See BlendingTable::create and BlendingTable::print. Both have the same form of tail recursion, but while create will be optimized as a loop, print will not and cause a stack overflow.
Go down to see a fix, which I got from a hint from one of the gcc devs on my bug report of this problem.
#include <cstdlib>
#include <iostream>
#include <memory>
#include <array>
#include <limits>
class System {
public:
template<typename T, typename... Ts>
static void print(const T& t, const Ts&... ts) {
std::cout << t << std::flush;
print(ts...);
}
static void print() {}
template<typename... Ts>
static void printLine(const Ts&... ts) {
print(ts..., '\n');
}
};
template<typename T, int dimension = 1>
class Array {
private:
std::unique_ptr<T[]> pointer;
std::array<int, dimension> sizes;
int realSize;
public:
Array() {}
template<typename... Ns>
Array(Ns... ns):
realSize(1) {
checkArguments(ns...);
create(1, ns...);
}
private:
template<typename... Ns>
static void checkArguments(Ns...) {
static_assert(sizeof...(Ns) == dimension, "dimension mismatch");
}
template<typename... Ns>
void create(int d, int n, Ns... ns) {
realSize *= n;
sizes[d - 1] = n;
create(d + 1, ns...);
}
void create(int) {
pointer = std::unique_ptr<T[]>(new T[realSize]);
}
int computeSubSize(int d) const {
if (d == dimension) {
return 1;
}
return sizes[d] * computeSubSize(d + 1);
}
template<typename... Ns>
int getIndex(int d, int n, Ns... ns) const {
return n * computeSubSize(d) + getIndex(d + 1, ns...);
}
int getIndex(int) const {
return 0;
}
public:
template<typename... Ns>
T& operator()(Ns... ns) const {
checkArguments(ns...);
return pointer[getIndex(1, ns...)];
}
int getSize(int d = 1) const {
return sizes[d - 1];
}
};
class BlendingTable : public Array<unsigned char, 3> {
private:
enum {
SIZE = 0x100,
FF = SIZE - 1,
};
public:
BlendingTable():
Array<unsigned char, 3>(SIZE, SIZE, SIZE) {
static_assert(std::numeric_limits<unsigned char>::max() == FF, "unsupported byte format");
create(FF, FF, FF);
}
private:
void create(int dst, int src, int a) {
(*this)(dst, src, a) = (src * a + dst * (FF - a)) / FF;
if (a > 0) {
create(dst, src, a - 1);
} else if (src > 0) {
create(dst, src - 1, FF);
} else if (dst > 0) {
create(dst - 1, FF, FF);
} else {
return;
}
}
void print(int dst, int src, int a) const {
System::print(static_cast<int>((*this)(FF - dst, FF - src, FF - a)), ' ');
if (a > 0) {
print(dst, src, a - 1);
} else if (src > 0) {
print(dst, src - 1, FF);
} else if (dst > 0) {
print(dst - 1, FF, FF);
} else {
System::printLine();
return;
}
}
public:
void print() const {
print(FF, FF, FF);
}
};
int main() {
BlendingTable().print();
return EXIT_SUCCESS;
}
Changing the class definition of System from
class System {
public:
template<typename T, typename... Ts>
static void print(const T& t, const Ts&... ts) {
std::cout << t << std::flush;
print(ts...);
}
static void print() {}
template<typename... Ts>
static void printLine(const Ts&... ts) {
print(ts..., '\n');
}
};
to
class System {
public:
template<typename T, typename... Ts>
static void print(T t, Ts... ts) {
std::cout << t << std::flush;
print(ts...);
}
static void print() {}
template<typename... Ts>
static void printLine(Ts... ts) {
print(ts..., '\n');
}
};
magically allows gcc to eliminate the tail calls.
Why does 'whether or not passing function arguments by reference' make such a big difference in gcc's behaviour? Semantically they both look the same to me in this case.
As it is noted by #jxh the cast static_cast<int>() creates a temporary whose reference is passed to the print function. Without such cast the tail recursion is optimized correctly.
The issue is very similar to the old case Why isn't g++ tail call optimizing while gcc is? and the workaround may be similar to https://stackoverflow.com/a/31793391/4023446.
