to collect 1-bit positions of whole large array.
But I'd like to find out what is the most efficient way to do this, especially using SIMD 128/256/512.

Bit twiddling, off by one error

#include <iostream>
#include <bitset>
using namespace std;
int main(){
int k = -1;
int v = -1;
int r = 0;
for(int s = 0; s <= 30 ; s++){
int vbit = v & 1;
v >>= 1;
r |= vbit;
r <<= 1;
}
int vbit = v & 1;
r |= vbit;
cout << bitset<32>(k) << " " << bitset<32>(r) << endl;
}
I have written a code to reverse the bits in a integer. I my code works perfectly fine if I run the code as written but I think that I am looping one time less than I should to get to the correct answer. I have to shift 31 times to access all the bits in the int and the last two line of code after for loop is to patch the last bits to their places.
Is there a conceptual problem or a silly mistake?
Apply the shift to r before adding vbit to it.
That way you can shift 32 times.
Here is a way to do it that works for any unsigned integer type. (unsigned because it is undefined behavior to left shift a negative number, so using unsigned forces the caller to be sure the value is non-negative)
#include <limits>
#include <type_traits>
template <typename T>
auto reverse_bits(T value) -> T
{
static_assert(std::is_unsigned<T>::value, "type must be unsigned integer");
constexpr auto digits = std::numeric_limits<T>::digits;
T result = 0;
for (int k = 0; k < digits; ++k)
result |= ((value >> k) & 0x01) << (digits - (k + 1));
return result;
}

Converting an array of 2 digit numbers into an integer (C++)

Is it possible to take an array filled with 2 digit numbers e.g.
[10,11,12,13,...]
and multiply each element in the list by 100^(position in the array) and sum the result so that:
mysteryFunction[10,11,12] //The function performs 10*100^0 + 11*100^1 + 12*100^3
= 121110
and also
mysteryFunction[10,11,12,13]
= 13121110
when I do not know the number of elements in the array?
(yes, the reverse of order is intended but not 100% necessary, and just in case you missed it the first time the numbers will always be 2 digits)
Just for a bit of background to the problem: this is to try to improve my attempt at an RSA encryption program, at the moment I am multiplying each member of the array by 100^(the position of the number) written out each time which means that each word which I use to encrypt must be a certain length.
For example to encrypt "ab" I have converted it to an array [10,11] but need to convert it to 1110 before I can put it through the RSA algorithm. I would need to adjust my code for if I then wanted to use a three letter word, again for a four letter word etc. which I'm sure you will agree is not ideal. My code is nothing like industry standard but I am happy to upload it should anyone want to see it (I have also already managed this in Haskell if anyone would like to see that). I thought that the background information was necessary just so that I don't get hundreds of downvotes from people thinking that I'm trying to trick them into doing homework for me. Thank you very much for any help, I really do appreciate it!
EDIT: Thank you for all of the answers! They perfectly answer the question that I asked but I am having problems incorporating them into my current program, if I post my code so far would you be able to help? When I tried to include the answer provided I got an error message (I can't vote up because I don't have enough reputation, sorry that I haven't accepted any answers yet).
#include <iostream>
