In my template-ized function, I'm trying to check the type T is of a specific type. How would I do that?
p/s I knew the template specification way but I don't want to do that.
template<class T> int foo(T a) {
// check if T of type, say, String?
}
Thanks!
Instead of checking for the type use specializations. Otherwise, don't use templates.
template<class T> int foo(T a) {
// generic implementation
}
template<> int foo(SpecialType a) {
// will be selected by compiler
}
SpecialType x;
OtherType y;
foo(x); // calls second, specialized version
foo(y); // calls generic version
If you don't care about compile-time, you may use boost::is_same.
bool isString = boost::is_same<T, std::string>::value;
As of C++11, this is now part of the standard library
bool isString = std::is_same<T, std::string>::value
hmm because I had a large portion of
same code until the 'specification'
part.
You can use overloading, but if a large part of the code would work for any type, you might consider extracting the differing part into a separate function and overload that.
template <class T>
void specific(const T&);
void specific(const std::string&);
template <class T>
void something(const T& t)
{
//code that works on all types
specific(t);
//more code that works on all types
}
I suppose you could use the std::type_info returned by the typeid operator
I suspect someone should tell you why it might not be a good idea to avoid using overloading or specialization. Consider:
template<class T> int foo(T a) {
if(isAString<T>()) {
return a.length();
} else {
return a;
}
}
You might think on a first sight that it will work for int too, because it will only try to call length for strings. But that intuition is wrong: The compiler still checks the string branch, even if that branch is not taken at runtime. And it will find you are trying to call a member function on non-classes if T is an int.
That's why you should separate the code if you need different behavior. But better use overloading instead of specialization, since it's easier to get a clue how things work with it.
template<class T> int foo(T a) {
return a;
}
int foo(std::string const& a) {
return a.length();
}
You have also better separated the code for different paths of behavior. It's not all anymore clued together. Notice that with overloading, the parameters may have different type forms and the compiler will still use the correct version if both match equally well, as is the case here: One can be a reference, while the other can not.
You can check using type_traits (available in Boost and TR1) (e.g. is_same or is_convertible) if you really want to avoid specialization.
You can perform static checks on the type that you have received (look at the boost type traits library), but unless you use specialization (or overloads, as #litb correctly points out) at one point or another, you will not be able to provide different specific implementations depending on the argument type.
Unless you have a particular reason (which you could add to the question) not to use the specialization in the interface just do specialize.
template <> int subtract( std::string const & str );
If you are using C++11 or later, std::is_same does exactly what you want:
template <typename T>
constexpr bool IsFloat() { return std::is_same<T, float>::value; }
template <typename T>
void SomeMethodName() {
if (IsFloat<T>()) {
...
}
}
http://en.cppreference.com/w/cpp/types/is_same
Related
I would like to detect if a function (operator() in my case) is present in a class, regardless of its signature or whether it would be possible to get a pointer to it (may be impossible without additional info because it is templated or overloaded). The following code using a concept compiles on MSVC and clang, but not GCC (see godbolt link below for error messages). Is this supposed to work and is GCC not conformant, or is this not supposed to work and are MSVC and clang too lenient? It is interesting to note GCC fails not only for the overloaded and templated operator()s, but also for the simple functor.
Note also that while the example code uses variations on unary functions taking an int, I'd like the concept to work regardless of function signature (and its does for MSVC and clang).
Try here for GCC, clang and MSVC.
Context is making this work, it does now on MSVC and clang, but not GCC.
template <typename C>
concept HasCallOperator = requires(C t)
{
t.operator();
};
struct functor
{
int operator()(int in_)
{ return 1; }
};
struct functorOverloaded
{
int operator()(const int& in_)
{ return 1; }
int operator()(int&& in_)
{ return 1; }
};
struct functorTemplated
{
template <typename... T>
int operator()(const T&... in_)
{ return 1; }
};
template<HasCallOperator T>
struct B {};
int main()
{
B<functor> a;
B<functorOverloaded> b;
B<functorTemplated> c;
}
First, the way to check a concept is just to static_assert (not to try to instantiate a constrained class template).
static_assert(HasCallOperator<functor>);
static_assert(HasCallOperator<functorOverloaded>);
static_assert(HasCallOperator<functorTemplated>);
Second, you can't write t.operator() for the same reason that you can't write f.fun for any other non-static member function: if you do class member access, it must end with invocation. So this is simply a clang/msvc bug that it allows any of this.
And then &C::operator() will not work if the call operator is overloaded or a function template (or both).
Which really calls into question the whole point of this, since without reflection we're highly limited in the kinds of answers we can give to these questions. You can really only address the simple case of non-overloaded, non-template call operator.
Nevertheless, there is an approach that works here. The trick is the same problem we have in our present case: &C::operator() doesn't work if operator() is overloaded.