It is still possible to use System with the arguments passed by reference if call to System::print will be moved to a separate private helper function SystemPrint:
class BlendingTable : public Array<unsigned char, 3> {
//...
private:
void SystemPrint(int dst, int src, int a) const
{
System::print(static_cast<int>((*this)(FF - dst, FF - src, FF - a)), ' ');
}
void print(int dst, int src, int a) const {
SystemPrint(dst, src, a);
if (a > 0) {
print(dst, src, a - 1);
} else if (src > 0) {
print(dst, src - 1, FF);
} else if (dst > 0) {
print(dst - 1, FF, FF);
} else {
System::printLine();
return;
}
}
// ...
}
Now the tail call optimization works (g++ (Ubuntu/Linaro 4.7.2-2ubuntu1) 4.7.2 with the optimization option -O2) and the print does not cause a stack overflow.
Update
I verified it with other compilers:
the original code without any change is perfectly optimized by clang++ Apple LLVM version 5.1 (clang-503.0.40) (based on LLVM 3.4svn) with -O1 optimization
g++ (Ubuntu 4.8.4-2ubuntu1~14.04) 4.8.4 fails to perform TCO even without the cast or with the wrapping function SystemPrint workaround; here only the workaround with System::print arguments by values works.
So, the issue is very specific to compiler versions.
Related
The following code attempts to create a typesafe way to generate byte-backed binary data while automatically generating metadata describing the bytes.
Is there any way to generate the metadata at compile time? For example:
const Type meta[] = {Type::U32, Type::U64};
I'm not even sure that's possible, but if it is please tell me how!
#include <iostream>
using namespace std;
enum class Type { U8, U16, U32, U64, I8, I16, I32, I64, F32, F64, STRUCT };
void write(char*& buf, uint32_t val) {
*(uint32_t*)buf = val;
buf += sizeof(uint32_t);
}
void write(char*& buf, uint64_t val) {
*(uint64_t*)buf = val;
buf += sizeof(uint64_t);
}
void writeMeta(char*& buf, uint32_t val) {
*(uint8_t*)buf = uint32_t(Type::U32);
buf += sizeof(uint8_t);
}
void writeMeta(char*& buf, uint64_t val) {
*(uint8_t*)buf = uint32_t(Type::U64);
buf += sizeof(uint8_t);
}
void writeBuf(char* buf, char*meta) {
}
template<typename T, typename ...Args>
void writeBuf(char* buf, char*meta, T first, Args... args) {
write(buf, first);
writeMeta(meta, first);
writeBuf(buf, meta, args...);
}
int main() {
char buffer[1024];
char metadata[1024];
writeBuf(buffer, metadata, uint32_t(2), uint64_t(3));
for (int i = 0; i < 12; i++)
cout << uint32_t(uint8_t(buffer[i])) << ' ';
cout << '\n';
}
As I understand, you want something like (C++17):
template <typename T>
constexpr Type toType()
{
if constexpr (std::is_same_v<uint8_t, T>) { return Type::U8; }
else if constexpr (std::is_same_v<uint16_t, T>) { return Type::U16; }
else if constexpr (std::is_same_v<uint32_t, T>) { return Type::U32; }
// ...
else { return Type::STRUCT; }
}
template <typename ...Ts>
constexpr std::array<Type, sizeof...(Ts)> getMeta()
{
return {{toType<Ts>()...}};
}
static_assert(getMeta<std::uint32_t, std::uint64_t>() == {Type::U32, Type::U64});
I have a template class with 3 template arguments.
template <class T, class U, class Y>
class MyClass {};
I wanna get input from users by CLI arguments, something like ./cli float driver-x load
The first arg can be float or double
The second arg is a driver name: driver-x, driver-y, ...
The third argument is about the action type: load, unload, ...
If I want to create a new instance of MyClass based on user inputs, I have to define many if/else statements. Because a user inputs are string and I have to prepare a condition on them.
So, it will be something like this:
if (data_type == "float")
if (driver == "driver-x")
if (action == "load")
MyClass<float, DriverX, Load> t;
t......
As far as I know, it's impossible to store a type in a variable in C++.
