C++ snippet OK with MSVC but not with g++ - c++

I'm new to C++ and I try to adapt a program snippet which generates "weak compositions" or Multisets found here on stackoverflow but I run - to be quite frank - since hours into problems.
First of all, the program runs without any complaint under MSVC - but not on gcc.
The point is, that I have read many articles like this one here on stackoverflow, about the different behaviour of gcc and msvc and I have understood, that msvc is a bit more "liberal" in dealing with this situation and gcc is more "strict". I have also understood, that one should "not bind a non-const reference to a temporary (internal) variable."
But I am sorry, I can not fix it and get this program to work under gcc - again since hours.
And - if possible - a second question: I have to introduce a global variable
total, which is said to be "evil", although it works well. I need this value of total, however I could not find a solution with a non-global scope.
Thank you all very much for your assistance.
#include <iostream>
#include <string>
#include <sstream>
using namespace std;
int total = 0;
string & ListMultisets(unsigned au4Boxes, unsigned au4Balls, string & strOut = string(), string strBuild = string()) {
unsigned au4;
if (au4Boxes > 1) for (au4 = 0; au4 <= au4Balls; au4++)
{
stringstream ss;
ss << strBuild << (strBuild.size() == 0 ? "" : ",") << au4Balls - au4;
ListMultisets(au4Boxes - 1, au4, strOut, ss.str());
}
else
{
stringstream ss;
ss << mycount << ".\t" << "(" << strBuild << (strBuild.size() == 0 ? "" : ",") << au4Balls << ")\n";
strOut += ss.str();
total++;
}
return strOut;
}
int main() {
cout << endl << ListMultisets(5,3) << endl;
cout << "Total: " << total << " weak compositions." << endl;
return 0;
}

C++ demands that a reference parameter to an unnamed temporary (like string()) must either be a const reference or an r-value reference.
Either of those reference types will protect you from modifying a variable that you don't realize is going to be destroyed within the current expression.
Depending on your needs, it could would to make it a value parameter:
string ListMultisets( ... string strOut = string() ... ) {
or it could would to make it a function-local variable:
string ListMultisets(...) {
string strOut;
In your example program, either change would work.

Remove the default value for the strOut parameter.
Create a string in main and pass it to the function.
Change the return type of the function to be int.
Make total a local variable ListMultisets(). Return total rather than strOut (you are returning the string value strOut as a reference parameter.)
The signature of the new ListMultisets will look like:
int ListMultisets(unsigned au4Boxes, unsigned au4Balls, string & strOut)
I'll let you figure out the implementation. It will either be easy or educational.
Your new main function will look like:
int main() {
string result;
int total = ListMultisets(5,3, result);
cout << endl << result << endl;
cout << "Total: " << total << " weak compositions." << endl;
return 0;
}

Related

Overload << operator to change " " to "\n"

