First example in OpenGL 4.0 Shading Language Cookbook - c++

I started to learn GLSL yesterday and followed the first example in OpenGL 4.0 Shading Language Cookbook to draw a triangle step by step.
Here are my codes:
1.shader.vert
#version 400
in vec3 VertexPosition;
in vec3 VertexColor;
out vec3 Color;
void main()
{
Color = VertexColor;
gl_Position = vec4(VertexPosition, 1.0);
}
2.shader.frag
#version 400
in vec3 Color;
out vec4 FragColor;
void main(){
FragColor = vec4(Color, 1.0);
}
3.main.cpp
int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutInitWindowSize(500, 500);
glutCreateWindow("Project1");
glutDisplayFunc(render);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, 100, 0, 100);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_POINT_SMOOTH);
// init glew
GLenum err = glewInit();
if (GLEW_OK != err){
printf("Error: %s\n", glewGetErrorString(err));
}
else{
printf("OK: glew init.\n");
}
// check gl version
const GLubyte *renderer = glGetString(GL_RENDERER);
const GLubyte *vendor = glGetString(GL_VENDOR);
const GLubyte *version = glGetString(GL_VERSION);
const GLubyte *glslVersion = glGetString(GL_SHADING_LANGUAGE_VERSION);
GLint major, minor;
glGetIntegerv(GL_MAJOR_VERSION, &major);
glGetIntegerv(GL_MINOR_VERSION, &minor);
printf("GL Vendor : %s\n", vendor);
printf("GL Renderer : %s\n", renderer);
printf("GL Version (string) : %s\n", version);
printf("GL Version (integer): %d.%d\n", major, minor);
printf("GLSL Version: %s\n", glslVersion);
// vertex shader
GLuint vertShader = createAndCompileShader("shader.vert", VERTEX);
// fragment shader
GLuint fragShader = createAndCompileShader("shader.frag", FRAGMENT);
// program
GLuint programHandle = glCreateProgram();
if (programHandle == 0)
{
printf("Error creating program object.\n");
}
glAttachShader(programHandle, vertShader);
glAttachShader(programHandle, fragShader);
glLinkProgram(programHandle);
GLint status;
glGetProgramiv(programHandle, GL_LINK_STATUS, &status);
if (GL_FALSE == status){
printf("Failed to link shader program");
}
else{
printf("OK\n");
glUseProgram(programHandle);
}
glutMainLoop();
return EXIT_SUCCESS;
}
I create and compile the shader in createAndCompileShader and the status of the compilation is success.
And I draw a triangle in render function.
void render()
{
glLoadIdentity();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glBegin(GL_TRIANGLES);
glColor3f(1.0, 0.0, 0.0);
glVertex2f(20, 20);
glColor3f(0.0, 1.0, 0.0);
glVertex2f(80, 20);
glColor3f(0.0, 0.0, 1.0);
glVertex2f(50, 80);
glEnd();
glPopMatrix();
glutSwapBuffers();
}
The status of link is also success. However, there's nothing drawn in the window. I'm sure the function render is right.
Is there something wrong?

Is your triangle visible if you do not bind any GLSL shaders?
try glDisable(GL_CULL_FACE);
if it helps reorder the glVertex2f calls (different polygon winding)
What graphics card and driver you have?
for OpenGL+GLSL+Windows
Intel is almost unusable (especially for advanced things)
ATI/AMD are usually almost OK these days (was much worst with old ATI drivers)
nVidia are usually without any problems
You do not apply any projection or model view matrix In the vertex shader
your modelview is identity so it does not matter
but projection is not
that means you are passing non transformed coordinates to the fragment shader
OpenGL coordinates are usually in range <-1,+1>
and your untransformed triangle does not cover that range
so change the triangle coordinates to that range for example
(-0.5,-0.5),(+0.5,-0.5),(0.0,+0.5)
and try render (also you can temporarily rem the //gluOrtho2D(0, 100, 0, 100); just to be sure
if it helps then that is the reason
change your vertex shader to include: gl_Position = ftransform();
In case of core profile is that not an option anymore
so you should pass your transform matrices via uniform variables
and multiply usually inside vertex shader
see simple GLSL engine example
it have texture,normal maping,3 lights,...
and see Understanding homogenous 4x4 transform matrices
[edit1] you are using glVertex instead VAO so you should use compatibility profile
// vertex shader
#version 400 compatibility
out vec3 Color;
void main()
{
Color = gl_Color.rgb;
gl_Position = ftransform();
}
that should do the trick ...

