OpenGL - Draw two textures using the same FBO? - opengl

How can I draw two textures using the same FBO?
As seen bellow, I have a initDesktop() where I initialize my both textures (previously loaded using SOIL).
On my other class, I want to execute the drawDesktop() which will draw my background rectangle with a texture, and a footer rectangle...
I only see the footer...
What I am missing here?
EDITED
void Desktop::initDesktop ()
{
GLuint fboId = 0;
glGenFramebuffers(1, &fboId);
glBindFramebuffer(GL_READ_FRAMEBUFFER, fboId);
//now with GL_COLOR_ATTACHMENT0
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D, m_background.getId(), 0);
//now with GL_COLOR_ATTACHMENT1
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,GL_TEXTURE_2D, m_footer.getId(), 0);
}
void Desktop::drawDesktop ()
{
drawBackground ();
drawFooter ();
}
void Desktop::drawBackground ()
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glReadBuffer(GL_COLOR_ATTACHMENT0); //<-- ?
glBlitFramebuffer(0, 0, 1200, 800, 0, 0, 1200, 800, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
void Desktop::drawFooter ()
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glReadBuffer(GL_COLOR_ATTACHMENT1); //<-- ?
glBlitFramebuffer(0, 0, 1200, 100, 0, 0, 1200, 100, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
Thanks!

You are trying to attach two textures to the same attachment point:
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D, m_background.getId(), 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D, m_footer.getId(), 0);
the latter call will override the former one. So you have the footer texture bound to this FBO. To fix this, you can attach both textures to different attachment points, like GL_COLOR_ATTACHMENT0 and GL_COLOR_ATTACHMENT1 and can use
glReadBuffer() to select which one glBlitFramebuffer() will read from. Don't confuse the currently selected read and draw buffers with the currenlty bound read and rsw framebuffers. These are different concepts. Drawing will always go into the currently selected drawbuffer(s) of the currently bound GL_DRAW_FRAMEBUFFER, and read operations on the color buffer source the pixel data from the currently selected read framebuffer of the currently bound GL_READ_FRAMEBUFFER.
Another option would be to just attach one texture at a time, and switch between them. Or even using two FBOs. But switching the read buffer alone is probably the cheapest.

Related

Rendering viewport to texture produces overlaps viewports?

I'm creating a 2D Engine and I want to implement docking, so I need to create a viewport and render the screen to a texture.
To render the viewport I'm saving the framebuffer into a FrameBufferObject and drawing as normally, I used this technique time ago and it worked with no problems, here is the Draw code:
glBindFramebuffer(GL_FRAMEBUFFER, fbo_msaa_id);
glViewport(0, 0, width, height);
DrawRoomObjects();
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo_msaa_id);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_id);
glBlitFramebuffer(0, 0, width, height, // src rect
0, 0, width, height, // dst rect
GL_COLOR_BUFFER_BIT, // buffer mask
GL_LINEAR); // scale filter
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(0, 0, App->moduleWindow->screen_surface->w, App->moduleWindow->screen_surface->h);
I've made shure the DrawRoomsObjects() function is working correctly, and FBO is initialized correctly.
Here is the code to render the texture created using ImGui library:
glEnable(GL_TEXTURE_2D);
if (ImGui::Begin("Game Viewport", &visible, ImGuiWindowFlags_MenuBar)) {
ImGui::Image(viewportTexture->GetTextureID());
}
Before this chunk I make some calculations to fit the image to the dock, I'm not using viewportTexture any more on the code.
The problem comes when I get this weird artifact at the time of moving the quad, which I don't know how to call, click this link to see a gif of the bug.
It seems the texture is not cleaning the data correctly...?
You've to clear the framebuffer, before you render the objects to the framebuffer:
glBindFramebuffer(GL_FRAMEBUFFER, fbo_msaa_id);
glViewport(0, 0, width, height);
glClear(GL_COLOR_BUFFER_BIT);
DrawRoomObjects();