So, is there any way exists to improve the if/else statements? Something like:
if (data_type == "float")
//
if (driver == "driver-x")
//
if (action == "load")
//
MyClass<......> t;
t.....;
Or any other way?
I'm looking for a way to improve these if/else statements.
Here's my take
template<typename T>
struct proxy { // or std::type_identity
using type = T;
};
template<typename... Ts>
using choice_of = std::variant<proxy<Ts>...>;
template<typename T, typename>
using type_const_t = T;
template<typename T, typename... Ts>
std::optional<choice_of<T, Ts...>> choose(std::string const &choice, std::string const &head, type_const_t<std::string const&, Ts>... tail) noexcept {
if(choice == head) return proxy<T>{};
else if constexpr(sizeof...(Ts) == 0) return std::nullopt;
else if(auto rec = choose<Ts...>(choice, tail...)) return std::visit(
[](auto rec) -> choice_of<T, Ts...> { return rec; },
*rec);
else return std::nullopt;
}
auto data_choice = choose<float, double>(data_type, "float", "double");
auto driver_choice = choose<DriverX, DriverY>(driver, "driver-x", "driver-y");
auto action_choice = choose<Load, Unload>(action, "load", "unload");
std::visit([](auto data_type_p, auto driver_p, auto action_p) {
auto t = MyClass<typename decltype(data_type_p)::type, typename decltype(driver_p)::type, typename decltype(action_p)::type>{};
// do stuff with t
}, data_choice.value(), driver_choice.value(), action_choice.value());
Complete example on Godbolt
You can build some machinery to do this for you, extracting it into a function call.
For example, here I build a tuple which contains strings and types, then I check a passed string against all of them:
#include <string_view>
#include <cstddef>
#include <tuple>
#include <utility>
#include <type_traits>
template<class T>
struct mapped_type {
const std::string_view key;
using type = T;
explicit constexpr operator bool() const noexcept {
return true;
}
};
namespace detail {
template<class K, class F, class M, std::size_t I>
constexpr void lookup_impl(const K& key, F&& f, M&& m, std::integral_constant<std::size_t, I>) {
using tuple_t = typename std::remove_cv<typename std::remove_reference<M>::type>::type;
if constexpr (I < std::tuple_size<tuple_t>::value) {
const auto& mapping = std::get<I>(m);
if (mapping.key == key) {
std::forward<F>(f)(mapping);
return;
}
lookup_impl(key, std::forward<F>(f), std::forward<M>(m), std::integral_constant<std::size_t, I + 1>{});
} else {
std::forward<F>(f)(std::false_type{});
}
}
}
// Calls `f` with the first value from `m` that matches the key
// or `std::false_type{}` if no key matches.
template<class K, class F, class M>
constexpr void lookup(const K& key, F&& f, M&& m) {
detail::lookup_impl(key, std::forward<F>(f), std::forward<M>(m), std::integral_constant<std::size_t, 0>{});
}
// This is our mapping for the first argument
inline constexpr auto data_type_map = std::make_tuple(
mapped_type<float>{ "float" },
mapped_type<double>{ "double" }
);
// Example usage
#include <iostream>
int main() {
const char* s = "float";
lookup(s, [](const auto& arg) {
if constexpr (!arg) {
std::cout << "Invalid type\n";
} else {
using type = typename std::remove_cv<typename std::remove_reference<decltype(arg)>::type>::type::type;
std::cout << "Got type: " << typeid(type).name() << '\n';
}
}, data_type_map);
}
And then you can call this recursively inside the lambda.