So what we do instead is construct a case where &C::operator() would be overloaded if there were one, and invert the check. That is:
#include <type_traits>
struct Fake { void operator()(); };
template <typename T> struct Tester : T, Fake { };
template <typename C>
concept HasCallOperator = std::is_class_v<C> and not requires(Tester<C> t)
{
&Tester<C>::operator();
};
HasCallOperator<C> doesn't check C, it checks a type that inherits from both C and a type that has a non-overloaded non-template call operator. If &Tester<C>::operator() is a valid expression, that means it refer to &Fake::operator(), which means that C did not have one. If C had a call operator (whether it's overloaded or a template or both or neither), then &Tester<C>::operator() would be ambiguous.
The is_class_v check is there to ensure that stuff like HasCallOperator<int> is false rather than ill-formed.
Note that this won't work on final classes.
I have a template that I would like to conditionally compile depending on the type of the argument. I only care about differentiating between "Plain Old Data" (POD), i.e., integers, etc or classes/structs. I'm using c++ VS2008 on Windows.
template<T>
class foo
{
void bar(T do_something){
#if IS_POD<T>
do something for simple types
#else
do something for classes/structs
#endif
}}
I've been looking at the boost library's and I can see that they appear to have what I want. However, I do not understand what the correct syntax for the #if statement would be.
Any help would be appreciated.
Edit ---
After reading the responses, I see I overlooked something in my definition of the question. Class foo is a templated class that only needs to instance the version of bar that is correct for class type T. I was looking for a solution that can be resolved a compile time. Hope this clears up my problem.
You can do it without enable_if, because all you need is to dispatch depending on type traits. enable_if is used to add/remove template instantiations to/from overload resolution. You may want to use call traits to choose the best method to pass objects to your function. As a rule, objects should be passed by reference, whereas POD is passed by value. call_traits let's you choose between const and non-const references. The code below uses const reference.
#include <boost/type_traits.hpp>
#include <boost/call_traits.hpp>
template <typename T>
class foo {
public:
void bar(typename boost::call_traits<T>::param_type obj) {
do_something(obj, boost::is_pod<T>());
}
private:
void do_something(T obj, const boost::true_type&)
{
// do something for POD
}
void do_something(const T& obj, const boost::false_type&)
{
// do something for classes
}
};
You can't solve this with the preprocessor, since it doesn't know about C++. (It's a dumb text replacement tool.) Use templates to do this.
Assuming IsPod<T>::result returns something alike Boolean<true>/Boolean<false>:
template<T>
class foo
{
void do_something(T obj, Boolean<true> /*is_pod*/)
{
// do something for simple types
}
void do_something(T obj, Boolean<false> /*is_pod*/)
{
// do something for classes/structs
}
void bar(T obj)
{
do_something(obj, IsPod<T>::result());
}
}
Using preprocessor here is not possible. Have a look at Boost Enable If library instead.
Specifically, in your case it would look like (not tested):
void bar (typename enable_if <is_pod <T>, T>::type do_something)
{
// if is POD
}
void bar (typename disable_if <is_pod <T>, T>::type do_something)
{
// if not
}
In my template-ized function, I'm trying to check the type T is of a specific type. How would I do that?
p/s I knew the template specification way but I don't want to do that.
template<class T> int foo(T a) {
// check if T of type, say, String?
}
Thanks!
Instead of checking for the type use specializations. Otherwise, don't use templates.
template<class T> int foo(T a) {
// generic implementation
}
template<> int foo(SpecialType a) {
// will be selected by compiler
}
SpecialType x;
OtherType y;
foo(x); // calls second, specialized version
foo(y); // calls generic version
If you don't care about compile-time, you may use boost::is_same.
bool isString = boost::is_same<T, std::string>::value;
As of C++11, this is now part of the standard library
bool isString = std::is_same<T, std::string>::value
hmm because I had a large portion of
same code until the 'specification'
part.
You can use overloading, but if a large part of the code would work for any type, you might consider extracting the differing part into a separate function and overload that.
template <class T>
void specific(const T&);
void specific(const std::string&);
template <class T>
void something(const T& t)
{
//code that works on all types
specific(t);
//more code that works on all types
}
I suppose you could use the std::type_info returned by the typeid operator
I suspect someone should tell you why it might not be a good idea to avoid using overloading or specialization. Consider:
template<class T> int foo(T a) {
if(isAString<T>()) {
return a.length();
} else {
return a;
}
}
You might think on a first sight that it will work for int too, because it will only try to call length for strings. But that intuition is wrong: The compiler still checks the string branch, even if that branch is not taken at runtime. And it will find you are trying to call a member function on non-classes if T is an int.
