Why do we need such an operator in C++ and how is it useful in modern C++ programming? Any real world code examples where this can be applied will help.
This question is geared to understand the practical application in real world without reading wordy proposal from Herb Sutter. No offense to the proposal though.
I'll give you three points of motivation, just off the top of my head:
It's the common generalization of all other comparison operator (for totally-ordered domains): >, >=, ==, <=, < . Using <=> (spaceship), you can implement each of these other operations in a completely generic way.
For strings, it's equivalent to the good old strcmp() function from the C standard library. So - useful for lexicographic order checks, such as data in vectors or lists or other ordered containers.
For integral numbers, it's what the hardware does anyway: On x86 or x86_64 Comparing a and b (CMP RAX, RBX) is basically like subtracting (SUB RAX, RBX) except that RAX doesn't actually change, only the flags are affected, so you can use "jump on equal/not equal/greater than/lesser than/etc." (JE/JNE/JGT/JLT etc.) as the next instruction. CMP should be thought of as a "spaceship compare".
i want binary number that only have 0's at the beginning or end, for instance,
1111111
01111110
001111111
000111000
but no:
01001
0011101
do they have an specific name or property to get them?
I'm looking for something like linear integer optimization conditions, my solutions must have this form, but i can't think of any condition i can add to ensure that
Regards,
This is something which is not nice to formulate within mixed-integer programs. Most problems involving this are more suitable for alternative methods (SAT-solving, SMT-solving, Constraint-programming).
It can be done of course, but the solver will have some work as the formulation is non-trivial and introduces a lot of binary-variables (and the basic approach of MIP-solvers won't work amazingly here; bad integrality-gap).
I won't give you a complete solution, but some basic idea on how to formulate this and i also indicate how hard and cumbersome it is (there are alternative formulations; actually infinite many; but nothing much more simple).
The basic idea here is the following:
your binary number is constructed from N binary-variables
let's call them x
you introduce N auxiliary binary-variables l (left)
l[i] == 1 implicates: every l[j] with i<j is 0
you introduce N auxiliary binary-variables r (right)
r[i] == 1 implicates: every r[j] with i>j is 0
you add the following constraint for each position k:
x[k] == 0 implicates: l[i] == 1 for i < k OR r[i] == 1 for i>k
idea::
if there is a zero somewhere, either all on the left-side or all on the right-side are zeroes (or means: at least one side; but can be both)
To formulate this, you need two more ideas:
A: How to formulate the equality-check?
B: How to formulate the implication?
Remark: a -> b == not a or b (propositional calculus)
(this was wrongly stated earlier and corrected by OP)
These are common in MIP and you will find the solution in many integer-programming books, tutorial and papers. Here is an example (start with indicator-variables).
Another small common formulation:
if a is binary, b is binary:
a OR b is equivalent to: a+b >= 1 (the latter is a linear-expression ready to use for MIP)
Remark: The formulas in my idea-setting above might be wrong in regards to indices (i vs. i-1, vs. i+1) and binary-relations (<vs. <=). You will need to do the actual math yourself and just learn from the idea itself!
Remark 2: This kind of constraint is cumbersome in MIP, but more easily formulated within SAT and CP.
I was trying to compile a project which solves the Navier-Stokes on a sphere available here:
https://fms.gfdl.noaa.gov/gf/
the default compiler used is ifort, and I wanted to use gfortran, since I want to make it finally available to whoever wishes to use it.
at some points in the code, there are statements like
if (x == y)
,where x and y are both derived types (called domain1d/2d) containing integers, reals and pointers. gfortran complains saying that the comparison is between non numbers and quits.
I then downloaded a trial version of ifort and it compiled without issues.
So, I wanted to know whether this is some kind of ifort shorthand to actual comparison of each member of the type/structure (im more comfortable with the C terminology!) or whether im missing something fundamental, being new to fortran?
I understand comparing derived types makes little sense sometimes, but here it simply seems to be checking whether both carry the same information.
Thanks,
Joy
Richard W is correct. I encountered a similar problem with an atmospheric code from NOAA. This is a bug in older versions of GCC (it affected me in 4.47 and not in 4.8). For some reason, overloading .EQ. does not overload == and vice versa (if you look at the implementation of domain1D, it definitely overloads .EQ. and then == shows up somewhere else in the code). I solved the problem by ensuring that either .EQ. or == was used throughout.
To the best of my knowledge, .EQ. and == should be equivalent (I haven't looked that hard at the standard) which is why ifort (and in my case, the SGI Fortran compiler) did not encounter this problem.