copy GL_TEXTURE_2D into one slice of a GL_TEXTURE_2D_ARRAY Texture

I'm trying to copy one GL_TEXTURE_2D into a chosen slice of a GL_TEXTURE_2D_ARRAY Texture.
I try to bind the usual Texture_2D to one framebuffer and only a slice of the Texture_2D_Array to another framebuffer (both have the same size (width, height, GL_RGB, GL_UNSIGNED_BYTE)).
Afterwards I thought to glBlitFramebuffer would copy that texture into this one slice... but I think I misunderstand the glFramebufferTexture3D command.
BTW: the GL_TEXTURE_2D is loaded correctly and I also printed it out (works)
Here my code:
//Create 2 FBOs for copying textures
glGenFramebuffers(1, &nFrameBufferRead); //FBO for texture2D
glGenFramebuffers(1, &nFrameBufferWrite); //FBO for one slice of the texture2d_array
CBasics::GetOpenGLError();
//generate the GL_TEXTURE_2D_ARRAY with given values (glgentextures is already called for this texture)
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGB, nWidth, nHeight, countSlices, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
CBasics::GetOpenGLError();
//Bind the Texture2D to the readFramebuffer
glBindFramebuffer(GL_READ_FRAMEBUFFER, nFrameBufferRead);
glFramebufferTexture(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, texture2D_ID, 0);
CBasics::GetOpenGLError();
//try to bind the Texture2D_Array to the drawFramebuffer
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, nFrameBufferWrite);
CBasics::GetOpenGLError(); //till here everything works (no glerror)
glFramebufferTexture3D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D_ARRAY, texture2D_Array_ID, 0, slicenumber); // here the error appears
CBasics::GetOpenGLError();
//because of the error one step earlier here will be the next error...
glBlitFramebuffer(0, 0, nWidth, nHeight, 0, 0, nWidth, nHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST);
CBasics::GetOpenGLError();
at glFramebufferTexture3D the error appears: GL_INVALID_VALUE
I think it is because of
GL_INVALID_VALUE is generated if texture is not zero or the name of an
existing texture object.
1st: Is this way to copy textures into arrayslices correctly? Or is there a better way to do that?
2nd: Is it possible to bind only one slice of a GL_TEXTURE_2D_ARRAY?
3rd: Do I need the glFramebufferTexture3D command or the glFramebufferTexture2D command for GL_TEXTURE_2D_ARRAYs?
Assuming that "Here's my code" actually does contain all of your code, it doesn't work because you didn't bind the 2D array texture before calling glTexImage3D to allocate storage for it.
However, you don't have to render or blit to copy texture data. You can copy texture data by... copying texture data. The glCopyImageSubData function can copy layers between textures with different array layer counts. In your case:
glCopyImageSubData(
texture2D_ID, GL_TEXTURE_2D, 0, 0, 0, 0,
texture2D_Array_ID, GL_TEXTURE_2D_ARRAY, 0, 0, 0, slicenumber,
nWidth, nHeight, 1);
This requires OpenGL 4.3 or better, or one of the ARB/NV_copy_image extensions. The NVIDIA extension is actually quite widely implemented.
But you still need to use glTexImage3D correctly.