#include <string>
#include <math.h>
int returnVal (char x)
{
return (int) x;
}
unsigned long long modExp(unsigned long long b, unsigned long long e, unsigned long long m)
{
unsigned long long remainder;
int x = 1;
while (e != 0)
{
remainder = e % 2;
e= e/2;
if (remainder == 1)
x = (x * b) % m;
b= (b * b) % m;
}
return x;
}
int main()
{
unsigned long long p = 80001;
unsigned long long q = 70021;
int e = 7;
unsigned long long n = p * q;
std::string foo = "ab";
for (int i = 0; i < foo.length(); i++);
{
std::cout << modExp (returnVal((foo[0]) - 87) + returnVal (foo[1] -87) * 100, e, n);
}
}
If you want to use plain C-style arrays, you will have to separately know the number of entries. With this approach, your mysterious function might be defined like this:
unsigned mysteryFunction(unsigned numbers[], size_t n)
{
unsigned result = 0;
unsigned factor = 1;
for (size_t i = 0; i < n; ++i)
{
result += factor * numbers[i];
factor *= 100;
}
return result;
}
You can test this code with the following:
#include <iostream>
int main()
{
unsigned ar[] = {10, 11, 12, 13};
std::cout << mysteryFunction(ar, 4) << "\n";
return 0;
}
On the other hand, if you want to utilize the STL's vector class, you won't separately need the size. The code itself won't need too many changes.
Also note that the built-in integer types cannot handle very large numbers, so you might want to look into an arbitrary precision number library, like GMP.
EDIT: Here's a version of the function which accepts a std::string and uses the characters' ASCII values minus 87 as the numbers:
unsigned mysteryFunction(const std::string& input)
{
unsigned result = 0;
unsigned factor = 1;
for (size_t i = 0; i < input.size(); ++i)
{
result += factor * (input[i] - 87);
factor *= 100;
}
return result;
}
The test code becomes:
#include <iostream>
#include <string>
int main()
{
std::string myString = "abcde";
std::cout << mysteryFunction(myString) << "\n";
return 0;
}
The program prints: 1413121110
As benedek mentioned, here's an implementation using dynamic arrays via std::vector.
unsigned mystery(std::vector<unsigned> vect)
{
unsigned result = 0;
unsigned factor = 1;
for (auto& item : vect)
{
result += factor * item;
factor *= 100;
}
return result;
}
void main(void)
{
std::vector<unsigned> ar;
ar.push_back(10);
ar.push_back(11);
ar.push_back(12);
ar.push_back(13);
std::cout << mystery(ar);
}
I would like to suggest the following solutions.
You could use standard algorithm std::accumulate declared in header <numeric>
For example
#include <iostream>
#include <numeric>
int main()
{
unsigned int a[] = { 10, 11, 12, 13 };
unsigned long long i = 1;
unsigned long long s =
std::accumulate( std::begin( a ), std::end( a ), 0ull,
[&]( unsigned long long acc, unsigned int x )
{
return ( acc += x * i, i *= 100, acc );
} );
std::cout << "s = " << s << std::endl;
return 0;
}
The output is
s = 13121110
The same can be done with using the range based for statement
#include <iostream>
#include <numeric>
int main()
{
unsigned int a[] = { 10, 11, 12, 13 };
unsigned long long i = 1;
unsigned long long s = 0;
for ( unsigned int x : a )
{
s += x * i; i *= 100;
}
std::cout << "s = " << s << std::endl;
return 0;
}
You could also write a separate function
unsigned long long mysteryFunction( const unsigned int a[], size_t n )
{
unsigned long long s = 0;
unsigned long long i = 1;
for ( size_t k = 0; k < n; k++ )
{
s += a[k] * i; i *= 100;
}
return s;
}
Also think about using std::string instead of integral numbers to keep an encrypted result.