Related

Uniform mat4 has unknown values when created by glUniformMatrix4fv

I have a very basic engine based on OpenGL that can render polygons in any color to a resizeable window. I'm now trying to implement matrices for my shaders by giving the model, perspective and view matrices as uniforms via my shader. Before adding the uniforms everything worked as it should, I could even pass in a uniform vec2 to simulate a light source at my mouse position. The uniform mat4s doesn't work as well as the vec2s.
For debugging purposes I'm only rendering one yellow square centered on the screen. When using no uniforms the square shows as expected. i now try passing in one mat4, set as an identity matrix. In the vertex shader I'm multiplying gl_Position by the identity matrix I uniformed. When I run the program it only shows a black window.
I've tried manually creating an identity matrix in the vertex shader and multiplying gl_Position by that matrix instead of the uniform one. When I do that my yellow square shows as normal. This leads me to believe that the uniform mat4 doesn't get the correct values, however, I don't know how to check the values of the matrix when it's being used in the shader.
This is how my vertex shader looks:
#version 430 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec4 color;
out vec4 Color;
uniform mat4 model;
uniform mat4 view;
uniform mat4 project;
void main()
{
mat4 id;
id[0] = vec4(1.0, 0.0, 0.0, 0.0);
id[1] = vec4(0.0, 1.0, 0.0, 0.0);
id[2] = vec4(0.0, 0.0, 1.0, 0.0);
id[3] = vec4(0.0, 0.0, 0.0, 1.0);
Color = color;
gl_Position = id * vec4(position, 1.0);
}
The mat4 id is the manually created identity matrix, when changing id * to model * I get the black window.
This is how my fragment shader looks:
#version 430 core
in vec4 Color;
out vec4 outColor;
void main()
{
outColor = Color;
}
The shader is initialized by this code:
m_shaderID = glCreateProgram();
const char* vertexSource = ReadFile::readFile(vertpath);
const char* fragmentSource = ReadFile::readFile(fragpath);
GLint status;
// Vertex Shader
GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexSource, NULL);
glCompileShader(vertexShader);
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE)
{
std::cout << "Failed to compile vertex shader!\nInfo log: " << std::endl;
char buffer[512];
glGetShaderInfoLog(vertexShader, 512, NULL, buffer);
std::cout << buffer << std::endl;
glDeleteShader(vertexShader);
}
// Fragment Shader
GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentSource, NULL);
glCompileShader(fragmentShader);
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE)
{
std::cout << "Failed to compile fragment shader!\nInfo log: " << std::endl;
char buffer[512];
glGetShaderInfoLog(fragmentShader, 512, NULL, buffer);
std::cout << buffer << std::endl;
glDeleteShader(fragmentShader);
}
// Shader program
glAttachShader(m_shaderID, vertexShader);
glAttachShader(m_shaderID, fragmentShader);
glLinkProgram(m_shaderID);
glValidateProgram(m_shaderID);
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
The matrix is created as a uniform by this code:
void Shader::setUniformmat4(const GLchar* name, glm::mat4 matrix)
{
for (int i = 0; i <= 3; i++)
printf("%f, %f, %f, %f\n", matrix[i].x, matrix[i].y, matrix[i].z, matrix[i].w);
glUniformMatrix4fv(glGetUniformLocation(m_shaderID, name), 1, GL_FALSE, glm::value_ptr(matrix));
}
The printf is for checking the values of the matrix as they are used to create the uniform, and they have the values of an identity matrix at that point.
The function setUniformmat4 is called by this code:
glm::mat4 model = glm::mat4(1.0);
shader.setUniformmat4("model", model);
When creating a lighting effect I create the uniform by calling this function:
void Shader::setUniformvec2(const GLchar* name, glm::vec2 vector)
{
glUniform2f(glGetUniformLocation(m_shaderID, name), vector.x, vector.y);
}
via this piece of code:
shader.setUniformvec2("light_pos", glm::vec2((x / window.getWidth()) * 2.0 - 1.0, 1.0 - 2.0 * (y / window.getHeight())));
Where x and y are the mouses coordinates. I then add the line
uniform vec2 light_pos;
To the fragment shader. This works no problem, and it traces the mouse perfectly. The function used for setting the uniform mat4 looks the same as the function for setting the uniform vec2, only difference is the 4fv for the mat4 and 2f for the vec2.
As you can see, I'm using glm for the matrices and vectors.
My main function looks like this:
Window window(720, 720, "Window");
Shader shader("shader.vert", "shader.frag");
glm::mat4 model = glm::mat4(1.0);
shader.setUniformmat4("model", model);
Renderer* renderer = new Renderer();
std::vector<StaticSprite*> sprites;
sprites.push_back(new StaticSprite(-0.5, -0.5, 0.0, 1.0, 1.0, glm::vec4(1.0, 1.0, 0.0, 1.0), &shader));
while (!window.closed())
{
window.clear();
shader.enable();
double x, y;
window.getMousePosition(x, y);
shader.setUniformvec2("light_pos", glm::vec2((x / window.getWidth()) * 2.0 - 1.0, 1.0 - 2.0 * (y / window.getHeight())));
for (StaticSprite* sprite : sprites)
renderer->submit(sprite);
renderer->flush();
shader.disable();
window.update();
}
return 0;
My question summarized is basically why are the values of the uniform mat4 not correct, is there any way to find out what those values are, and what should I change in the code to make the uniform mat4s work?
Please ask for any additional information needed to give an answer, I will happily provide anything I forgot to include.
glUniform* specify the value of a uniform variable for the current program object. This means the program has to be installed by glUseProgram before:
Shader shader("shader.vert", "shader.frag");
shader.enable(); // <--- this is missing
glm::mat4 model = glm::mat4(1.0);
shader.setUniformmat4("model", model);
Active program resources can be get from a program object which is not the "current" program (e.g. glGetUniformLocation). Note, the program object is a parameter of glGetUniformLocation.
But to set the value of a uniform by glUniform*, the program has to be the currently installed program.