OpenGL How to render to texture with multi-sampling

Implementing some effect, I end up with 1 frame buffer associated to 1 texture, which holds my final scene. This texture is then applied on a fullscreen quad.
The result is what I expect as far as the effect goes, but I noticed that edges on the scene thus rendered, weren't smooth - presumably, because multi-sampling did not apply during render-to-framebuffer passes, as it does when I render directly to the screen buffer.
So my question is
How can I apply/use multi-sampling on this final texture, so that its content shows smooth edges?
EDIT: I have removed the original version of my code here, which was using
a classic FrameBuffer + Texture not multi-sampled. Below is the lastest,
following suggestions in the comments.
For now also, I'll focusing on getting the glBlitFramebuffer approach to work!
So my code now goes like so:
// Unlike before, finalTexture is multi-sampled, thus created like this:
glGenFramebuffers(1, &finalFrame);
glGenTextures(1, &finalTexture);
glBindFramebuffer(GL_FRAMEBUFFER, finalFrame);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, finalTexture);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, 4, GL_RGBA, w, h, GL_TRUE);
glFramebufferTexture2D(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D_MULTISAMPLE,
finalTexture,
0);
// Alternative using a render buffer instead of a texture.
//glGenRenderbuffers(1, &finalColor);
//glBindRenderbuffer(GL_RENDERBUFFER, finalColor);
//glRenderbufferStorageMultisample(GL_RENDERBUFFER, 8, GL_RGBA, w, h);
//glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, finalColor);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Then I introduced a new frame buffer to resolve the multi-sampling:
// This one's not multi-sampled.
glGenFramebuffers(1, &resolveFrame);
glGenTextures(1, &resolveTexture);
glBindFramebuffer(GL_FRAMEBUFFER, resolveFrame);
glBindTexture(GL_TEXTURE_2D, resolveTexture);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D,
resolveTexture,
0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Now a lot of code to produce a glowing effect, things like:
// 1. Generate 1 frame buffer with 2 color attachments (textures) - no multisampling
// 2. Render the 3D scene to it:
// - texture 0 receives the entire scene
// - texture 1 receives glowing objects only
// 3. Generate 2 frame buffers with 1 color attachment (texture) each - no multisampling
// - we can call them Texture 2 and texture 3
// 4. Ping-pong Render a fullscreen textured quad on them
// - On the first iteration we use texture 1
// - Then On each following iteration we use one another's texture (3,2,3...)
// - Each time we apply a gaussian blur
// 5. Finally sum texture 0 and texture 3 (holding the last blur result)
// - For this we create a multi-sampled frame buffer:
// - Created as per code here above: finalFrame & **finalTexture**
// - To produce the sum, we draw a full screen texured quad with 2 sampler2D:
// - The fragment shader then computes texture0+texture3 on each pixel
// - finalTexture now holds the scene as I expect it to be
// Then I resolve the multi-sampled texture into a normal one:
glBindFramebuffer(GL_READ_FRAMEBUFFER, finalFrame);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolveFrame);
glBlitFramebuffer(0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
// And the last stage: render onto the screen:
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resolveTexture);
drawFullScreenQuad( ... );
The resulting output is correct, meaning that I can see the scene with the desired glowing effect... But no apparent multi-sampling! :(
Note: I am starting to wonder, if I am using multi-sampling at the right stage - I will be experimenting on this - but any chance I should use it when rendering the initial 3D scene for the first time, on the initial FBOs? (the ones I refer to in the comments and I didn't want to post here to avoid confusion :s)
I added more detailed comments on what's going on before this last stage with final & resolve frame buffers.
You have: "step 5. Finally sum texture 0 and texture 3 (holding the last blur result) - For this we create a multi-sampled frame buffer". But this way multisampling will only apply to fullscreen quad.
"if I am using multi-sampling at the right stage" so the answer to your question is no, you need to use multisampling on another stage when you render a scene.
I have very similar setup with framebuffers (that one which is used to render the scene is multisampled) two output textures (for color info and for highlights which will later be blurred to achieve glow) and ping-pong framebuffers. I also use glBlitFramebuffer solution (also I use 2 blit calls for each color attachment, each one will go in own texture), have not found any way of making it render directly into framebuffer with attached texture.
If you want some code, this is solution that worked for me (it is in C# though):
// ----------------------------
// Initialization
int BlitFrameBufferHandle = GL.GenFramebuffer();
GL.BindFramebuffer(FramebufferTarget.Framebuffer, BlitFrameBufferHandle);
// need to setup this for 2 color attachments:
GL.DrawBuffers(2, new [] {DrawBuffersEnum.ColorAttachment0, DrawBuffersEnum.ColorAttachment1});
// create texture 0
int ColorTextureHandle0 = GL.GenTexture();
GL.BindTexture(TextureTarget.Texture2D, ColorTextureHandle0);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int) TextureMinFilter.Linear); // can use nearest for min and mag filter also
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int) TextureMagFilter.Linear);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapS, (int) TextureWrapMode.ClampToEdge);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapT, (int) TextureWrapMode.ClampToEdge);
// for HRD use PixelInternalFormat.Rgba16f and PixelType.Float. Otherwise PixelInternalFormat.Rgba8 and PixelType.UnsignedByte
GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba16f, Width, Height, 0, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero);
GL.FramebufferTexture2D(FramebufferTarget.Framebuffer, FramebufferAttachment.ColorAttachment0, TextureTarget.Texture2D, ColorTextureHandle0, 0);
// create texture 1
int ColorTextureHandle1 = GL.GenTexture();
GL.BindTexture(TextureTarget.Texture2D, ColorTextureHandle1);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int) TextureMinFilter.Linear);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int) TextureMagFilter.Linear);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapS, (int) TextureWrapMode.ClampToEdge);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapT, (int) TextureWrapMode.ClampToEdge);
GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba16f, Width, Height, 0, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero);
GL.FramebufferTexture2D(FramebufferTarget.Framebuffer, FramebufferAttachment.ColorAttachment1, TextureTarget.Texture2D, ColorTextureHandle1, 0);
// check FBO error
var error = GL.CheckFramebufferStatus(FramebufferTarget.Framebuffer);
if (error != FramebufferErrorCode.FramebufferComplete) {
throw new Exception($"OpenGL error: Framwbuffer status {error.ToString()}");
}
int FrameBufferHandle = GL.GenFramebuffer();
GL.BindFramebuffer(FramebufferTarget.Framebuffer, FrameBufferHandle);
// need to setup this for 2 color attachments:
GL.DrawBuffers(2, new [] {DrawBuffersEnum.ColorAttachment0, DrawBuffersEnum.ColorAttachment1});
// render buffer 0
int RenderBufferHandle0 = GL.GenRenderbuffer();
GL.BindRenderbuffer(RenderbufferTarget.Renderbuffer, RenderBufferHandle0);
GL.RenderbufferStorageMultisample(RenderbufferTarget.Renderbuffer, 8, RenderbufferStorage.Rgba16f, Width, Height);
GL.FramebufferRenderbuffer(FramebufferTarget.Framebuffer, FramebufferAttachment.ColorAttachment0, RenderbufferTarget.Renderbuffer, RenderBufferHandle0);
// render buffer 1
int RenderBufferHandle1 = GL.GenRenderbuffer();
GL.BindRenderbuffer(RenderbufferTarget.Renderbuffer, RenderBufferHandle1);
GL.RenderbufferStorageMultisample(RenderbufferTarget.Renderbuffer, 8, RenderbufferStorage.Rgba16f, Width, Height);
GL.FramebufferRenderbuffer(FramebufferTarget.Framebuffer, FramebufferAttachment.ColorAttachment1, RenderbufferTarget.Renderbuffer, RenderBufferHandle1);
// depth render buffer
int DepthBufferHandle = GL.GenRenderbuffer();
GL.BindRenderbuffer(RenderbufferTarget.Renderbuffer, DepthBufferHandle);
GL.RenderbufferStorageMultisample(RenderbufferTarget.Renderbuffer, 8, RenderbufferStorage.DepthComponent24, Width, Height);
GL.FramebufferRenderbuffer(FramebufferTarget.Framebuffer, FramebufferAttachment.DepthAttachment, RenderbufferTarget.Renderbuffer, DepthBufferHandle);
// check FBO error
var error = GL.CheckFramebufferStatus(FramebufferTarget.Framebuffer);
if (error != FramebufferErrorCode.FramebufferComplete) {
throw new Exception($"OpenGL error: Framwbuffer status {error.ToString()}");
}
// unbind FBO
GL.BindFramebuffer(FramebufferTarget.Framebuffer, 0);
// ----------------------------
// Later for each frame
GL.BindFramebuffer(FramebufferTarget.Framebuffer, FrameBufferHandle);
// render scene ...
// blit data from FrameBufferHandle to BlitFrameBufferHandle
GL.BindFramebuffer(FramebufferTarget.ReadFramebuffer, FrameBufferHandle);
GL.BindFramebuffer(FramebufferTarget.DrawFramebuffer, BlitFrameBufferHandle);
// blit color attachment0
GL.ReadBuffer(ReadBufferMode.ColorAttachment0);
GL.DrawBuffer(DrawBufferMode.ColorAttachment0);
GL.BlitFramebuffer(
0, 0, Width, Height,
0, 0, Width, Height,
ClearBufferMask.ColorBufferBit, BlitFramebufferFilter.Nearest
);
// blit color attachment1
GL.ReadBuffer(ReadBufferMode.ColorAttachment1);
GL.DrawBuffer(DrawBufferMode.ColorAttachment1);
GL.BlitFramebuffer(
0, 0, Width, Height,
0, 0, Width, Height,
ClearBufferMask.ColorBufferBit, BlitFramebufferFilter.Nearest
);
// after that use textures ColorTextureHandle0 and ColorTextureHandle1 to render post effects using ping-pong framebuffers ...
Just implemented a bloom effect myself, faced the same aliased edges on the resulting image and faced the exactly same issues. Hence sharing my experience here.
Aliasing happens when you render the lines with OpenGL - e.g. edges of a triangle or a polygon, since OpenGL draws "diagonal" (or simply put non-straight) lines on the screen using quite simple (yet fast) algorithms.
That being said, if you want to anti-alias something - that would be a 3D shape, not a texture - it is just a plain image after all.
Off-topic: in order to fix aliasing on an image you would apply the similar technique, but you would need to figure out where the "edges" are on the image and then follow the same algorithm per "edge" pixel. "Edge" (in quotes) since they are just ordinary pixels from the image perspective and being an edge is just extra context we humans attach to those pixels.
With that out of our way, the thing with two image attachments is actually a nice optimization - you do not need to render your entire scene twice to different framebuffers. But you will pay the price of copying the data from each multi-sampled framebuffer attachment to a separate non-multisampled texture for post-processing.
A bit off-topic: performance-wise, I think this is exactly the same (or within a very small threshold) - rendering an entire scene twice, to two separate framebuffers with two separate multi-sampled attachments (as inputs for the post-processing) and then copying each of them separately to two separate non-multisampled textures.
So the last step before you can apply your (any) post-processing to the multi-sampled scene is to convert each multi-sampled render result to non-multisampled texture - so that your shaders work with plain sampler2D.
It would be something similar to this:
glBindFramebuffer(GL_READ_FRAMEBUFFER, bloomFBOWith2MultisampledAttachments);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, temporaryFBOWith1NonMultisampledAttachment);
// THIS IS IMPORTANT
glReadBuffer(GL_COLOR_ATTACHMENT0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, windowWidth, windowHeight, 0, 0, windowWidth, windowHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST);
// bloomFBOWith2MultisampledAttachments is still bound
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, blurFramebuffer1);
// THIS IS IMPORTANT
glReadBuffer(GL_COLOR_ATTACHMENT1);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, windowWidth, windowHeight, 0, 0, windowWidth, windowHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
Given you are rendering your scene to two attachments in one framebuffer, you will then need to copy from each of those multi-sampled attachments to non-multi-sampled textures and use them for additive rendering and blurring, correspondingly.
If you don't mind messy code and the use of globjects for OpenGL APIs abstraction, here's my entire bloom solution with anti-aliasing.
And few screenshots:
The first screenshot does not use a framebuffer to render to, so the lines are really smooth.
The second screenshot is the first implementation of a bloom effect (available as a separate CMake project).
Aliasing is more visible on longer distances, so the third screenshots shows a bit more of a scene - the edges look really stairs-like.
The last two screenshots show the bloom effect with anti-aliasing applied.
Note how lantern only has somewhat low-resolution texture, hence aliased lines, whilst the paper has its edges smoothed out by anti-aliasing.