You could also create a version that takes a tuple of keys and a tuple of values to call one function with many arguments:
#include <string_view>
#include <tuple>
#include <utility>
#include <type_traits>
template<class T>
struct mapped_type {
const std::string_view key;
using type = T;
explicit constexpr operator bool() const noexcept {
return true;
}
};
namespace detail {
template<class K, class F, class M, std::size_t I>
constexpr void lookup_impl(F&& f, const K& key, M&& m, std::integral_constant<std::size_t, I>) {
using tuple_t = typename std::remove_cv<typename std::remove_reference<M>::type>::type;
if constexpr (I < std::tuple_size<tuple_t>::value) {
const auto& mapping = std::get<I>(m);
if (mapping.key == key) {
std::forward<F>(f)(mapping);
return;
}
lookup_impl(std::forward<F>(f), key, std::forward<M>(m), std::integral_constant<std::size_t, I + 1>{});
} else {
std::forward<F>(f)(std::false_type{});
}
}
template<class F, class K, class M, std::size_t I>
constexpr void multilookup_impl(F&& f, const K& keys, M&& mappings, std::integral_constant<std::size_t, I>) {
constexpr std::size_t size = std::tuple_size<typename std::remove_cv<typename std::remove_reference<K>::type>::type>::value;
if constexpr (I >= size) {
std::forward<F>(f)();
} else {
lookup_impl([&](const auto& current_lookup) {
multilookup_impl(
[&](const auto&... args) { std::forward<F>(f)(current_lookup, args...); },
keys, mappings, std::integral_constant<std::size_t, I + 1>{}
);
}, std::get<I>(keys), std::get<I>(mappings), std::integral_constant<std::size_t, 0>{});
}
}
}
template<class F, class K, class M>
constexpr void lookup(F&& f, const K& keys, M&& mappings) {
using map_tuple_t = typename std::remove_cv<typename std::remove_reference<M>::type>::type;
using key_tuple_t = typename std::remove_cv<typename std::remove_reference<K>::type>::type;
constexpr std::size_t size = std::tuple_size<key_tuple_t>::value;
static_assert(size == std::tuple_size<map_tuple_t>::value, "Wrong number of keys for given number of maps");
detail::multilookup_impl(std::forward<F>(f), keys, mappings, std::integral_constant<std::size_t, 0>{});
}
Which looks almost the same, but there's one more level of calls.
It would be used like this:
#include <iostream>
inline constexpr auto data_type_map = std::make_tuple(
mapped_type<float>{ "float" },
mapped_type<double>{ "double" }
);
inline constexpr auto driver_type_map = std::make_tuple(
mapped_type<DriverX>{ "driver-x" },
mapped_type<DriverY>{ "driver-y" }
);
inline constexpr auto action_type_map = std::make_tuple(
mapped_type<Load>{ "load" },
mapped_type<Unload>{ "unload" }
);
int main() {
const char* a = "float";
const char* b = "driver-x";
const char* c = "load";
lookup([](const auto& data, const auto& driver, const auto& action) {
if constexpr (!data) {
std::cout << "Could not parse data!\n";
} else if constexpr (!driver) {
std::cout << "Could not parse driver!\n";
} else if constexpr (!action) {
std::cout << "Could not parse action!\n";
} else {
using data_type = typename std::remove_cv<typename std::remove_reference<decltype(data)>::type>::type::type;
using driver_type = typename std::remove_cv<typename std::remove_reference<decltype(driver)>::type>::type::type;
using action_type = typename std::remove_cv<typename std::remove_reference<decltype(action)>::type>::type::type;
MyClass<data_type, driver_type, action_type> t;
std::cout << "Constructed a " << typeid(decltype(t)).name() << '\n';
}
},
std::array<const char*, 3>{ a, b, c },
std::forward_as_tuple(data_type_map, driver_type_map, action_type_map)
);
}
I think you are looking for something like X-macros:
#define YOUR_TABLE \
X(float, DriverX, "driver-x", Load) \
X(int, DriverY, "driver-y", action2) \
X(int, DriverY, "driver-y", action3)
#define X(data_type, driver, driverName, action) if((0 == strcmp(#data_type,argv[1])) \
&& (0 == strcmp(driverName,argv[2])) && (0 == strcmp(#action,argv[3])))\
{ \
MyClass<data_type, driver, action> t; \
t.... \
}
YOUR_TABLE
#undef X
Prepare your puke-bag, here is a far-from-elegant solution but
simple enough to be easily adapted.
The main drawback I see is that all the remaining of the application
that needs to work with the created instance must stand in a
lambda-closure (this solution does not return this instance).
Every possible argument is considered only once in a
dedicated function (not X times Y times Z if/else).