I am trying to overload
<<
operator. For instance
cout << a << " " << b << " "; // I am not allowed to change this line
is given I have to print it in format
<literal_valueof_a><"\n>
<literal_valueof_b><"\n">
<"\n">
I tried to overload << operator giving string as argument but it is not working. So I guess literal
" "
is not a string. If it is not then what is it. And how to overload it?
Kindly help;
Full code
//Begin Program
// Begin -> Non - Editable
#include <iostream>
#include <string>
using namespace std;
// End -> Non -Editable
//---------------------------------------------------------------------
// Begin -> Editable (I have written )
ostream& operator << (ostream& os, const string& str) {
string s = " ";
if(str == " ") {
os << '\n';
}
else {
for(int i = 0; i < str.length(); ++i)
os << str[i];
}
return os;
}
// End -> Editable
//--------------------------------------------------------------------------
// Begin -> No-Editable
int main() {
int a, b;
double s, t;
string mr, ms;
cin >> a >> b >> s >> t ;
cin >> mr >> ms ;
cout << a << " " << b << " " ;
cout << s << " " << t << " " ;
cout << mr << " " << ms ;
return 0;
}
// End -> Non-Editable
//End Program
Inputs and outputs
Input
30 20 5.6 2.3 hello world
Output
30
20
5.6
2.3
hello
world
" " is a string-literal of length one, and thus has type const char[2]. std::string is not related.
Theoretically, you could thus overload it as:
auto& operator<<(std::ostream& os, const char (&s)[2]) {
return os << (*s == ' ' && !s[1] ? +"\n" : +s);
}
While that trumps all the other overloads, now things get really hairy. The problem is that some_ostream << " " is likely not uncommon, even in templates, and now no longer resolves to calling the standard function. Those templates now have a different definition in the affected translation-units than in non-affected ones, thus violating the one-definition-rule.
What you should do, is not try to apply a global solution to a very local problem:
Preferably, modify your code currently streaming the space-character.
Alternatively, write your own stream-buffer which translates it as you wish, into newline.
Sure this is possible, as I have tested. It should be portable since you are specifying an override of a templated function operator<<() included from <iostream>. The " " string in your code is not a std::string, but rather a C-style string (i.e. a const char *). The following definition works correctly:
ostream& operator << (ostream& os, const char *str) {
if(strcmp(str, " ") == 0) {
os << '\n';
} else {
// Call the standard library implementation
operator<< < std::char_traits<char> > (os, str);
}
return os;
}
Note that the space after std::char_traits<char> is necessary only if you are pre-c++11.
Edit 1
I agree with Deduplicator that this is a potentially dangerous solution as it may cause undesirable consequences elsewhere in the code base. If it is needed only in the current file, you could make it a static function (by putting it within an unnamed namespace). Perhaps if you shared more about the specifics of your problem, we could come up with a cleaner solution for you.
You might want to go with a user defined literal, e.g.
struct NewLine {};
std::ostream& operator << (std::ostream& os, NewLine)
{
return os << "\n";
}
NewLine operator ""_nl(const char*, std::size_t) // "nl" for newline
{
return {};
}
This can be used as follows.
int main(int, char **)
{
std::cout << 42 << ""_nl << "43" << ""_nl;
return 0;
}
Note three things here:
You can pass any string literal followed by the literal identifier, ""_nl does the same thing as " "_nl or "hello, world"_nl. You can change this by adjusting the function returning the NewLine object.
This solution is more of an awkward and confusing hack. The only real use case I can imagine is pertaining the option to easily change the behavior at a later point in time.
When doing something non-standard, it's best to make that obvious and explicit - here, the user defined literal indeed shines, because << ""_nl is more likely to catch readers' attention than << " ".

cout and String concatenation

I was just reviewing my C++. I tried to do this:
#include <iostream>
using std::cout;
using std::endl;
void printStuff(int x);
int main() {
printStuff(10);
return 0;
}
void printStuff(int x) {
cout << "My favorite number is " + x << endl;
}
The problem happens in the printStuff function. When I run it, the first 10 characters from "My favorite number is ", is omitted from the output. The output is "e number is ". The number does not even show up.
The way to fix this is to do
void printStuff(int x) {
cout << "My favorite number is " << x << endl;
}
I am wondering what the computer/compiler is doing behind the scenes.
The + overloaded operator in this case is not concatenating any string since x is an integer. The output is moved by rvalue times in this case. So the first 10 characters are not printed. Check this reference.
if you will write
cout << "My favorite number is " + std::to_string(x) << endl;
it will work
It's simple pointer arithmetic. The string literal is an array or chars and will be presented as a pointer. You add 10 to the pointer telling you want to output starting from the 11th character.
There is no + operator that would convert a number into a string and concatenate it to a char array.
adding or incrementing a string doesn't increment the value it contains but it's address:
it's not problem of msvc 2015 or cout but instead it's moving in memory back/forward:
to prove to you that cout is innocent:
#include <iostream>
using std::cout;
using std::endl;
int main()
{
char* str = "My favorite number is ";
int a = 10;
for(int i(0); i < strlen(str); i++)
std::cout << str + i << std::endl;
char* ptrTxt = "Hello";
while(strlen(ptrTxt++))
std::cout << ptrTxt << std::endl;
// proving that cout is innocent:
char* str2 = str + 10; // copying from element 10 to the end of str to stre. like strncpy()
std::cout << str2 << std::endl; // cout prints what is exactly in str2
return 0;
}