Multisample Texture produces artifacts at horizon

I have implemented a deferred rendering and am trying to use multisample textures for anti aliasing.
I render the scene into a FBO with multisample textures, use glBlit to create regular textures in a second FBO and finally bind the texture to the lighting shader that produces the final image.
// draw to textures
mMultiGeometryFBO->bind();
glViewport(0,0,mWidth,mHeight);
glEnable(GL_DEPTH_TEST);
glClear( GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT );
// calling all modules to draw to FBO
for(auto r : mRenderer)
r->renderMaterial(camera);
glBindFramebuffer(GL_READ_FRAMEBUFFER, mMultiGeometryFBO->fbo());
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, mGeometryFBO->fbo());
glReadBuffer(GL_COLOR_ATTACHMENT0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, mWidth, mHeight,
0, 0, mWidth, mHeight, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_LINEAR);
glReadBuffer(GL_COLOR_ATTACHMENT1);
glDrawBuffer(GL_COLOR_ATTACHMENT1);
glBlitFramebuffer(0, 0, mWidth, mHeight,
0, 0, mWidth, mHeight, GL_COLOR_BUFFER_BIT, GL_LINEAR);
glReadBuffer(GL_COLOR_ATTACHMENT2);
glDrawBuffer(GL_COLOR_ATTACHMENT2);
glBlitFramebuffer(0, 0, mWidth, mHeight,
0, 0, mWidth, mHeight, GL_COLOR_BUFFER_BIT, GL_LINEAR);
// draw to screen
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_DEPTH_BUFFER_BIT);
mSkybox->renderMaterial(camera);
mShader->use();
mShader->setTexture("tDiffuse", mDiffuseColor, 0);
mShader->setTexture("tNormal", mNormals, 1);
mShader->setTexture("tMaterial", mMaterialParams, 2);
mShader->setTexture("tDepth", mDepthBuffer, 3);
mShader->setTexture("tLights", mLightColor, 4);
mQuad->draw();
This produces a visible line at the horizon (between geometry and skybox).
The color is the clear color. Only clearing the depth reduces the problem when moving. Rendering the SkyBox to the FBO before rendering the geometry produces less visible artifacts, but the line is still there.
Edit: forgot the picture
Resolving the multisample target before the lighting pass does not make sense, conceptually. What you will get is that the values in your gbuffers will be averaged at the edges of objects. This is especially bad for the normal directions. Think about it: If you have a pixel which contains 50% of your ground plane, and 50% of your sky, you will get a normal direction which is (normal_ground + normal_sky)/2. This is totally different from calculating the final color of each of this parts with their original normal and mixing the resulting colors.
If you want to do multisampling with deferred rendering, you have to use the multisampling target for the lighting, and will have to enable per sample shading and actually access and light each sample individually, and only blit the final result to a non-multisampled target. However, that will be exorbitantly expensive. You especially lose the benefits of multisampling vs. supersampling.
I don't know if there are some neat tricks trick to still work with multisampling in a more efficient way, but the usual approach is to not use multisampling at all and doing the anti-aliasing via some image-based postprocessing pass.