/**
g++ -std=c++17 -o prog_cpp prog_cpp.cpp \
-pedantic -Wall -Wextra -Wconversion -Wno-sign-conversion \
-g -O0 -UNDEBUG -fsanitize=address,undefined
**/
#include <iostream>
#include <string>
#include <stdexcept>
//----------------------------------------------------------------------------
struct DriverX { auto show() const { return "DriverX"; } };
struct DriverY { auto show() const { return "DriverY"; } };
struct Load { auto show() const { return "Load"; } };
struct Unload { auto show() const { return "UnLoad"; } };
template<typename RealType,
typename DriverType,
typename ActionType>
struct MyClass
{
RealType real{};
DriverType driver{};
ActionType action{};
auto show() const
{
return std::to_string(sizeof(real))+" bytes real, "+
driver.show()+", "+action.show();
}
};
//----------------------------------------------------------------------------
template<typename RealType,
typename DriverType,
typename DoEverythingFunction>
void
with_MyClass_3(const std::string &action,
DoEverythingFunction fnct)
{
if(action=="load")
{
return fnct(MyClass<RealType, DriverType, Load>{});
}
if(action=="unload")
{
return fnct(MyClass<RealType, DriverType, Unload>{});
}
throw std::runtime_error{"unexpected action: "+action};
}
template<typename RealType,
typename DoEverythingFunction>
void
with_MyClass_2(const std::string &driver,
const std::string &action,
DoEverythingFunction fnct)
{
if(driver=="driver-x")
{
return with_MyClass_3<RealType, DriverX>(action, fnct);
}
if(driver=="driver-y")
{
return with_MyClass_3<RealType, DriverY>(action, fnct);
}
throw std::runtime_error{"unexpected driver: "+driver};
}
template<typename DoEverythingFunction>
void
with_MyClass(const std::string &real,
const std::string &driver,
const std::string &action,
DoEverythingFunction fnct)
{
if(real=="float")
{
return with_MyClass_2<float>(driver, action, fnct);
}
if(real=="double")
{
return with_MyClass_2<double>(driver, action, fnct);
}
throw std::runtime_error{"unexpected real: "+real};
}
//----------------------------------------------------------------------------
int
main(int argc,
char **argv)
{
std::cout << "~~~~ hardcoded types ~~~~\n";
const MyClass<float, DriverX, Load> mc1;
std::cout << "mc1: " << mc1.show() << '\n';
const MyClass<double, DriverY, Unload> mc2;
std::cout << "mc2: " << mc2.show() << '\n';
std::cout << "\n~~~~ many types ~~~~\n";
for(const auto &real: {"float", "double", "int"})
{
for(const auto &driver: {"driver-x", "driver-y", "driver-z"})
{
for(const auto &action: {"load", "unload", "sleep"})
{
try
{
with_MyClass(real, driver, action,
[&](const auto &mc)
{
std::cout << "working with: " << mc.show() << '\n';
});
}
catch(const std::exception &e)
{
std::cerr << "!!! " << e.what() << " !!!\n";
}
}
}
}
if(argc>3)
{
std::cout << "\n~~~~ from command line ~~~~\n";
try
{
with_MyClass(argv[1], argv[2], argv[3],
[&](const auto &mc)
{
std::cout << "working with: " << mc.show() << '\n';
});
}
catch(const std::exception &e)
{
std::cerr << "!!! " << e.what() << " !!!\n";
}
}
return 0;
}
I'm looking for a small function that is able to transform a std::array by adding increasing values. The function must be a compile time function.
I was able to write a small constexpr function which does so for an array of length 3, but I was unable to generalize it to std::arrays of arbitrary lengths. I also failed to generalize it to contain something different than chars.
Does anyone knows how to do it?
