Total possible solutions for 8 Queen. - combinations

Was reading about the 8-Queen problem here - http://en.literateprograms.org/Eight_queens_puzzle_%28C%29
It says 'For eight queens, this solution considers 64^8 or 281474976710656 different solutions'.
Since every consecutive queen will have one less position to consider during its placement on the board, shouldn't that total number of solutions be - (64-1)*(64-2)...(64-8)?

Maybe, they put "two queens occupy the same square" into consideration. Although 64^8 seem more than yours. The valid solution is the same.

64^8 is true only if you "consider" the possibility of 2 or more queens occupying the same position; which shouldn't be the case.
Your proposed answer of (64-1)*(64-2)...(64-8) is essentially:
`P(64,8) = 64!/8! = 178462987637760 (permutation)
But this presumes that the order in which the queens are placed matters. In reality, it is not important which queen occupies which place, as all 8 queens are considered equivalent and just need to be allotted a position.
So it is more appropriate here to make use of combination (rather than permutation). So the answer would be:
C(64,8) = 64!/[(64-8)!x(8!)] = 4426165368

Related

Can't figure out how to program in outputs for the given situations

So, I'm working on an assignment for my intro to computer science class. The assignment is as follows.
There is an organism whose population can be determined according to
the following rules:
The organism requires at least one other organism to propagate. Thus,
if the population goes to 1, then the organism will become extinct in
one time cycle (e.g. one breeding season). In an unusual turn of
events, an even number of organisms is not a good thing. The
organisms will form pairs and from each pair, only one organism will
survive If there are an odd number of organisms and this number is
greater than 1 (e.g., 3,5,7,9,…), then this is good for population
growth. The organisms cannot pair up and in one time cycle, each
organism will produce 2 other organisms. In addition, one other
organism will be created. (As an example, let us say there are 3
organisms. Since 3 is an odd number greater than 1, in one time
cycle, each of the 3 organisms will produce 2 others. This yields 6
additional organisms. Furthermore, there is one more organism
produced so the total will be 10 organisms, 3 originals, 6 produced by
the 3, and then 1 more.)
A: Write a program that tests initial populations from 1 to 100,000.
Find all populations that do not eventually become extinct.
Write your answer here:
B: Find the value of the initial population that eventually goes
extinct but that has the largest number of time cycles before it does.
Write your answer here:
The general idea of what I have so far is (lacking sytanx) is this with P representing the population
int generations = 0;
{
if (P is odd) //I'll use a modulus modifier to divide by two and if the result is not 0 then I'll know it's odd
P = 3P + 1
else
P = 1/2 P
generations = generations + 1
}
The problem for me is that I'm uncertain how to tell what numbers will not go extinct or how to figure out which population takes the longest time to go extinct. Any suggestions would be helpful.
Basically what you want to do is this: wrap your code into a while-loop that exits if either P==1 or generations > someMaxValue.
Wrap this construct into a for-loop that counts from 1 to 100,000 and uses this count to set the initial P.
If you always store the generations after your while-loop (e.g. into an array) you can then search for the greatest element in the array.
This problem can actually be harder than it looks at the first sight. First, you should use memorization to speed things up - for example, with 3 you get 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 -> 0, so you know the answer for all those numbers as well (note that every power of 2 will extinct).
But as pointed out by #Jerry, the problem is with the generations which eventually do not extinct - it will be difficult to say when to actually stop. The only chance is that there will (always) be a recurrence (number of organisms you already passed once when examining the current number of organisms), then you can say for sure that the organisms will not extinct.
Edit: I hacked a solution quickly and if it is correct, you are lucky - every population between 1-100,000 seems to eventually extinct (as my program terminated so I didn't actually need to check for recurrences). Will not give you the solution for now so that you can try by yourself and learn, but according to my program the largest number of cycles is 351 (and the number is close to 3/4 of the range). According to the google search for Collatz conjecture, that is a correct number (they say 350 to go to population of 1, where I'm adding one extra cycle to 0), also the initial population number agrees.
One additional hint: Check for integer overflow, and use 64-bit integer (unsigned __int64, unsigned long long) to calculate the population growth, as with 32-bit unsignet int, there is already an overflow in the range of 1-100,000 (the population can indeed grow much higher intermediately) - that was a problem in my initial solution, although it did not change the result. With 64-bit ints I was able to calculate up to 100,000,000 in relatively decent time (didn't try more; optimized release MSVC build), for that I had to limit the memo table to first 80,000,000 items to not go out of memory (compiled in 32-bit with LARGEADDRESSAWARE to be able to use up to 4 GB of memory - when compiled 64-bit the table could of course be larger).