Are there any definitions of functions like sqrt(), sin(), cos(), tan(), log(), exp() (these from math.h/cmath) available ?
I just wanted to know how do they work.
This is an interesting question, but reading sources of efficient libraries won't get you very far unless you happen to know the method used.
Here are some pointers to help you understand the classical methods. My information is by no means accurate. The following methods are only the classical ones, particular implementations can use other methods.
Lookup tables are frequently used
Trigonometric functions are often implemented via the CORDIC algorithm (either on the CPU or with a library). Note that usually sine and cosine are computed together, I always wondered why the standard C library doesn't provide a sincos function.
Square roots use Newton's method with some clever implementation tricks: you may find somewhere on the web an extract from the Quake source code with a mind boggling 1 / sqrt(x) implementation.
Exponential and logarithms use exp(2^n x) = exp(x)^(2^n) and log2(2^n x) = n + log2(x) to have an argument close to zero (to one for log) and use rational function approximation (usually Padé approximants). Note that this exact same trick can get you matrix exponentials and logarithms. According to #Stephen Canon, modern implementations favor Taylor expansion over rational function approximation where division is much slower than multiplication.
The other functions can be deduced from these ones. Implementations may provide specialized routines.
pow(x, y) = exp(y * log(x)), so pow is not to be used when y is an integer
hypot(x, y) = abs(x) sqrt(1 + (y/x)^2) if x > y (hypot(y, x) otherwise) to avoid overflow. atan2 is computed with a call to sincos and a little logic. These functions are the building blocks for complex arithmetic.
For other transcendental functions (gamma, erf, bessel, ...), please consult the excellent book Numerical Recipes, 3rd edition for some ideas. The good'old Abramowitz & Stegun is also useful. There is a new version at http://dlmf.nist.gov/.
Techniques like Chebyshev approximation, continued fraction expansion (actually related to Padé approximants) or power series economization are used in more complex functions (if you happen to read source code for erf, bessel or gamma for instance). I doubt they have a real use in bare-metal simple math functions, but who knows. Consult Numerical Recipes for an overview.
Every implementation may be different, but you can check out one implementation from glibc's (the GNU C library) source code.
edit: Google Code Search has been taken offline, so the old link I had goes nowhere.
The sources for glibc's math library are located here:
http://sourceware.org/git/?p=glibc.git;a=tree;f=math;h=3d5233a292f12cd9e9b9c67c3a114c64564d72ab;hb=HEAD
Have a look at how glibc implements various math functions, full of magic, approximation and assembly.
Definitely take a look at the fdlibm sources. They're nice because the fdlibm library is self-contained, each function is well-documented with detailed explanations of the mathematics involved, and the code is immensely clear to read.
Having looked a lot at math code, I would advise against looking at glibc - the code is often quite difficult to follow, and depends a lot on glibc magic. The math lib in FreeBSD is much easier to read, if somehow sometimes slower (but not by much).
For complex functions, the main difficulty is border cases - correct nan/inf/0 handling is already difficult for real functions, but it is a nightmare for complex functions. C99 standard defines many corner cases, some functions have easily 10-20 corner cases. You can look at the annex G of the up to date C99 standard document to get an idea. There is also a difficult with long double, because its format is not standardized - in my experience, you should expect quite a few bugs with long double. Hopefully, the upcoming revised version of IEEE754 with extended precision will improve the situation.
Most modern hardware include floating point units that implement these functions very efficiently.
Usage: root(number,root,depth)
Example: root(16,2) == sqrt(16) == 4
Example: root(16,2,2) == sqrt(sqrt(16)) == 2
Example: root(64,3) == 4
Implementation in C#:
double root(double number, double root, double depth = 1f)
{
return Math.Pow(number, Math.Pow(root, -depth));
}
Usage: Sqrt(Number,depth)
Example: Sqrt(16) == 4
Example: Sqrt(8,2) == sqrt(sqrt(8))
double Sqrt(double number, double depth = 1) return root(number,2,depth);
By: Imk0tter
I feel like I must just be unable to find it. Is there any reason that the C++ pow function does not implement the "power" function for anything except floats and doubles?
I know the implementation is trivial, I just feel like I'm doing work that should be in a standard library. A robust power function (i.e. handles overflow in some consistent, explicit way) is not fun to write.
As of C++11, special cases were added to the suite of power functions (and others). C++11 [c.math] /11 states, after listing all the float/double/long double overloads (my emphasis, and paraphrased):
Moreover, there shall be additional overloads sufficient to ensure that, if any argument corresponding to a double parameter has type double or an integer type, then all arguments corresponding to double parameters are effectively cast to double.