OpenGL Additive blending causes white screen

I'm working on a deferred shading project and I've got a problem with blending all the lights into the final render.
Basically I'm just looping over each light and then rendering the fullscreen quad with my shader that does lighting calculations but the final result is just a pure white screen. If I disable blending, I can see the scene fine but it will be lit by one light.
void Render()
{
FirstPass();
SecondPass();
}
void FirstPass()
{
glDisable(GL_BLEND);
glEnable(GL_DEPTH);
glDepthMask(GL_TRUE);
renderTarget->BindFrameBuffer();
gbufferShader->Bind();
glViewport(0, 0, renderTarget->Width(), renderTarget->Height());
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
for (int i = 0; i < meshes.size(); ++i)
{
// set uniforms and render mesh
}
renderTarget->UnbindFrameBuffer();
}
EDIT: I'm not rendering light volumes/geometry, i'm just calculating final pixel colours based on the lights (point/spot/directional).
void SecondPass()
{
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
renderTarget->BindTextures();
pointLightShader->Bind();
glViewport(0, 0, renderTarget->Width(), renderTarget->Height());
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
for (int i = 0; i < lights.size(); ++i)
{
// set uniforms
// shader does lighting calculations
screenQuad->Render();
}
renderTarget->UnbindTextures();
}
I can't imagine there being anything special to do in the shader other than output a vec4 for the final frag colour each time?
This is the main part of the pointLight fragment shader:
out vec4 FragColour;
void main()
{
vec4 posData = texture(positionTexture, TexCoord);
vec4 normData = texture(normalTexture, TexCoord);
vec4 diffData = texture(diffuseTexture, TexCoord);
vec3 pos = vec3(posData);
vec3 norm = vec3(normData);
vec3 diff = vec3(diffData);
float a = posData.w;
float b = normData.w;
float c = diffData.w;
FragColour = vec4(shadePixel(pos, norm, diff), 1.0);
}
But yeah, basically if I use this blend the whole screen is just white.
Well I fixed it, and I feel like an idiot now :)
My opengl was set to
glClearColor(1.0, 1.0, 1.0, 1.0);
which (obviously) is pure white.
I just changed it to black background
glClearColor(0.0, 0.0, 0.0, 1.0);
And now I see everything fine. I guess it was additively blending with the white background, which obviously would be white.