line.find won't compile, line is not declared

I am a very novice programmer, and I am trying to understand the find functions for strings. At uni we are told to use c-strings, which is why I think that it isn't working. The problem comes when I compile, there is a compile error that line was not declared. This is my code:
#include <iostream>
#include <fstream>
#include <cstring>
#include <string>
using namespace std;
int main()
{
char test[256];
char ID[256];
cout << "\nenter ID: ";
cin.getline(ID, 256);
int index = line.find(ID);
cout << index << endl;
return 0;
}
Please help, it has become really frustrating as I need to understand this function to complete my assignment :/
You're trying to use C-style strings. But find is a member of the C++ string class. If you want to use C-style strings, use functions that operate on C style strings like strcmp, strchr, strstr, and so on.
Supposing you actually input some data into test also, then one way to do it would be:
char *found = strstr(test, ID);
if ( !found )
cout << "The ID was not found.\n";
else
cout << "The index was " << (found - test) << '\n';
Because find fuction a member function string class,You should declare a string class's object. I think you will do that like this:
string test = "This is test string";
string::size_type position;
position = test.find(ID);
if (position != test.npos){
cout << "Found: " << position << endl;
}
else{
cout << "not found ID << endl;
}

Comparing Character Literal to Std::String in C++

I would like to compare a character literal with the first element of string, to check for comments in a file. Why use a char? I want to make this into a function, which accepts a character var for the comment. I don't want to allow a string because I want to limit it to a single character in length.
With that in mind I assumed the easy way to go would be to address the character and pass it to the std::string's compare function. However this is giving me unintended results.
My code is as follows:
#include <string>
#include <iostream>
int main ( int argc, char *argv[] )
{
std::string my_string = "bob";
char my_char1 = 'a';
char my_char2 = 'b';
std::cout << "STRING : " << my_string.substr(0,1) << std::endl
<< "CHAR : " << my_char1 << std::endl;
if (my_string.substr(0,1).compare(&my_char1)==0)
std::cout << "WOW!" << std::endl;
else
std::cout << "NOPE..." << std::endl;
std::cout << "STRING : " << my_string.substr(0,1) << std::endl
<< "CHAR : " << my_char2 << std::endl;
if (my_string.substr(0,1).compare(&my_char2)==0)
std::cout << "WOW!" << std::endl;
else
std::cout << "NOPE..." << std::endl;
std::cout << "STRING : " << my_string << std::endl
<< "STRING 2 : " << "bob" << std::endl;
if (my_string.compare("bob")==0)
std::cout << "WOW!" << std::endl;
else
std::cout << "NOPE..." << std::endl;
}
Gives me...
STRING : b
CHAR : a
NOPE...
STRING : b
CHAR : b
NOPE...
STRING : bob
STRING 2 : bob
WOW!
Why does the function think the sub-string and character aren't the same. What's the shortest way to properly compare chars and std::string vars?
(a short rant to avoid reclassification of my question.... feel free to skip)
When I say shortest I mean that out of a desire for coding eloquence. Please note, this is NOT a homework question. I am a chemical engineering Ph.D candidate and am coding as part of independent research. One of my last questions was reclassified as "homework" by user msw (who also made a snide remark) when I asked about efficiency, which I considered on the border of abuse. My code may or may not be reused by others, but I'm trying to make it easy to read and maintainable. I also have a bizarre desire to make my code as efficient as possible where possible. Hence the questions on efficiency and eloquence.
Doing this:
if (my_string.substr(0,1).compare(&my_char2)==0)
Won't work because you're "tricking" the string into thinking it's getting a pointer to a null-terminated C-string. This will have weird effects up to and including crashing your program. Instead, just use normal equality to compare the first character of the string with my_char:
if (my_string[0] == my_char)
// do stuff
Why not just use the indexing operator on your string? It will return a char type.
if (my_string[0] == my_char1)
You can use the operator[] of string to compare it to a single char
// string::operator[]
#include <iostream>
#include <string>
using namespace std;
int main ()
{
string str ("Test string");
int i; char c = 't';
for (i=0; i < str.length(); i++)
{
if (c == str[i]) {
std::cout << "Equal at position i = " << i << std::endl;
}
}
return 0;
}
The behaviour of the first two calls to compare is entirely dependent on what random memory contents follows the address of each char. You are calling basic_string::compare(const char*) and the param here is assumed to be a C-String (null-terminated), not a single char. The compare() call will compare your desired char, followed by everything in memory after that char up to the next 0x00 byte, with the std::string in hand.
Otoh the << operator does have a proper overload for char input so your output does not reflect what you are actually comparing here.
Convert the decls of and b to be const char[] a = "a"; and you will get what you want to happen.
Pretty standard, strings in c++ are null-terminated; characters are not. So by using the standard compare method you're really checking if "b\0" == 'b'.
I used this and got the desired output:
if (my_string.substr(0,1).compare( 0, 1, &my_char2, 1)==0 )
std::cout << "WOW!" << std::endl;
else
std::cout << "NOPE..." << std::endl;
What this is saying is start at position 0 of the substring, use a length of 1, and compare it to my character reference with a length of 1. Reference