#include <array>
#include <iostream>
#include <valarray>
constexpr std::array<char,3> obfuscate(const std::array<char,3>& x) {
return std::array<char, 3>{x.at(0)+1, x.at(1) + 2, x.at(2) + 3 };
}
/* Won't compile
template<typename T,typename S, template<typename, typename> L=std::array<T, U>>
constexpr L<T,U> obfuscate(const L<T, U>& x) {
return {x.at(0) + 1, x.at(0) + 2, x.at(0) + 3 };
}
*/
std::ostream& operator<<(std::ostream& str, const std::array<char, 3>& x) {
for (auto i = 0; i < 3; i++) {
str << x.at(i);
}
return str;
}
int main(int argc, char** args) {
std::array<char, 3> x{ 'a','b','c' };
std::cout << x << std::endl;
std::cout << obfuscate(x) << std::endl;
// std::cout << obfuscate<3>(x) << std::endl;
}
You can use std::index_sequence:
template<class T, std::size_t N, std::size_t... Is>
constexpr std::array<T, N> helper (const std::array<T, N> &x, std::index_sequence<Is...>) {
return std::array<T, N>{static_cast<T>(x.at(Is)+Is+1)...};
}
template<class T, std::size_t N>
constexpr std::array<T, N> obfuscate(const std::array<T, N> &x) {
return helper(x, std::make_index_sequence<N>{});
}
There are a few methods that use tuple packs, these are great except that MSVC has a performance problem compiling large strings.
I've found this compromise works well in MSVC.
template<typename I>
struct encrypted_string;
template<size_t... I>
struct encrypted_string<std::index_sequence<I...>>
{
std::array<char, sizeof...(I)+1> buf;
constexpr static char encrypt(char c) { return c ^ 0x41; }
constexpr static char decrypt(char c) { return encrypt(c); }
constexpr explicit __forceinline encrypted_string(const char* str)
: buf{ encrypt(str[I])... } { }
inline const char* decrypt()
{
for (size_t i = 0; i < sizeof...(I); ++i)
{
buf[i] = decrypt(buf[i]);
}
buf[sizeof...(I)] = 0;
return buf.data();
}
};
#define enc(str) encrypted_string<std::make_index_sequence<sizeof(str)>>(str)
And somewhere later
auto stringo = enc(R"(
kernel void prg_PassThru_src(const global unsigned short * restrict A, int srcstepA, int srcoffsetA,
global float * restrict Beta, int srcstepBeta, int srcoffsetBeta,
int rows, int cols) {
int x = get_global_id(0);
int y0 = get_global_id(1);
if (x < cols) {
int srcA_index = mad24(y0, srcstepA / 2, x + srcoffsetA / 2);
int srcBeta_index = mad24(y0, srcstepBeta / 4, x + srcoffsetBeta / 4);
Beta[srcBeta_index] = A[srcA_index];
}
}
//somewhere later
cv::ocl::ProgramSource programSource(stringo.decrypt());
You can see this guy's talk for more sophisticated methods:
https://www.blackhat.com/docs/eu-14/materials/eu-14-Andrivet-C-plus-plus11-Metaprogramming-Applied-To-software-Obfuscation.pdf
I was trying my hand with allocators this time & felt that there were many chances of leaking the resources. So I thought what if I used std::unique_ptr to handle them. I tried my hand with a std::vector's allocator. My code goes like this :-
// allocator
#include <iostream>
#include <vector>
#include <memory>
using namespace std;
class X
{
int x,ID;
static int i;
public:
X()
{
cout<<"constructing ";
ID=++i;
cout<<"ID="<<ID<<'\n';
}
X(int a)
{
x=a;
cout<<"constructing ";
ID=++i;
cout<<"ID="<<ID<<'\n';
}
void get()
{
cout<<"enter x: ";
cin>>x;
}
void disp()
{
cout<<"x="<<x<<'\t';
}
~X()
{
cout<<"destroying ID="<<ID<<'\n';
}
};
int X:: i=0;
int main()
{
ios::sync_with_stdio(false);
vector<X> v;
auto alloc = v.get_allocator();
unsigned int i=0;
X *p(alloc.allocate(5));
for (i=0;i<5;++i)
alloc.construct (&p[i], i+1);
unique_ptr<X[]> ptr(p);
cout<<"\nthe elements are:-\n";
for (i=0;i<5;++i)
{
ptr[i].disp();
cout << '\t' << (long long)alloc.address(ptr[i]) << '\n';
}
cout<<"\n";
/*for (i=0;i<5;++i)
alloc.destroy(&p[i]);
deallocate(p,16)*/
return 0;
}
Unfortunately this code crashes showing UB. So what should I do ? How should I manipulate my code so as to make it suited for std::unique_ptr ?