That's why you should separate the code if you need different behavior. But better use overloading instead of specialization, since it's easier to get a clue how things work with it.
template<class T> int foo(T a) {
return a;
}
int foo(std::string const& a) {
return a.length();
}
You have also better separated the code for different paths of behavior. It's not all anymore clued together. Notice that with overloading, the parameters may have different type forms and the compiler will still use the correct version if both match equally well, as is the case here: One can be a reference, while the other can not.
You can check using type_traits (available in Boost and TR1) (e.g. is_same or is_convertible) if you really want to avoid specialization.
You can perform static checks on the type that you have received (look at the boost type traits library), but unless you use specialization (or overloads, as #litb correctly points out) at one point or another, you will not be able to provide different specific implementations depending on the argument type.
Unless you have a particular reason (which you could add to the question) not to use the specialization in the interface just do specialize.
template <> int subtract( std::string const & str );
If you are using C++11 or later, std::is_same does exactly what you want:
template <typename T>
constexpr bool IsFloat() { return std::is_same<T, float>::value; }
template <typename T>
void SomeMethodName() {
if (IsFloat<T>()) {
...
}
}
http://en.cppreference.com/w/cpp/types/is_same
I currently have a function template, taking a reference, that does something in essence equivalent to:
template <typename T>
void f(T& t)
{
t = T();
}
Now, I can call:
int a;
f(a);
To initialize my variable a.
I can even do:
std::vector<int> a(10);
f(a[5]);
However, this will fail:
std::vector<bool> a(10);
f(a[5]);
The reason being a[5] returns an object with reference semantic, but not a reference. So I need to be able to write:
template <typename T>
void f(T a)
{
a = T();
}
But if I add this new template and try to compile the first example (with int), I obtain the following error:
test_multi_tmpl.cc: In function ‘int main()’:
test_multi_tmpl.cc:20: error: call of overloaded ‘f(int&)’ is ambiguous
test_multi_tmpl.cc:6: note: candidates are: void f(T&) [with T = int]
test_multi_tmpl.cc:12: note: void f(T) [with T = int]
Any ideas how to solve this? I wouldn't like to overload f just for std::vector<bool>::reference as this construct might appears in other places ...
I think specialising f for std::vector<bool>::reference is your only option.
Note that using std::vector<bool> is probably a bad idea in the first place (the std::vector<bool> specialisation is deprecated for future versions of the c++ language) so you could just use std::deque<bool> instead.
I'm not sure whether you already know about this...
The specialization std::vector is not really a STL container because it does not meet the necessary requirements. In particular, it's not possible to created proxied containers that satisfy the STL concepts because of the reference semantics (you can't fake a reference). Check this article for more information. (Also, as Autopulated mentioned there should be a compiler directive to provide control over std::vector in the future C++ Standard.)
A simple workaround that could solve your problem is by overloading function f for this particular type (and others if they appear and are not many). Notice that this is an overload and not an specialization. You might also wanna check this for why not specialize function templates.
void f(std::vector<bool>::reference t)
{
/* ... */
}
There are two ways to do this, one is, as you suggest, specialize for std::vector<bool>::reference. The other is by using type-traits dispatching.
template <class T>
void f (T& t) {
f_impl(t, is_reference_wrapper_type<T>());
}
template <class T>
void f_impl(T& t, mpi::false_) {
t = T();
}
template <class T>
void f_impl(T& t, mpi::true_) {
// do nothing, or voodoo here
}
Note the code above is un-tested and there would be more complex means of dispatching based on a trait -- or a set of traits -- in this situation.
This would also mean that you would need to implement is_reference_wrapper_type like so:
template <class T>
struct is_reference_wrapper_type : mpi::false_ {};
template <>
struct is_reference_wrapper_type<std::vector<bool>::reference> : mpi::true_ {};
Using traits or template specialization would make it work.
I want to do something like
template <typename T>
void foo(const T& t) {
IF bar(t) would compile
bar(t);
ELSE
baz(t);
}
I thought that something using enable_if would do the job here, splitting up foo into two pieces, but I can't seem to work out the details. What's the simplest way of achieving this?
There are two lookups that are done for the name bar. One is the unqualified lookup at the definition context of foo. The other is argument dependent lookup at each instantiation context (but the result of the lookup at each instantiation context is not allowed to change behavior between two different instantiation contexts).
To get the desired behavior, you could go and define a fallback function in a fallback namespace that returns some unique type
namespace fallback {
// sizeof > 1
struct flag { char c[2]; };
flag bar(...);
}
The bar function will be called if nothing else matches because the ellipsis has worst conversion cost. Now, include that candidates into your function by a using directive of fallback, so that fallback::bar is included as candidate into the call to bar.