Permutations of English Alphabet of a given length

So I have this code. Not sure if it works because the runtime for the program is still continuing.
void permute(std::vector<std::string>& wordsVector, std::string prefix, int length, std::string alphabet) {
if (length == 0) {
//end the recursion
wordsVector.push_back(prefix);
}
else {
for (int i = 0; i < alphabet.length(); ++i) {
permute(wordsVector, prefix + alphabet.at(i), length - 1, alphabet);
}
}}
where I'm trying to get all combinations of characters in the English alphabet of a given length. I'm not sure if the approach is correct at the moment.
Alphabet consists of A-Z in a string of length 26. WordsVectors holds all the different combinations of words. prefix is meant to pass through recursively until a word is made and length is self explanatory.
Example, if I give the length of 7 to the function, I expect a size of 26 x 25 x 24 x 23 x 22 x 21 x 20 = 3315312000 if I'm correct, following the formula for permutations.
I don't think programs are meant to run this long so either I'm hitting an infinite loop or something is wrong with my approach. Please advise. Thanks.
Surely the stack would overflow but concentrating on your question even if you write an iterative program it will take a long time ( not an infinite loop just very long )
[26L, 650L, 15600L, 358800L, 7893600L, 165765600L, 3315312000L, 62990928000L, 1133836704000L, 19275223968000L, 308403583488000L, 4626053752320000L, 64764752532480000L, 841941782922240000L, 10103301395066880000L, 111136315345735680000L, 1111363153457356800000L, 10002268381116211200000L, 80018147048929689600000L, 560127029342507827200000L, 3360762176055046963200000L, 16803810880275234816000000L, 67215243521100939264000000L, 201645730563302817792000000L, 403291461126605635584000000L, 403291461126605635584000000L]
The above list is the number of possibilities for 1<=n<=26. You can see as n increases number of possibilities increases tremendously. Say you have 1GHz processor that does 10^9 operations per second. Say consider number of possibilities for n=26 its 403291461126605635584000000L. Its evident that if you sit down to list all possibilities its so so long ( so so many years ) that
you will feel it has hit an infinite loop. Finally I have not looked that closely into your code , but in nutshell even if you write it correctly,iteratively and don't store (again can't have this much memory) and just print all possibilities its going to take long time for larger values of n.
EDIT
As jaromax and others said if you just want to write it for smaller values of n,
say less than 10-12 you can write an iterative program to list/print them. It will run quite fast for small values. But if you also want to store them them then n will have to be say less than 5 say. (Really depends on how much RAM is available or you could find some permutations write them to disk, then depends on how much disk memory you can spare, again refer the number of possibilities list I posted above. It gives a rough idea of both time and space complexity).
I think there could be quite a problem that you do this on stack. A large part of the calculation you do recursively and this means every time allocated space for function.
Try to reformulate it linearly. I think I had such a problem before.
Your question implies you think there are 26x25x24x ... permutations
Your code doesn't have anything I can see to avoid "AAAAAAA" being a permutation, in which case there are 26x26x26x ...
So in addition to being a very complicated way of counting in base 26, I think it's also giving bad answers?