template<typename T>
std::unique_ptr<T[], std::function<void(T *)>> make_T(X *ptr, std::allocator<T> alloc, std::size_t size) {
auto deleter = [](T *p, std::allocator<T> alloc, std::size_t size) {
for (int i = 0; i < size; ++i) {
alloc.destroy(&p[i]);
}
alloc.deallocate(p, sizeof(T) * size);
};
return {ptr, std::bind(deleter, std::placeholders::_1, alloc, size)};
}
int main(int argc, const char * argv[]) {
std::allocator<X> alloc = std::allocator<X>();
X *p = alloc.allocate(5);
for (int i = 0; i < 5; ++i) {
alloc.construct(&p[i], i + 1);
}
auto ptr = make_T(p, alloc, 5);
return 0;
}
Can also write one to construct the objects for you:
template<typename T, typename... Args>
std::unique_ptr<T[], std::function<void(T *)>> make_T_Construct(std::allocator<T> alloc, std::size_t size, Args... args) {
X *ptr = alloc.allocate(size);
for (std::size_t i = 0; i < size; ++i) {
alloc.construct(&ptr[i], std::forward<Args>(args)...);
}
auto deleter = [](T *p, std::allocator<T> alloc, std::size_t size) {
for (std::size_t i = 0; i < size; ++i) {
alloc.destroy(&p[i]);
}
alloc.deallocate(p, sizeof(T) * size);
};
return {ptr, std::bind(deleter, std::placeholders::_1, alloc, size)};
}
int main(int argc, const char * argv[]) {
std::allocator<X> alloc = std::allocator<X>();
auto ptr = make_T_Construct(alloc, 5, 100);
return 0;
}
Edit: To do what you want (tracking allocations), you have to track the memory allocations yourself using a custom allocator..
template<typename T>
struct Allocator
{
typedef T value_type;
Allocator() noexcept {};
template<typename U>
Allocator(const Allocator<U>& other) throw() {};
T* allocate(std::size_t n, const void* hint = 0)
{
T* memory = static_cast<T*>(::operator new(n * (sizeof(T) + sizeof(bool))));
for (std::size_t i = 0; i < n * (sizeof(T) + sizeof(bool)); ++i)
{
*reinterpret_cast<bool*>(reinterpret_cast<char*>(memory) + sizeof(bool)) = false;
}
return memory;
}
void deallocate(T* ptr, std::size_t n)
{
::operator delete(ptr);
}
void construct(T* p, const T& arg)
{
destroy(p);
new(p) T(arg);
*reinterpret_cast<bool*>(reinterpret_cast<char*>(p) + sizeof(bool)) = true;
}
template<class U, class... Args>
void construct(U* p, Args&&... args)
{
destroy(p);
::new(p) U(std::forward<Args>(args)...);
*reinterpret_cast<bool*>(reinterpret_cast<char*>(p) + sizeof(bool)) = true;
}
void destroy(T* p)
{
if (*reinterpret_cast<bool*>(reinterpret_cast<char*>(p) + sizeof(bool))) {
p->~T();
*reinterpret_cast<bool*>(reinterpret_cast<char*>(p) + sizeof(bool)) = false;
}
}
template<class U>
void destroy(U* p)
{
if (*reinterpret_cast<bool*>(reinterpret_cast<char*>(p) + sizeof(bool))) {
p->~U();
*reinterpret_cast<bool*>(reinterpret_cast<char*>(p) + sizeof(bool)) = false;
}
}
};
template <typename T, typename U>
inline bool operator == (const Allocator<T>&, const Allocator<U>&)
{
return true;
}
template <typename T, typename U>
inline bool operator != (const Allocator<T>& a, const Allocator<U>& b)
{
return !(a == b);
}
I asked How do I capture the results of a recursive function at compile-time?, but I think my approach was wrong.