So, basically, integer parameters will be upgraded to doubles to perform the operation.
Prior to C++11 (which was when your question was asked), no integer overloads existed.
Since I was neither closely associated with the creators of C nor C++ in the days of their creation (though I am rather old), nor part of the ANSI/ISO committees that created the standards, this is necessarily opinion on my part. I'd like to think it's informed opinion but, as my wife will tell you (frequently and without much encouragement needed), I've been wrong before :-)
Supposition, for what it's worth, follows.
I suspect that the reason the original pre-ANSI C didn't have this feature is because it was totally unnecessary. First, there was already a perfectly good way of doing integer powers (with doubles and then simply converting back to an integer, checking for integer overflow and underflow before converting).
Second, another thing you have to remember is that the original intent of C was as a systems programming language, and it's questionable whether floating point is desirable in that arena at all.
Since one of its initial use cases was to code up UNIX, the floating point would have been next to useless. BCPL, on which C was based, also had no use for powers (it didn't have floating point at all, from memory).
As an aside, an integral power operator would probably have been a binary operator rather than a library call. You don't add two integers with x = add (y, z) but with x = y + z - part of the language proper rather than the library.
Third, since the implementation of integral power is relatively trivial, it's almost certain that the developers of the language would better use their time providing more useful stuff (see below comments on opportunity cost).
That's also relevant for the original C++. Since the original implementation was effectively just a translator which produced C code, it carried over many of the attributes of C. Its original intent was C-with-classes, not C-with-classes-plus-a-little-bit-of-extra-math-stuff.
As to why it was never added to the standards before C++11, you have to remember that the standards-setting bodies have specific guidelines to follow. For example, ANSI C was specifically tasked to codify existing practice, not to create a new language. Otherwise, they could have gone crazy and given us Ada :-)
Later iterations of that standard also have specific guidelines and can be found in the rationale documents (rationale as to why the committee made certain decisions, not rationale for the language itself).
For example the C99 rationale document specifically carries forward two of the C89 guiding principles which limit what can be added:
Keep the language small and simple.
Provide only one way to do an operation.
Guidelines (not necessarily those specific ones) are laid down for the individual working groups and hence limit the C++ committees (and all other ISO groups) as well.
In addition, the standards-setting bodies realise that there is an opportunity cost (an economic term meaning what you have to forego for a decision made) to every decision they make. For example, the opportunity cost of buying that $10,000 uber-gaming machine is cordial relations (or probably all relations) with your other half for about six months.
Eric Gunnerson explains this well with his -100 points explanation as to why things aren't always added to Microsoft products- basically a feature starts 100 points in the hole so it has to add quite a bit of value to be even considered.
In other words, would you rather have a integral power operator (which, honestly, any half-decent coder could whip up in ten minutes) or multi-threading added to the standard? For myself, I'd prefer to have the latter and not have to muck about with the differing implementations under UNIX and Windows.
I would like to also see thousands and thousands of collection the standard library (hashes, btrees, red-black trees, dictionary, arbitrary maps and so forth) as well but, as the rationale states:
A standard is a treaty between implementer and programmer.
And the number of implementers on the standards bodies far outweigh the number of programmers (or at least those programmers that don't understand opportunity cost). If all that stuff was added, the next standard C++ would be C++215x and would probably be fully implemented by compiler developers three hundred years after that.
Anyway, that's my (rather voluminous) thoughts on the matter. If only votes were handed out based on quantity rather than quality, I'd soon blow everyone else out of the water. Thanks for listening :-)
For any fixed-width integral type, nearly all of the possible input pairs overflow the type, anyway. What's the use of standardizing a function that doesn't give a useful result for vast majority of its possible inputs?
You pretty much need to have an big integer type in order to make the function useful, and most big integer libraries provide the function.
Edit: In a comment on the question, static_rtti writes "Most inputs cause it to overflow? The same is true for exp and double pow, I don't see anyone complaining." This is incorrect.
Let's leave aside exp, because that's beside the point (though it would actually make my case stronger), and focus on double pow(double x, double y). For what portion of (x,y) pairs does this function do something useful (i.e., not simply overflow or underflow)?