OpenGL ES 2.0 Objects disappearing when depth test enabled

Edit: This turned out to be correct, hopefully it still helps others with similar issues.
Is there a piece I'm missing in setting up the depth testing pipeline in OpenGL ES 2.0 (using EGL)?
I've found many questions about this but all were solved by either correctly setting up the depth buffer on context initialization:
EGLint egl_attributes[] = {
...
EGL_DEPTH_SIZE, 16,
...
EGL_NONE };
if (!eglChooseConfig(
m_eglDisplay, egl_attributes, &m_eglConfig, 1, &numConfigs)) {
cerr << "Failed to set EGL configuration" << endl;
return EGL_FALSE;
}
or by properly enabling and clearing the depth buffer, and doing so after the context has been initialized:
// Set the viewport
glViewport(0, 0, m_display->width(), m_display->height());
// Enable culling and depth testing
glEnable(GL_CULL_FACE);
glDepthFunc(GL_LEQUAL);
glEnable(GL_DEPTH_TEST);
// Clear the color and depth buffers
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClearDepthf(1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Draw elements
m_Program->drawAll();
Commenting out the glEnable(GL_DEPTH_TEST) I have a scene but without the depth test occlusion I would love to have.
In a shader, outputting the z component of gl_Position visually works as expected (z values are in the range [0, 1]):
// Vertex Shader
uniform mat4 u_matrix;
attribute vec4 a_position;
varying float v_depth;
void main() {
vec4 v_position = u_matrix * a_position;
v_depth = v_position.z / v_position.w;
gl_Position = v_position;
}
// Fragment shader
varying float v_depth;
void main() {
gl_FragColor = vec4((v_depth < 0.0) ? 1.0 : 0.0,
v_depth,
(v_depth > 1.0) ? 1.0 : 0.0,
1.0);
}
All objects are a shade of pure green, darker for nearer and brighter for further, as expected. Sadly some further (brighter) objects are drawn over nearer (darker) objects.
Any ideas what I'm missing? (If nothing else I hope this summarises some issues others have been having).
It appears I wasn't missing anything. I had a rogue polygon (in a different shader program) that, when depth was enabled occluded everything. The above is a correct setup.