simplier solution than iterating through all combinations

Designing a program given the following:
A initial array with a unknown length, with only 2’s and 6’s
Initial Array {2,2,2,2,2,2,6,6,6,6,6,6}
The goal is to find the fewest amount of arrays whose sum is less than or equal to 16 using the initial array
Wrong answer would be
4 arrays:
Array 1 {2,2,2,2,2,2}
Array 2 {6,6}
Array 3 {6,6}
Array 4 {6,6}
The correct answer would be
3 arrays:
Array 1 {6,6,2,2}
Array 2 {6,6,2,2}
Array 3 {6,6,2,2}
My solution is to step through each and every possible solution keeping track of the needed arrays. If the previous solution has the same amount of arrays or less than the current one throw the current one out. This seems a bit intensive due to the likely hood of comparing the difference in (6,6) and (6,6)…
I was reading on how to iterate through different combinations. Most of the articles related to poker and Im sure I could draw some similarities to blackjack(21).
I was hoping a “shortcut” might work here due to:
Possible entries are only 2’s & 6’s
Sums up to less than 16…Can’t go over
Final remark: I would love any info on how to proceed…logic..go read this..etc
Thanks,
Josh
A few notes on your problem before making any assumptions.
First, there are not many ways to arrange 6's and 2's to get a sum of 16. As a matter of fact, there are only 3 :
2*6+2*2 = 6+6+2+2
1*6+5*2 = 6+2+2+2+2+2
0*6+8*2 = 2+2+2+2+2+2+2+2
Second, you can sum up 2's to get 6's : 2+2+2 = 6
Third (comes from first), you cannot have more than 2 6's in an array.
Now, I think that the solution is pretty simple. However, I have no proof, so do not take my word for granted.
From second and third, I assume that you better get rid of 6's first. So you can pack them up by pairs in arrays like so : {6, 6, 2, 2}. If you do not have enough 2's to fill in, just do not fill in.
If you have an odd number of 6's, then the last one will appear in an array like so : {6, 2, 2, 2, 2, 2}.
Then you just need to fill in arrays of 2's if there are any left : {2, 2, 2, 2, 2, 2, 2, 2}.
Despite the fact that I have no proof (probably because I am lazy), it appear quite ovious to me that this is a solution, and it doesn't involve any kind of complicated combinatorics or so.
Mind to test it against the solution you describe ?
Edit :
Below are a correction of my comment and a proof that my solution is, indeed, a good solution.
Let us call n2 and n6 the number of 2's and 6's in the initial array, and sum the sum of elements in the initial array (6+6+...+2+2+...).
The number of arrays necessary is not ceil((3*n6 + n2)/8) = ceil(sum/16). It doesn't work if you have, for exemple, nine 6's and no 2 : it gives 4 instead of 5. This is because you cannot entirely fill an array with 6's (the sum would be 12, not 16), but you can with 2's. The correct formula would then be max(ceil(sum/16), ceil(n6/2)).
Now for the whole solution. Let us keep the notations n2, n6 and sum.
Consider your arrays as 16 meters long boxes (replace m with any linear unit you want), 2's as 2m long blocks and 6's as 6m long blocks. What you want in order to arrange all your blocks within the least boxes possible is to fit in each array the maximum length (not number) of blocks you can. This is pretty obvious : you need to fit sum meters in the least boxes of 16m.
So, the way to solve the problem is to fill up the boxes to the maximum. With 2's, it is easy : you can put eight 2m long blocks in one box. With 6's, you can only put two 6m long blocks in a box, without filling it up.
If you only have 6's, just put the maximum in every box (two in each), and you get your arrays. The number of arrays in that case is ceil(n6/2).
If you only have 2's, do the same (eight in each box). The number of arrays in this case is ceil(n2/8).
If you have both, you can pack two 6's and two 2's to fill up a box, so just do that ! We already know it is the best solution to fit the maximum length of blocks in each array, and you cannot do better than 16m = 2*6m + 2*2m.
When you run out of one kind of block, here is what to do.
If you run out of 6's, well you can fill up the rest of the boxes with 2's : you will get to the maximum of 16m for every next box until you run out of 2's, in which case you have floor(sum/16) boxes full, and maybe one partially filled. So the number of arrays in this case is ceil(sum/16).
If you run out of 2's, then discard every 2m long block you just put in boxes. What you have left is boxes with pairs of 6m long blocks, as if you didn't have any 2 to start with. Then you have your solution : put two 6m long blocks in every box. You can put back the 2's in the gaps left because you know they will not overflow. The number of arrays in this case is also ceil(n6/2).
Now, how to know the number of arrays necessary in every case ? Well, we have 3 possible formulas and need to take the maximum : ceil(n6/2), ceil(n2/8) and ceil(sum/16). But we know that ceil(n2/8) cannot be larger than ceil(sum/16), since sum = 6*n6 + 2*n2, sum/16 = 3/8 *n6 + n2/8, and 3/8 *n6 is not negative.
However, ceil(n6/2) might be larger than ceil(sum/16).
Exemple : n6 = 9, n2 = 0. Then ceil(n6/2) = 5 but ceil(sum/16) = 4
Finally, the correct formula is max(ceil(sum/16), ceil(n6/2)).
Since your objective deals with only 2s and 6s, you can use a greedy algorithm (since 6 is at least twice 2). That means you just take the largest number from your source numbers that still fits under 16 and add it to the current array. When no new number will fit, start a new array.
From that approach it seems clear that you can simplify this down to a formula in terms of the number of 2s and 6s in the source array: In other words you do one linear count of 2s and 6s, and then use a constant time formula to determine the number of arrays.