I'm actually going to focus only on a small portion of the input pairs for which pow makes sense, because that will be sufficient to prove my point: if x is positive and |y| <= 1, then pow does not overflow or underflow. This comprises nearly one-quarter of all floating-point pairs (exactly half of non-NaN floating-point numbers are positive, and just less than half of non-NaN floating-point numbers have magnitude less than 1). Obviously, there are a lot of other input pairs for which pow produces useful results, but we've ascertained that it's at least one-quarter of all inputs.
Now let's look at a fixed-width (i.e. non-bignum) integer power function. For what portion inputs does it not simply overflow? To maximize the number of meaningful input pairs, the base should be signed and the exponent unsigned. Suppose that the base and exponent are both n bits wide. We can easily get a bound on the portion of inputs that are meaningful:
If the exponent 0 or 1, then any base is meaningful.
If the exponent is 2 or greater, then no base larger than 2^(n/2) produces a meaningful result.
Thus, of the 2^(2n) input pairs, less than 2^(n+1) + 2^(3n/2) produce meaningful results. If we look at what is likely the most common usage, 32-bit integers, this means that something on the order of 1/1000th of one percent of input pairs do not simply overflow.
Because there's no way to represent all integer powers in an int anyways:
>>> print 2**-4
0.0625
That's actually an interesting question. One argument I haven't found in the discussion is the simple lack of obvious return values for the arguments. Let's count the ways the hypthetical int pow_int(int, int) function could fail.
Overflow
Result undefined pow_int(0,0)
Result can't be represented pow_int(2,-1)
The function has at least 2 failure modes. Integers can't represent these values, the behaviour of the function in these cases would need to be defined by the standard - and programmers would need to be aware of how exactly the function handles these cases.
Overall leaving the function out seems like the only sensible option. The programmer can use the floating point version with all the error reporting available instead.
Short answer:
A specialisation of pow(x, n) to where n is a natural number is often useful for time performance. But the standard library's generic pow() still works pretty (surprisingly!) well for this purpose and it is absolutely critical to include as little as possible in the standard C library so it can be made as portable and as easy to implement as possible. On the other hand, that doesn't stop it at all from being in the C++ standard library or the STL, which I'm pretty sure nobody is planning on using in some kind of embedded platform.
Now, for the long answer.
pow(x, n) can be made much faster in many cases by specialising n to a natural number. I have had to use my own implementation of this function for almost every program I write (but I write a lot of mathematical programs in C). The specialised operation can be done in O(log(n)) time, but when n is small, a simpler linear version can be faster. Here are implementations of both:
// Computes x^n, where n is a natural number.
double pown(double x, unsigned n)
{
double y = 1;
// n = 2*d + r. x^n = (x^2)^d * x^r.
unsigned d = n >> 1;
unsigned r = n & 1;
double x_2_d = d == 0? 1 : pown(x*x, d);
double x_r = r == 0? 1 : x;
return x_2_d*x_r;
}
// The linear implementation.
double pown_l(double x, unsigned n)
{
double y = 1;
for (unsigned i = 0; i < n; i++)
y *= x;
return y;
}
(I left x and the return value as doubles because the result of pow(double x, unsigned n) will fit in a double about as often as pow(double, double) will.)
(Yes, pown is recursive, but breaking the stack is absolutely impossible since the maximum stack size will roughly equal log_2(n) and n is an integer. If n is a 64-bit integer, that gives you a maximum stack size of about 64. No hardware has such extreme memory limitations, except for some dodgy PICs with hardware stacks that only go 3 to 8 function calls deep.)
As for performance, you'll be surprised by what a garden variety pow(double, double) is capable of. I tested a hundred million iterations on my 5-year-old IBM Thinkpad with x equal to the iteration number and n equal to 10. In this scenario, pown_l won. glibc pow() took 12.0 user seconds, pown took 7.4 user seconds, and pown_l took only 6.5 user seconds. So that's not too surprising. We were more or less expecting this.
Then, I let x be constant (I set it to 2.5), and I looped n from 0 to 19 a hundred million times. This time, quite unexpectedly, glibc pow won, and by a landslide! It took only 2.0 user seconds. My pown took 9.6 seconds, and pown_l took 12.2 seconds. What happened here? I did another test to find out.
I did the same thing as above only with x equal to a million. This time, pown won at 9.6s. pown_l took 12.2s and glibc pow took 16.3s. Now, it's clear! glibc pow performs better than the three when x is low, but worst when x is high. When x is high, pown_l performs best when n is low, and pown performs best when x is high.