Fragment shader inexplicable bahaviour

I have written a C++ program where I draw a teapot and apply lighting. It is itself simple, but I also use shaders. Simple I'm new with GLSL I just tried a simple fragment shader, but the screen output is inexplicable.
In this file I initialize glew in the init method, where I also compile the vertex and fragment shader. They're in the "vertex_shader" and "fragment_shader" files.
The thing you may not recognize is what's Light and Material. They're just some structs containing all info about the lights. I've tested these struct so I'm sure the work as expected. When I declare material=BlackPlastic I just set it to a default value defined with the define directive. I may also post this code if you think that the problem is there.
#include <GL/glew.h>
#include <GL/glut.h>
#include <iostream>
#include <fstream>
#include <vector>
#include "utility.hpp"
#define MAX_DIM 1000
GLfloat width=600, height=800;
GLuint vertex_shader, fragment_shader;
GLuint program;
const char* vertex_shader_filename= "vertex_shader";
const char* fragment_shader_filename= "fragment_shader";
Light light;
Material material;
void init()
{
// Inizializzazione di GLEW
glewInit();
if(GLEW_ARB_vertex_shader && GLEW_ARB_fragment_shader)
{
cout << "Supporto GLSL" << endl;
}
// Lettura e compilazione del vertex shader
GLchar* buffer= new GLchar[MAX_DIM];
ifstream stream;
streamsize count;
stream.open(vertex_shader_filename);
stream.read(buffer,MAX_DIM);
count= stream.gcount();
stream.close();
vertex_shader= glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, (const GLchar**)&buffer, &count);
glCompileShader(vertex_shader);
// Lettura, inizializzazione ed esecuzione del fragment shader
stream.open(fragment_shader_filename);
stream.read(buffer,MAX_DIM);
count= stream.gcount();
stream.close();
fragment_shader= glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, (const GLchar**)&buffer, &count);
glCompileShader(fragment_shader);
delete[] buffer;
// Creazione del programma
program= glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glUseProgram(program);
// Inizializzazione materiale e luce
material= BlackPlastic;
light= {vector<GLfloat>{-2,2,2,1} ,vector<GLfloat>{1,1,1,1},vector<GLfloat>{1,1,1,1},vector<GLfloat>{1,1,1,1} };
}
void display()
{
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45,width/height,1,1000);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0,0,-100,0,0,0,0,1,0);
// Illuminazione
glShadeModel(GL_SMOOTH);
material.apply(); // This just causes glMaterialfv to be called for the ambient, diffuse, specular and shininess values.
light.apply(); // This just causes glLightfv to be called for the ambient, diffuse and specular values
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
// Rendering
glClearColor(0.8,0.8,0.8,1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidTeapot(10);
glutSwapBuffers();
}
void reshape(int w, int h)
{
width=w;
height=h;
glutPostRedisplay();
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowPosition(100,100);
glutInitWindowSize(500,500);
glutCreateWindow("test");
glutDisplayFunc(display);
glutReshapeFunc(reshape);
init();
glutMainLoop();
return 0;
}
I don't think that the vertex shader is causing any problem, it just assigns the color and calculate the position, correctly. Also the fragment shader is apparently correct, this is the only instruction executed:
gl_FragColor = gl_Color;
If I do this I just see a white teapot. If instead I change this value to a whatever color:
gl_FragColor = vec4{0,0,1,1};
I get the teapot with the right color: black plastic. And I don't know why, I don't apply lighting here, I should calculate it.
I precisate that I executed the same identical program but without applying the shaders, and I got the teapot to have the right color.
First off all you are mixing the fixed function pipeline with "the newer stuff". This is a real bad practice because it could couse a lot of issues because you don't really know what is going on in background.
If you want to have real lighting with diffuse shaders you have to calculate the diffuse color on your own. It's a long time ago i used the ffp the last time so i searched for some shaders wich use it:
Vertex-Shader
varying vec3 normal;
varying vec3 v;
varying vec3 lightvec;
void main(void)
{
normal = normalize(gl_NormalMatrix * gl_Normal);
v = vec3(gl_ModelViewMatrix * gl_Vertex);
lightvec = normalize(gl_LightSource[0].position.xyz - v);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
Fragment-Shader
varying vec3 normal;
varying vec3 v;
varying vec3 lightvec;
void main(void)
{
vec3 Eye = normalize(-v);
vec3 Reflected = normalize( reflect( -lightvec, normal ));
vec4 IAmbient = gl_LightSource[0].ambient * gl_FrontMaterial.ambient;
vec4 IDiffuse = gl_LightSource[0].diffuse * gl_FrontMaterial.diffuse * max(dot(normal, lightvec), 0.0);
vec4 ISpecular = gl_LightSource[0].specular * gl_FrontMaterial.specular * pow(max(dot(Reflected, Eye), 0.0), gl_FrontMaterial.shininess);
gl_FragColor = gl_FrontLightModelProduct.sceneColor + IAmbient + IDiffuse + ISpecular;
}