generating a list in arrays and use of functions

I am wondering how to make an array with values that start at 1111 and go all the way up to 8888. I am asking this because I need to generate a list of 4 digit numbers with each digit ranging from 1-8. I would like to have this in a loop form. Also, I am lost on my functions trim, methodicalEliminate, guessAndEliminate, and guessThreeThenEliminate in my following program. Here are the directions:
This assignment focuses on the use of arrays in a program, including using one as a parameter to a function.
PROBLEM DESCRIPTION
In the game of Mastermind, a player is only given a finite number of guesses to try to identify the hidden combination (such as twelve guesses). Often that is the only constraint in playing the game.
But some players might make a competition with each other to see who can guess the other's combination in fewer tries. In this case, the problem is not only to come up with a strategy that can find the answer within a specified limit, but to find one that is likely to require the minimal number of guesses.
Here is where the computer comes in -- one can write a program that would try out different guessing strategies, and see how they work out. Since a computer can do the analysis and computations more rapidly than a person, it could just pretend to play Mastermind on our behalf using any strategy we choose, and tell us how long it took to do that.
OVERALL SOLUTION
Of course, it would be extremely difficult to teach the computer to reason along the same lines as a person. For example, if we guessed a combination 1111 and got one black peg, we would make a mental note that the answer has exactly one 1 in it, and then proceed to make other guesses with that one fact in mind. If we next guesses 1222 and got one white peg, we would know there were no 2's, and that the single 1 is not in the first position. But how to keep track of such information after a series of guesses would be rather hard.
Fortunately, for a computer simulation with an array, we can record all of our known facts in a different way. We just maintain a list of all possible answers that there could be, and then remove numbers from the list that could no longer be the solution. If our first guess tells us there is exactly one 1 digit, we would remove all the numbers that do not have that feature. When we find out there are no 2's, we eliminate all the values that contain 2's. Eventually, the only number left would be the correct answer.
SOME SIMPLE STRATEGIES
This is a strategy that many players use, resembling what was described above. Just methodically got through the possibilities in a straightforward fashion. The first guess of 1111 would answer how many 1's are in the solution; the next guess would answer how many 2's are in the solution, and also say something about where any 1's might be, and so on.
With our list approach, which contain a whole lot of possibilities in order beginning with 1111, 1112, 1113, 1114, etc., our next guess would always be the first in the list.
The next strategy is for those who like a little more excitement. The guesses appear to be more or less random, with the hopes that a lot more information can be discovered. Simulating this approach is surprisingly simple -- if you have a list of numbers, just pick one at random. If you have 837 possibilities to choose from in an array, just pick a random subscript in the range of 0 to 836.
This third strategy considers the possibility that answers that give similar results to a given guess are in a sense similar to each other. So to try to get a little more information, it will still pick some numbers at random without regard to how they were evaluated, and then only start thinking about the results.
To implement this one, let us just pick any three possible answers and guess them, temporarily ignoring how many black pegs and white pegs they earn us. Only after making those guesses will we trim the list of possibilities, then proceeding as the second strategy above.
SAMPLE INTERFACE
These are the sample results from the current implementation: Please enter a combination to try for, or 0 for a random value: 0
Guessing at 2475
Guessing 1111...
Guessing 2222...
Guessing 2333...
Guessing 2444...
Guessing 2455...
Guessing 2456...
Guessing 2475...
Methodical Eliminate required 7 tries.
Guessing 6452...
Guessing 2416...
Guessing 2485...
Guessing 2445...
Guessing 2435...
Guessing 2425...
Guessing 2475...
Guess and Eliminate required 7 tries.
Guessing 7872...
Guessing 6472...
Guessing 1784...
Guessing 2475...
Guess Three then Eliminate required 4 tries.
Play another game? (y/n) y
Please enter a combination to try for, or 0 for a random value: 0
Guessing at 4474
Guessing 1111...
Guessing 2222...
Guessing 3333...
Guessing 4444...
Guessing 4445...
Guessing 4464...
Guessing 4474...
Methodical Eliminate required 7 tries.
Guessing 3585...
Guessing 7162...
Guessing 4474...
Guess and Eliminate required 3 tries.
Guessing 8587...
Guessing 1342...
Guessing 1555...
Guessing 7464...
Guessing 6764...
Guessing 4468...
Guessing 4474...
Guess Three then Eliminate required 7 tries.
NOTE: This program allows each digit to go up to 8 instead of 6. Even though there are 4096 possible answers, it still finds them rather rapidly.
PROGRAM SPECIFICATIONS
The assigned program must implement all of the following functions. Additional ones are permitted as desired -- these below are required. Future assignments will not detail the functions as below -- but will instead require the students to design their own function descriptions in advance to writing the program. main:
Simply governs the overall behavior of the program. A number will be
chosen as the target combination, and then each strategy will attempt