So here are three different algorithms, each capable of performing better than the others under the right circumstances. So, ultimately, which to use most likely depends on how you're planning on using pow, but using the right version is worth it, and having all of the versions is nice. In fact, you could even automate the choice of algorithm with a function like this:
double pown_auto(double x, unsigned n, double x_expected, unsigned n_expected) {
if (x_expected < x_threshold)
return pow(x, n);
if (n_expected < n_threshold)
return pown_l(x, n);
return pown(x, n);
}
As long as x_expected and n_expected are constants decided at compile time, along with possibly some other caveats, an optimising compiler worth its salt will automatically remove the entire pown_auto function call and replace it with the appropriate choice of the three algorithms. (Now, if you are actually going to attempt to use this, you'll probably have to toy with it a little, because I didn't exactly try compiling what I'd written above. ;))
On the other hand, glibc pow does work and glibc is big enough already. The C standard is supposed to be portable, including to various embedded devices (in fact embedded developers everywhere generally agree that glibc is already too big for them), and it can't be portable if for every simple math function it needs to include every alternative algorithm that might be of use. So, that's why it isn't in the C standard.
footnote: In the time performance testing, I gave my functions relatively generous optimisation flags (-s -O2) that are likely to be comparable to, if not worse than, what was likely used to compile glibc on my system (archlinux), so the results are probably fair. For a more rigorous test, I'd have to compile glibc myself and I reeeally don't feel like doing that. I used to use Gentoo, so I remember how long it takes, even when the task is automated. The results are conclusive (or rather inconclusive) enough for me. You're of course welcome to do this yourself.
Bonus round: A specialisation of pow(x, n) to all integers is instrumental if an exact integer output is required, which does happen. Consider allocating memory for an N-dimensional array with p^N elements. Getting p^N off even by one will result in a possibly randomly occurring segfault.
One reason for C++ to not have additional overloads is to be compatible with C.
C++98 has functions like double pow(double, int), but these have been removed in C++11 with the argument that C99 didn't include them.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3286.html#550
Getting a slightly more accurate result also means getting a slightly different result.
The World is constantly evolving and so are the programming languages. The fourth part of the C decimal TR¹ adds some more functions to <math.h>. Two families of these functions may be of interest for this question:
The pown functions, that takes a floating point number and an intmax_t exponent.
The powr functions, that takes two floating points numbers (x and y) and compute x to the power y with the formula exp(y*log(x)).
It seems that the standard guys eventually deemed these features useful enough to be integrated in the standard library. However, the rational is that these functions are recommended by the ISO/IEC/IEEE 60559:2011 standard for binary and decimal floating point numbers. I can't say for sure what "standard" was followed at the time of C89, but the future evolutions of <math.h> will probably be heavily influenced by the future evolutions of the ISO/IEC/IEEE 60559 standard.
Note that the fourth part of the decimal TR won't be included in C2x (the next major C revision), and will probably be included later as an optional feature. There hasn't been any intent I know of to include this part of the TR in a future C++ revision.
¹ You can find some work-in-progress documentation here.
Here's a really simple O(log(n)) implementation of pow() that works for any numeric types, including integers:
template<typename T>
static constexpr inline T pown(T x, unsigned p) {
T result = 1;
while (p) {
if (p & 0x1) {
result *= x;
}
x *= x;
p >>= 1;
}
return result;
}
It's better than enigmaticPhysicist's O(log(n)) implementation because it doesn't use recursion.
It's also almost always faster than his linear implementation (as long as p > ~3) because:
it doesn't require any extra memory
it only does ~1.5x more operations per loop
it only does ~1.25x more memory updates per loop
Perhaps because the processor's ALU didn't implement such a function for integers, but there is such an FPU instruction (as Stephen points out, it's actually a pair). So it was actually faster to cast to double, call pow with doubles, then test for overflow and cast back, than to implement it using integer arithmetic.
(for one thing, logarithms reduce powers to multiplication, but logarithms of integers lose a lot of accuracy for most inputs)
Stephen is right that on modern processors this is no longer true, but the C standard when the math functions were selected (C++ just used the C functions) is now what, 20 years old?
As a matter of fact, it does.
Since C++11 there is a templated implementation of pow(int, int) --- and even more general cases, see (7) in
http://en.cppreference.com/w/cpp/numeric/math/pow
EDIT: purists may argue this is not correct, as there is actually "promoted" typing used. One way or another, one gets a correct int result, or an error, on int parameters.
A very simple reason:
5^-2 = 1/25
Everything in the STL library is based on the most accurate, robust stuff imaginable. Sure, the int would return to a zero (from 1/25) but this would be an inaccurate answer.
I agree, it's weird in some cases.