How do you append an int to a string in C++? [duplicate]

This question already has answers here:
How to concatenate a std::string and an int
(25 answers)
Closed 6 years ago.
int i = 4;
string text = "Player ";
cout << (text + i);
I'd like it to print Player 4.
The above is obviously wrong but it shows what I'm trying to do here. Is there an easy way to do this or do I have to start adding new includes?
With C++11, you can write:
#include <string> // to use std::string, std::to_string() and "+" operator acting on strings
int i = 4;
std::string text = "Player ";
text += std::to_string(i);
Well, if you use cout you can just write the integer directly to it, as in
std::cout << text << i;
The C++ way of converting all kinds of objects to strings is through string streams. If you don't have one handy, just create one.
#include <sstream>
std::ostringstream oss;
oss << text << i;
std::cout << oss.str();
Alternatively, you can just convert the integer and append it to the string.
oss << i;
text += oss.str();
Finally, the Boost libraries provide boost::lexical_cast, which wraps around the stringstream conversion with a syntax like the built-in type casts.
#include <boost/lexical_cast.hpp>
text += boost::lexical_cast<std::string>(i);
This also works the other way around, i.e. to parse strings.
printf("Player %d", i);
(Downvote my answer all you like; I still hate the C++ I/O operators.)
:-P
These work for general strings (in case you do not want to output to file/console, but store for later use or something).
boost.lexical_cast
MyStr += boost::lexical_cast<std::string>(MyInt);
String streams
//sstream.h
std::stringstream Stream;
Stream.str(MyStr);
Stream << MyInt;
MyStr = Stream.str();
// If you're using a stream (for example, cout), rather than std::string
someStream << MyInt;
For the record, you can also use a std::stringstream if you want to create the string before it's actually output.
cout << text << " " << i << endl;
Your example seems to indicate that you would like to display the a string followed by an integer, in which case:
string text = "Player: ";
int i = 4;
cout << text << i << endl;
would work fine.
But, if you're going to be storing the string places or passing it around, and doing this frequently, you may benefit from overloading the addition operator. I demonstrate this below:
#include <sstream>
#include <iostream>
using namespace std;
std::string operator+(std::string const &a, int b) {
std::ostringstream oss;
oss << a << b;
return oss.str();
}
int main() {
int i = 4;
string text = "Player: ";
cout << (text + i) << endl;
}
In fact, you can use templates to make this approach more powerful:
template <class T>
std::string operator+(std::string const &a, const T &b){
std::ostringstream oss;
oss << a << b;
return oss.str();
}
Now, as long as object b has a defined stream output, you can append it to your string (or, at least, a copy thereof).
Another possibility is Boost.Format:
#include <boost/format.hpp>
#include <iostream>
#include <string>
int main() {
int i = 4;
std::string text = "Player";
std::cout << boost::format("%1% %2%\n") % text % i;
}
Here a small working conversion/appending example, with some code I needed before.
#include <string>
#include <sstream>
#include <iostream>
using namespace std;
int main(){
string str;
int i = 321;
std::stringstream ss;
ss << 123;
str = "/dev/video";
cout << str << endl;
cout << str << 456 << endl;
cout << str << i << endl;
str += ss.str();
cout << str << endl;
}
the output will be:
/dev/video
/dev/video456
/dev/video321
/dev/video123
Note that in the last two lines you save the modified string before it's actually printed out, and you could use it later if needed.
For the record, you could also use Qt's QString class:
#include <QtCore/QString>