to find it.
Calls: generateAnswer, (to compare all three must have the same answer)
methodicalEliminate, guessAndEliminate, guessThreeThenEliminate
generateAnswer:
Either lets the user at the keyboard choose the mystery combination,
or gives the option to have the computer generate a random combination.
(For a competitive game, it might be interesting to know what sorts
of combinations would be the hardest to guess!)
Parameters: none!
Returns: a 4-digit combination, each digit in the range 1 to 8
generateSearchSpace:
Populates an array with all possible combinations of four-digit
values in the range 1 to 8.
Parameters:
guesses (modified int array) list of guesses
length (output int) number of values in list
Pre-condition:
The array must be allocated to no fewer than 4096 elements.
trim:
Analyzes the response to a particular guess and then eliminates
any values from the list of possibilities that are no longer
possible answers. In each case, it assumes that a value in the
list is an answer, and evaluates the guess accordingly. If the
number of black and white pegs is not the same as those specified,
then it cannot be the correct answer.
Parameters:
guesses (modified int array) list of guesses
length (modified int) number of values in list
guess (input int) a guess that has been evaluated
black (input int) how many black pegs that guess earned
white (input int) how many white pegs that guess earned
Pre-condition:
black and white actually do contain the results of comparing
the guess with the actual answer
Post-condition:
length has been reduced (we learned something)
the viable answers occupy the first 'length' positions
in the guesses array (so the list is shorter)
Calls: evaluate
methodicalEliminate:
beginning with a list of all possible candidate answers
continually guesses the first element in the list, and
trim answers accordingly, until an answer is found
Parameter:
answer (input int) the actual answer
(necessary to get black/white pegs)
Returns: number of guesses required to find the answer
Calls: generateSearchSpace, evaluate, trim
gusssAndEliminate:
beginning with a list of all possible candidate answers
continually guesses a random element in the list, and
trim answers accordingly, until an answer is found
Parameter:
answer (input int) the actual answer
Returns: number of guesses required to find the answer
Calls: generateSearchSpace, evaluate, trim
gusssThreeThenEliminate:
beginning with a list of all possible candidate answers
first guesses three answers at random before trimming
the list of possibilites, and then narrows on the answer
one random guess at a time
Parameter:
answer (input int) the actual answer
Returns: number of guesses required to find the answer
Calls: generateSearchSpace, evaluate, trim
NOTE: These last functions use the correct answer to evaluate
each guess and then use the black/white pegs for the guessing
strategy. NOne of these strategies may peek at the answer to
decide what to do next!
ALSO: The following functions should also appear in this program
from the previous assignment, though they are not themselves
part of the grade for this one.
evaluate:
evaluates a combination by comparing it with the answer
Correctness is indicated by black pegs (correct digit in correct position)
and white pegs (correct digit in incorrect position)
Parameters:
answer (input int) the correct combination
guess (input int) the current guess
black (output int) number of black pegs
white (output int) number of white pegs
pre-conditions:
answer and guess are both 4-digit numbers with no zero digits
post-conditions:
black and white are both > 0 and their sum is <= 4
Calls: nthDigit, clearNthDigit
nthDigit:
identified the n'th digit of a combination
whether digits count from left to right or right to left is unspecified
Parameters:
combination (input int) combination to examine
position (input int) which digit to examine
(returned) (output int) the value of the actual digit
pre-conditions:
combination has the appropriate number of digits, and
0 < position <= number of digits
post-condition:
0 <= returned digit <= 9 (single digit)
clearNthDigit:
ears the n'th digit of a combination to zero, so it will no longer match
digits must be counted in the same manner as nthDigit above.
parameters:
combination (in/out int) combination to modify
position (input int) which digit to set to 0
pre-condition:
same as those for nthDigit above
post-condition:
corresponding digit is set to zero
Calls: nthDigit (optional, depending on the implementation)
Thank you for reading such this long question, and I hope you can help me on arrays!
Just because your guesses have the form of 1111 through to 8888, it does not mean they are numbers.
They are numbers if it makes sense to do arithmetic calculations on them. It does not make sense to define arithmetic calculations on the guesses: what would it mean to add a guess 4571 to a guess 6214?
If your guesses are not numbers, don't use a representation that is reserved for numbers. You can, however, use an array of four integers:
int guesses[4][4096];
int g = 0;
for (int i = 1; i <= 8; ++i)
for (int j = 1; j <= 8; ++j)
for (int k = 1; k <= 8; ++k)
for (int m = 1; m <= 8; ++m)
guesses[g++] = {i, j, k, m};
I am pretty convinced that putting all possible guesses into the array guesses like that is not a good idea either; the code mainly demonstrates how the guesses could be generated.
Go through the other functions, think of what high level operations should be performed on the remaining gueses (like "eliminate all guesses that has a certain number in the thrid position" etc). This should give you an idea about what would be a better data structure to replace the guesses array.