Convert integer to binary and store it in an integer array of specified size:c++

I want to convert an integer to binary string and then store each bit of the integer string to an element of a integer array of a given size. I am sure that the input integer's binary expression won't exceed the size of the array specified. How to do this in c++?
Pseudo code:
int value = ???? // assuming a 32 bit int
int i;
for (i = 0; i < 32; ++i) {
array[i] = (value >> i) & 1;
}
template<class output_iterator>
void convert_number_to_array_of_digits(const unsigned number,
output_iterator first, output_iterator last)
{
const unsigned number_bits = CHAR_BIT*sizeof(int);
//extract bits one at a time
for(unsigned i=0; i<number_bits && first!=last; ++i) {
const unsigned shift_amount = number_bits-i-1;
const unsigned this_bit = (number>>shift_amount)&1;
*first = this_bit;
++first;
}
//pad the rest with zeros
while(first != last) {
*first = 0;
++first;
}
}
int main() {
int number = 413523152;
int array[32];
convert_number_to_array_of_digits(number, std::begin(array), std::end(array));
for(int i=0; i<32; ++i)
std::cout << array[i] << ' ';
}
Proof of compilation here
You could use C++'s bitset library, as follows.
#include<iostream>
#include<bitset>
int main()
{
int N;//input number in base 10
cin>>N;
int O[32];//The output array
bitset<32> A=N;//A will hold the binary representation of N
for(int i=0,j=31;i<32;i++,j--)
{
//Assigning the bits one by one.
O[i]=A[j];
}
return 0;
}
A couple of points to note here:
First, 32 in the bitset declaration statement tells the compiler that you want 32 bits to represent your number, so even if your number takes fewer bits to represent, the bitset variable will have 32 bits, possibly with many leading zeroes.
Second, bitset is a really flexible way of handling binary, you can give a string as its input or a number, and again you can use the bitset as an array or as a string.It's a really handy library.
You can print out the bitset variable A as
cout<<A;
and see how it works.
You can do like this:
while (input != 0) {
if (input & 1)
result[index] = 1;
else
result[index] =0;
input >>= 1;// dividing by two
index++;
}
As Mat mentioned above, an int is already a bit-vector (using bitwise operations, you can check each bit). So, you can simply try something like this:
// Note: This depends on the endianess of your machine
int x = 0xdeadbeef; // Your integer?
int arr[sizeof(int)*CHAR_BIT];
for(int i = 0 ; i < sizeof(int)*CHAR_BIT ; ++i) {
arr[i] = (x & (0x01 << i)) ? 1 : 0; // Take the i-th bit
}
Decimal to Binary: Size independent
Two ways: both stores binary represent into a dynamic allocated array bits (in msh to lsh).
First Method:
#include<limits.h> // include for CHAR_BIT
int* binary(int dec){
int* bits = calloc(sizeof(int) * CHAR_BIT, sizeof(int));
if(bits == NULL) return NULL;
int i = 0;
// conversion
int left = sizeof(int) * CHAR_BIT - 1;
for(i = 0; left >= 0; left--, i++){
bits[i] = !!(dec & ( 1u << left ));
}
return bits;
}
Second Method:
#include<limits.h> // include for CHAR_BIT
int* binary(unsigned int num)
{
unsigned int mask = 1u << ((sizeof(int) * CHAR_BIT) - 1);
//mask = 1000 0000 0000 0000
int* bits = calloc(sizeof(int) * CHAR_BIT, sizeof(int));
if(bits == NULL) return NULL;
int i = 0;
//conversion
while(mask > 0){
if((num & mask) == 0 )
bits[i] = 0;
else
bits[i] = 1;
mask = mask >> 1 ; // Right Shift
i++;
}
return bits;
}
I know it doesn't add as many Zero's as you wish for positive numbers. But for negative binary numbers, it works pretty well.. I just wanted to post a solution for once :)
int BinToDec(int Value, int Padding = 8)
{
int Bin = 0;
for (int I = 1, Pos = 1; I < (Padding + 1); ++I, Pos *= 10)
{
Bin += ((Value >> I - 1) & 1) * Pos;
}
return Bin;
}
This is what I use, it also lets you give the number of bits that will be in the final vector, fills any unused bits with leading 0s.
std::vector<int> to_binary(int num_to_convert_to_binary, int num_bits_in_out_vec)
{
std::vector<int> r;
// make binary vec of minimum size backwards (LSB at .end() and MSB at .begin())
while (num_to_convert_to_binary > 0)
{
//cout << " top of loop" << endl;
if (num_to_convert_to_binary % 2 == 0)
r.push_back(0);
else
r.push_back(1);
num_to_convert_to_binary = num_to_convert_to_binary / 2;
}
while(r.size() < num_bits_in_out_vec)
r.push_back(0);
return r;
}