Now, to see whether a call to bar resolves to your function, you will call it, and check whether the return type is flag. The return type of an otherwise chosen function could be void, so you have to do some comma operator tricks to get around that.
namespace fallback {
int operator,(flag, flag);
// map everything else to void
template<typename T>
void operator,(flag, T const&);
// sizeof 1
char operator,(int, flag);
}
If our function was selected then the comma operator invocation will return a reference to int. If not or if the selected function returned void, then the invocation returns void in turn. Then the next invocation with flag as second argument will return a type that has sizeof 1 if our fallback was selected, and a sizeof greater 1 (the built-in comma operator will be used because void is in the mix) if something else was selected.
We compare the sizeof and delegate to a struct.
template<bool>
struct foo_impl;
/* bar available */
template<>
struct foo_impl<true> {
template<typename T>
static void foo(T const &t) {
bar(t);
}
};
/* bar not available */
template<>
struct foo_impl<false> {
template<typename T>
static void foo(T const&) {
std::cout << "not available, calling baz...";
}
};
template <typename T>
void foo(const T& t) {
using namespace fallback;
foo_impl<sizeof (fallback::flag(), bar(t), fallback::flag()) != 1>
::foo(t);
}
This solution is ambiguous if the existing function has an ellipsis too. But that seems to be rather unlikely. Test using the fallback:
struct C { };
int main() {
// => "not available, calling baz..."
foo(C());
}
And if a candidate is found using argument dependent lookup
struct C { };
void bar(C) {
std::cout << "called!";
}
int main() {
// => "called!"
foo(C());
}
To test unqualified lookup at definition context, let's define the following function above foo_impl and foo (put the foo_impl template above foo, so they have both the same definition context)
void bar(double d) {
std::cout << "bar(double) called!";
}
// ... foo template ...
int main() {
// => "bar(double) called!"
foo(12);
}
litb has given you a very good answer. However, I wonder whether, given more context, we couldn't come up with something that's less generic, but also less, um, elaborate?
For example, what types can be T? Anything? A few types? A very restricted set which you have control over? Some classes you design in conjunction with the function foo? Given the latter, you could simple put something like
typedef boolean<true> has_bar_func;
into the types and then switch to different foo overloads based on that:
template <typename T>
void foo_impl(const T& t, boolean<true> /*has_bar_func*/);
template <typename T>
void foo_impl(const T& t, boolean<false> /*has_bar_func*/);
template <typename T>
void foo(const T& t) {
foo_impl( t, typename T::has_bar_func() );
}
Also, can the bar/baz function have just about any signature, is there a somewhat restricted set, or is there just one valid signature? If the latter, litb's (excellent) fallback idea, in conjunction with a meta-function employing sizeof might be a bit simpler. But this I haven't explored, so it's just a thought.
I think litb's solution works, but is overly complex. The reason is that he's introducing a function fallback::bar(...) which acts as a "function of last resort", and then goes to great lengths NOT to call it. Why? It seems we have a perfect behavior for it:
namespace fallback {
template<typename T>
inline void bar(T const& t, ...)
{
baz(t);
}
}
template<typename T>
void foo(T const& t)
{
using namespace fallback;
bar(t);
}
But as I indicated in a comment to litb's original post, there are many reasons why bar(t) could fail to compile, and I'm not certain this solution handles the same cases. It certainly will fail on a private bar::bar(T t)
If you're willing to limit yourself to Visual C++, you can use the __if_exists and __if_not_exists statements.
Handy in a pinch, but platform specific.
EDIT: I spoke too soon! litb's answer shows how this can actually be done (at the possible cost of your sanity... :-P)
Unfortunately I think the general case of checking "would this compile" is out of reach of function template argument deduction + SFINAE, which is the usual trick for this stuff. I think the best you can do is to create a "backup" function template:
template <typename T>
void bar(T t) { // "Backup" bar() template
baz(t);
}
And then change foo() to simply:
template <typename T>
void foo(const T& t) {
bar(t);
}
This will work for most cases. Because the bar() template's parameter type is T, it will be deemed "less specialised" when compared with any other function or function template named bar() and will therefore cede priority to that pre-existing function or function template during overload resolution. Except that:
If the pre-existing bar() is itself a function template taking a template parameter of type T, an ambiguity will arise because neither template is more specialised than the other, and the compiler will complain.
Implicit conversions also won't work, and will lead to hard-to-diagnose problems: Suppose there is a pre-existing bar(long) but foo(123) is called. In this case, the compiler will quietly choose to instantiate the "backup" bar() template with T = int instead of performing the int->long promotion, even though the latter would have compiled and worked fine!
In short: there's no easy, complete solution, and I'm pretty sure there's not even a tricky-as-hell, complete solution. :(
//default
//////////////////////////////////////////
template <class T>
void foo(const T& t){
baz(t);
}
//specializations
//////////////////////////////////////////
template <>
void foo(const specialization_1& t){
bar(t);
}
....
template <>
void foo(const specialization_n& t){
bar(t);
}
Are you not able to use full specialisation here (or overloading) on foo. By say having the function template call bar but for certain types fully specialise it to call baz?