Is long long in C++ known to be very nasty in terms of precision?

The Given Problem:
Given a theater with n rows, m seats, and a list of seats that are reserved. Given these values, determine how many ways two friends can sit together in the same row.
So, if the theater was a size of 2x3 and the very first seat in the first row was reserved, there would be 3 different seatings that these two guys can take.
The Problem That I'm Dealing With
The function itself is supposed to return the number of seatings that there are based on these constraints. The return value is a long long.
I've gone through my code many many times...and I'm pretty sure that it's right. All I'm doing is incrementing this one value. However, ALL of the values that my function return differ from the actual solution by 1 or 2.
Any ideas? And if you think that it's just something wrong with my code, please tell me. I don't mind being called an idiot just as long as I learn something.
Unless you're overflowing or underflowing, it definitely sounds like something is wrong with your code. For integral types, there are no precision ambiguities in c or c++
First, C++ doesn't have a long long type. Second, in C99, long long can represent any integral value from LLONG_MIN (<= -2^63) to LLONG_MAX (>= 2^63 - 1) exactly. The problem lies elsewhere.
Given the description of the problem, I think it is unambiguous.
Normally, the issue is that you don't know if the order in which the combinations are taken is important or not, but the example clearly disambiguate: if the order was important we would have 6 solutions, not 3.
What is the value that your code gives for this toy example ?
Anyway I can add a few examples with my own values if you wish, so that you can compare against them, I can't do much more for you unless you post your code. Obviously, the rows are independent so I'm only going to show the result row by row.
X occupied seat
. free seat
1: X..X
1: .X..
2: X...X
3: X...X..
5: ..X.....
From a computation point of view, I should note it's (at least) an O(N) process where N is the number of seats: you have to inspect nearly each seat once, except the first (and last) ones in case the second (and next to last) are occupied; and that's effectively possible to solve this linearly.
From a technic point of view:
make sure you initialize your variable to 0
make sure you don't count too many seats on toy example
I'd be happy to help more but I would not like to give you the full solution before you have a chance to think it over and review your algorithm calmly.