volume rendering (using glsl) with ray casting algorithm

I am learning volume rendering using ray casting algorithm. I have found a good demo and tuturial in here. but the problem is that I have a ATI graphic card instead of nVidia which make me can't using the cg shader in the demo, so I want to change the cg shader to glsl shader. I have gone through the red book (7 edition) of OpenGL, but not familiar with glsl and cg.
does anyone can help me change the cg shader in the demo to glsl? or is there any materials to the simplest demo of volume rendering using ray casting (of course in glsl).
here is the cg shader of the demo. and it can work on my friend's nVidia graphic card. what most confusing me is that I don't know how to translate the entry part of cg to glsl, for example:
struct vertex_fragment
{
float4 Position : POSITION; // For the rasterizer
float4 TexCoord : TEXCOORD0;
float4 Color : TEXCOORD1;
float4 Pos : TEXCOORD2;
};
what's more, I can write a program bind 2 texture object with 2 texture unit to the shader provided that I assign two texcoord when draw the screen, for example
glMultiTexCoord2f(GL_TEXTURE0, 1.0, 0.0);
glMultiTexCoord2f(GL_TEXTURE1, 1.0, 0.0);
In the demo the program will bind to two texture (one 2D for backface_buffer one 3D for volume texture), but with only one texture unit like glMultiTexCoord3f(GL_TEXTURE1, x, y, z); I think the GL_TEXTURE1 unit is for the volume texture, but which one (texure unit) is for the backface_buffer? as far as I know in order to bind texture obj in a shader, I must get a texture unit to bind for example:
glLinkProgram(p);
texloc = glGetUniformLocation(p, "tex");
volume_texloc = glGetUniformLocation(p, "volume_tex");
stepsizeloc = glGetUniformLocation(p, "stepsize");
glUseProgram(p);
glUniform1i(texloc, 0);
glUniform1i(volume_texloc, 1);
glUniform1f(stepsizeloc, stepsize);
//When rendering an object with this program.
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, backface_buffer);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_3D, volume_texture);
the program is compiled fine and linked ok. but I only got -1 of all three location(texloc, volume_texloc and stepsizeloc). I know it may be optimized out.
anyone can help me translate the cg shader to glsl shader?
Edit: If you are interest in modern OpenGL API implementation(C++ source code) with glsl:Volume_Rendering_Using_GLSL
Problem solved. the glsl version of the demo:
vertex shader
void main()
{
gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex;
//gl_FrontColor = gl_Color;
gl_TexCoord[2] = gl_Position;
gl_TexCoord[0] = gl_MultiTexCoord1;
gl_TexCoord[1] = gl_Color;
}
fragment shader
uniform sampler2D tex;
uniform sampler3D volume_tex;
uniform float stepsize;
void main()
{
vec2 texc = ((gl_TexCoord[2].xy/gl_TexCoord[2].w) + 1) / 2;
vec4 start = gl_TexCoord[0];
vec4 back_position = texture2D(tex, texc);
vec3 dir = vec3(0.0);
dir.x = back_position.x - start.x;
dir.y = back_position.y - start.y;
dir.z = back_position.z - start.z;
float len = length(dir.xyz); // the length from front to back is calculated and used to terminate the ray
vec3 norm_dir = normalize(dir);
float delta = stepsize;
vec3 delta_dir = norm_dir * delta;
float delta_dir_len = length(delta_dir);
vec3 vect = start.xyz;
vec4 col_acc = vec4(0,0,0,0); // The dest color
float alpha_acc = 0.0; // The dest alpha for blending
float length_acc = 0.0;
vec4 color_sample; // The src color
float alpha_sample; // The src alpha
for(int i = 0; i < 450; i++)
{
color_sample = texture3D(volume_tex,vect);
// why multiply the stepsize?
alpha_sample = color_sample.a*stepsize;
// why multply 3?
col_acc += (1.0 - alpha_acc) * color_sample * alpha_sample*3 ;
alpha_acc += alpha_sample;
vect += delta_dir;
length_acc += delta_dir_len;
if(length_acc >= len || alpha_acc > 1.0)
break; // terminate if opacity > 1 or the ray is outside the volume
}
gl_FragColor = col_acc;
}
if you seen the original shader of cg there is only a little difference between cg and glsl. the most difficult part to translate the demo to glsl version is that the cg function in the opengl such as:
param = cgGetNamedParameter(program, par);
cgGLSetTextureParameter(param, tex);
cgGLEnableTextureParameter(param);
encapsulate the process of texture unit and multitexture activation (using glActiveTexture) and deactivation, which is very important in this demo as it used the fixed pipeline as well as programmable pipeline. here is the key segment changed in the function void raycasting_pass() of main.cpp of the demo in Peter Triers GPU raycasting tutorial:
function raycasting_pass
void raycasting_pass()
{
// specify which texture to bind
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
GL_TEXTURE_2D, final_image, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glUseProgram(p);
glUniform1f(stepsizeIndex, stepsize);
glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_3D);
glBindTexture(GL_TEXTURE_3D, volume_texture);
glUniform1i(volume_tex, 1);
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, backface_buffer);
glUniform1i(tex, 0);
glUseProgram(p);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
drawQuads(1.0,1.0, 1.0); // Draw a cube
glDisable(GL_CULL_FACE);
glUseProgram(0);
// recover to use only one texture unit as for the fixed pipeline
glActiveTexture(GL_TEXTURE1);
glDisable(GL_TEXTURE_3D);
glActiveTexture(GL_TEXTURE0);
}
That's it.