Using pow() for large number

I am trying to solve a problem, a part of which requires me to calculate (2^n)%1000000007 , where n<=10^9. But my following code gives me output "0" even for input like n=99.
Is there anyway other than having a loop which multilplies the output by 2 every time and finding the modulo every time (this is not I am looking for as this will be very slow for large numbers).
#include<stdio.h>
#include<math.h>
#include<iostream>
using namespace std;
int main()
{
unsigned long long gaps,total;
while(1)
{
cin>>gaps;
total=(unsigned long long)powf(2,gaps)%1000000007;
cout<<total<<endl;
}
}
You need a "big num" library, it is not clear what platform you are on, but start here:
http://gmplib.org/
this is not I am looking for as this will be very slow for large numbers
Using a bigint library will be considerably slower pretty much any other solution.
Don't take the modulo every pass through the loop: rather, only take it when the output grows bigger than the modulus, as follows:
#include <iostream>
int main() {
int modulus = 1000000007;
int n = 88888888;
long res = 1;
for(long i=0; i < n; ++i) {
res *= 2;
if(res > modulus)
res %= modulus;
}
std::cout << res << std::endl;
}
This is actually pretty quick:
$ time ./t
./t 1.19s user 0.00s system 99% cpu 1.197 total
I should mention that the reason this works is that if a and b are equivalent mod m (that is, a % m = b % m), then this equality holds multiple k of a and b (that is, the foregoing equality implies (a*k)%m = (b*k)%m).
Chris proposed GMP, but if you need just that and want to do things The C++ Way, not The C Way, and without unnecessary complexity, you may just want to check this out - it generates few warnings when compiling, but is quite simple and Just Works™.
You can split your 2^n into chunks of 2^m. You need to find: `
2^m * 2^m * ... 2^(less than m)
Number m should be 31 is for 32-bit CPU. Then your answer is:
chunk1 % k * chunk2 * k ... where k=1000000007
You are still O(N). But then you can utilize the fact that all chunk % k are equal except last one and you can make it O(1)
I wrote this function. It is very inefficient but it works with very large numbers. It uses my self-made algorithm to store big numbers in arrays using a decimal like system.
mpfr2.cpp
#include "mpfr2.h"
void mpfr2::mpfr::setNumber(std::string a) {
for (int i = a.length() - 1, j = 0; i >= 0; ++j, --i) {
_a[j] = a[i] - '0';
}
res_size = a.length();
}
int mpfr2::mpfr::multiply(mpfr& a, mpfr b)
{
mpfr ans = mpfr();
// One by one multiply n with individual digits of res[]
int i = 0;
for (i = 0; i < b.res_size; ++i)
{
for (int j = 0; j < a.res_size; ++j) {
ans._a[i + j] += b._a[i] * a._a[j];
}
}
for (i = 0; i < a.res_size + b.res_size; i++)
{
int tmp = ans._a[i] / 10;
ans._a[i] = ans._a[i] % 10;
ans._a[i + 1] = ans._a[i + 1] + tmp;
}
for (i = a.res_size + b.res_size; i >= 0; i--)
{
if (ans._a[i] > 0) break;
}
ans.res_size = i+1;
a = ans;
return a.res_size;
}
mpfr2::mpfr mpfr2::mpfr::pow(mpfr a, mpfr b) {
mpfr t = a;
std::string bStr = "";
for (int i = b.res_size - 1; i >= 0; --i) {
bStr += std::to_string(b._a[i]);
}
int i = 1;
while (!0) {
if (bStr == std::to_string(i)) break;
a.res_size = multiply(a, t);
// Debugging
std::cout << "\npow() iteration " << i << std::endl;
++i;
}
return a;
}
mpfr2.h
#pragma once
//#infdef MPFR2_H
//#define MPFR2_H
// C standard includes
#include <iostream>
#include <string>
#define MAX 0x7fffffff/32/4 // 2147483647
namespace mpfr2 {
class mpfr
{
public:
int _a[MAX];
int res_size;
void setNumber(std::string);
static int multiply(mpfr&, mpfr);
static mpfr pow(mpfr, mpfr);
};
}
//#endif
main.cpp
#include <iostream>
#include <fstream>
// Local headers
#include "mpfr2.h" // Defines local mpfr algorithm library
// Namespaces
namespace m = mpfr2; // Reduce the typing a bit later...
m::mpfr tetration(m::mpfr, int);
int main() {
// Hardcoded tests
int x = 7;
std::ofstream f("out.txt");
m::mpfr t;
for(int b=1; b<x;b++) {
std::cout << "2^^" << b << std::endl; // Hardcoded message
t.setNumber("2");
m::mpfr res = tetration(t, b);
for (int i = res.res_size - 1; i >= 0; i--) {
std::cout << res._a[i];
f << res._a[i];
}
f << std::endl << std::endl;
std::cout << std::endl << std::endl;
}
char c; std::cin.ignore(); std::cin >> c;
return 0;
}
m::mpfr tetration(m::mpfr a, int b)
{
m::mpfr tmp = a;
if (b <= 0) return m::mpfr();
for (; b > 1; b--) tmp = m::mpfr::pow(a, tmp);
return tmp;
}
I created this for tetration and eventually hyperoperations. When the numbers get really big it can take ages to calculate and a lot of memory. The #define MAX 0x7fffffff/32/4 is the number of decimals one number can have. I might make another algorithm later to combine multiple of these arrays into one number. On my system the max array length is 0x7fffffff aka 2147486347 aka 2^31-1 aka int32_max (which is usually the standard int size) so I had to divide int32_max by 32 to make the creation of this array possible. I also divided it by 4 to reduce memory usage in the multiply() function.
- Jubiman