I have a program like so:
#include <iostream>
#include <list>
std::list<unsigned int> recursive_case(std::list<unsigned int>& result, unsigned int& i) {
result.push_front(1 + (i % 10));
i /= 10;
return i != 0 ? recursive_case(result, i) : result;
}
std::list<unsigned int> initial_case(unsigned int i) {
std::list<unsigned int> result;
result.push_back(i % 10);
i /= 10;
return i != 0 ? recursive_case(result, i) : result;
}
int main() {
auto list = initial_case(123);
bool first = true;
for (auto i: list) {
if (first) {
first = false;
} else {
std::cout << ", ";
}
std::cout << i;
}
std::cout << std::endl;
}
The output is 2, 3, 3.
I want to perform the above computation and get the same output but in compile-time (the loop iteration and output-printing would be at runtime i.e. everything starting from the for loop). Templates seem like a possibility (that's why I tagged this ask as such), but I am open to anything that gets the job done in compile-time.
You can use constexpr to calculate the list at compile time. I converted the recursion to iteration and used the indices trick to call calculate as often as necessary.
#include <iostream>
#include <array>
#include <iterator>
#include <utility>
constexpr std::size_t count_digits(std::size_t N, std::size_t Count = 0)
{
return (N > 0) ? count_digits(N/10, Count+1) : Count;
}
constexpr std::size_t ipow(std::size_t N, std::size_t Base)
{
return (N > 0) ? Base*ipow(N-1,Base) : 1;
}
constexpr std::size_t calculate(std::size_t n, std::size_t i)
{
std::size_t p = ipow(i,10);
std::size_t t = (n/p) % 10;
return i > 0 ? (t+1) : t;
}
template<std::size_t Num, std::size_t C, std::size_t... Is>
constexpr std::array<std::size_t, C> build_list(std::index_sequence<Is...>)
{
return {{ calculate(Num, C-Is-1)... }};
}
template <std::size_t Num, std::size_t C = count_digits(Num)>
constexpr auto build_list()
{
return build_list<Num, C>(std::make_index_sequence<C>{});
}
int main()
{
constexpr auto list = build_list<123>();
for(auto e : list)
{
std::cout << e << " ";
}
return 0;
}
output:
2 3 3
live example
Here's one solution.
#include <iostream>
// Print one digit.
template <unsigned int N, bool Initial> struct AtomicPrinter
{
static void print()
{
std::cout << N%10;
}
};
template <unsigned int N> struct AtomicPrinter<N, false>
{
static void print()
{
std::cout << 1 + N%10 << ", ";
}
};
// Recursive printer for a number
template <unsigned int N, bool Initial> struct Printer
{
static void print()
{
Printer<N/10, false>::print();
AtomicPrinter<N, Initial>::print();
}
};
// Specialization to end recursion.
template <bool TF> struct Printer<0, TF>
{
static void print()
{
}
};
void printList()
{
Printer<123, true>::print();
std::cout << std::endl;
}
int main() {
printList();
}
If there is a need to separate printing of the digits from constructing the list of digits, you can use:
#include <iostream>
#include <list>
template <unsigned int N, bool Initial> struct Digit
{
static void get(std::list<int>& l)
{
l.push_back(N%10);
}
};
template <unsigned int N> struct Digit<N, false>
{
static void get(std::list<int>& l)
{
l.push_back(1 + N%10);
}
};
template <unsigned int N, bool Initial> struct Digits
{
static void get(std::list<int>& l)
{
Digits<N/10, false>::get(l);
Digit<N, Initial>::get(l);
}
};
template <bool TF> struct Digits<0, TF>
{
static void get(std::list<int>& l)
{
}
};
void printList()
{
std::list<int> l;
Digits<123, true>::get(l);
bool first = true;
for (auto i: l) {
if (first) {
first = false;
} else {
std::cout << ", ";
}
std::cout << i;
}
std::cout << std::endl;
}
int main() {
printList();
}
You may use something like the following to split number at compile time:
#include <utility>
#include <iostream>
template <char... Cs>
std::integer_sequence<char, Cs...> operator "" _seq() { return {}; }
template <char...Cs>
void print(std::integer_sequence<char, Cs...>)
{
const char* sep = "";
for (const auto& c : {Cs...}) {
std::cout << sep << c;
sep = ", ";
}
}
int main() {
auto seq = 123_seq;
print(seq);
}
Demo