int i = 4;
QString qs = QString("Player %1").arg(i);
std::cout << qs.toLocal8bit().constData(); // prints "Player 4"
cout << text << i;
One method here is directly printing the output if its required in your problem.
cout << text << i;
Else, one of the safest method is to use
sprintf(count, "%d", i);
And then copy it to your "text" string .
for(k = 0; *(count + k); k++)
{
text += count[k];
}
Thus, you have your required output string
For more info on sprintf, follow:
http://www.cplusplus.com/reference/cstdio/sprintf
cout << text << i;
The << operator for ostream returns a reference to the ostream, so you can just keep chaining the << operations. That is, the above is basically the same as:
cout << text;
cout << i;
cout << "Player" << i ;
cout << text << " " << i << endl;
The easiest way I could figure this out is the following..
It will work as a single string and string array.
I am considering a string array, as it is complicated (little bit same will be followed with string).
I create a array of names and append some integer and char with it to show how easy it is to append some int and chars to string, hope it helps.
length is just to measure the size of array. If you are familiar with programming then size_t is a unsigned int
#include<iostream>
#include<string>
using namespace std;
int main() {
string names[] = { "amz","Waq","Mon","Sam","Has","Shak","GBy" }; //simple array
int length = sizeof(names) / sizeof(names[0]); //give you size of array
int id;
string append[7]; //as length is 7 just for sake of storing and printing output
for (size_t i = 0; i < length; i++) {
id = rand() % 20000 + 2;
append[i] = names[i] + to_string(id);
}
for (size_t i = 0; i < length; i++) {
cout << append[i] << endl;
}
}
There are a few options, and which one you want depends on the context.
The simplest way is
std::cout << text << i;
or if you want this on a single line
std::cout << text << i << endl;
If you are writing a single threaded program and if you aren't calling this code a lot (where "a lot" is thousands of times per second) then you are done.
If you are writing a multi threaded program and more than one thread is writing to cout, then this simple code can get you into trouble. Let's assume that the library that came with your compiler made cout thread safe enough than any single call to it won't be interrupted. Now let's say that one thread is using this code to write "Player 1" and another is writing "Player 2". If you are lucky you will get the following:
Player 1
Player 2
If you are unlucky you might get something like the following
Player Player 2
1
The problem is that std::cout << text << i << endl; turns into 3 function calls. The code is equivalent to the following:
std::cout << text;
std::cout << i;
std::cout << endl;
If instead you used the C-style printf, and again your compiler provided a runtime library with reasonable thread safety (each function call is atomic) then the following code would work better:
printf("Player %d\n", i);
Being able to do something in a single function call lets the io library provide synchronization under the covers, and now your whole line of text will be atomically written.
For simple programs, std::cout is great. Throw in multithreading or other complications and the less stylish printf starts to look more attractive.
You also try concatenate player's number with std::string::push_back :
Example with your code:
int i = 4;
string text = "Player ";
text.push_back(i + '0');
cout << text;
You will see in console:
Player 4
You can use the following
int i = 4;
string text = "Player ";
text+=(i+'0');
cout << (text);
If using Windows/MFC, and need the string for more than immediate output try:
int i = 4;
CString strOutput;
strOutput.Format("Player %d", i);