Can I use OpenGL for off-screen rendering? [duplicate]

This question already has answers here:
How to use GLUT/OpenGL to render to a file?
(6 answers)
Closed 9 years ago.
I want to try to make a simple program that takes a 3D model and renders it into an image. Is there any way I can use OpenGL to render an image and put it into a variable that holds an image rather than displaying an image? I don't want to see what I'm rendering I just want to save it. Is there any way to do this with OpenGL?
I'm assuming that you know how to draw stuff to the screen with OpenGL, and you wrote a function such as drawStuff to do so.
First of all you have to decide how big you want your final render to be; I'm choosing a square here, with size 512x512. You can also use sizes that are not power of two, but to keep things simple let's stick to this format for now. Sometimes OpenGL gets picky about this issue.
const int width = 512;
const int height = 512;
Then you need three objects in order to create an offscreen drawing area; this is called a frame buffer object as user1118321 said.
GLuint color;
GLuint depth;
GLuint fbo;
The FBO stores a color buffer and a depth buffer; also you screen rendering area has these two buffers, but you don't want to use them because you don't want to draw to the screen. To create the FBO, you need to do something like the following only one time for instance at startup:
glGenTextures(1, &color);
glBindTexture(GL_TEXTURE_2D, color);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
glGenRenderbuffers(1, &depth);
glBindRenderbuffer(GL_RENDERBUFFER, depth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, width, height);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color, 0);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
First you create a memory area to store pixel color, than one to store pixel depth (which in computer graphics is used to remove hidden surfaces), and finally you connect them to the FBO, which basically holds a reference to both. Consider as an example the first block, with 6 calls:
glGenTextures creates a name for a texture; a name in OpenGL is simply an integer, because a string would be too inefficient.
glBindTexture binds the texture to a target, namely GL_TEXTURE_2D; subsequent calls that specify that same target will operate on that texture.
The 3rd, 4th and 5th call are specific to the target being manipulated, and you should refer to the OpenGL documentation for further information.
The last call to glBindTexture unbinds the texture from the target. Since at some point you will hand control to your drawStuff function, which in turn will make its whole lot of OpenGL calls, you need to clear you workspace now, to avoid interference with the object that you have created.
To switch from screen rendering to offscreen rendering you could use a boolean variable somewhere in your program:
if (offscreen)
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
else
glBindFramebuffer(GL_FRAMEBUFFER, 0);
drawStuff();
if (offscreen)
saveToFile();
So, if offscreen is true you actually want drawStuff to interfere with fbo, because you want it to render the scene on it.
Function saveToFile is responsible for loading the result of the rendering and converting it to file. This is heavily dependent on the OS and language that you are using. As an example, on Mac OS X with C it would be something like the following:
void saveImage()
{
void *imageData = malloc(width * height * 4);
glBindTexture(GL_TEXTURE_2D, color);
glGetTexImage(GL_TEXTURE_2D, 0, GL_BGRA, GL_UNSIGNED_BYTE, imageData);
CGContextRef contextRef = CGBitmapContextCreate(imageData, width, height, 8, 4 * width, CGColorSpaceCreateWithName(kCGColorSpaceGenericRGB), kCGImageAlphaPremultipliedLast);
CGImageRef imageRef = CGBitmapContextCreateImage(contextRef);
CFURLRef urlRef = (CFURLRef)[NSURL fileURLWithPath:#"/Users/JohnDoe/Documents/Output.png"];
CGImageDestinationRef destRef = CGImageDestinationCreateWithURL(urlRef, kUTTypePNG, 1, NULL);
CGImageDestinationAddImage(destRef, imageRef, nil);
CFRelease(destRef);
glBindTexture(GL_TEXTURE_2D, 0);
free(imageData);
}
Yes, you can do that. What you want to do is create a frame buffer object (FBO) backed by a texture. Once you create one and draw to it, you can download the texture to main memory and save it just like you would any bitmap.