Checking certain positions on a pattern maching on bit vectors - c++

I am sorry if the title was misleading, but I really did not know how to address this.
Basically, the problem is the following: we have a bit vector T and a bit vector P.
Let's say P[a1], P[a2], ..., P[ak] are the 1 bits in P. I am interested in knowing, for each position i in T, how many bits of 1 are amongst P[i+a1], P[i+a2], ..., P[i+ak]. It's like putting P as a mask over the substring starting at i and checking how many bits of 1 there are in the end. If the number is impossible to get in good time, checking whether all the bits are 1 should suffice.
Is there a better algorithm that can solve this (better than the O(T*P) "naive" one of "sliding" the pattern from position to position and counting the number of occurences)?
Even a better constant of multiplication would be great in this case. I have heard you can use bitsets on C++ and get something like O( 1/32 * T * (T - P) ), but I am not very familiarized with bitsets and how they operate and such. Are there fast (&) operations on bitsets avaliable?

Related

ADT Integer class questions

I am pretty new to programming and I have to do an Abstract Data Type (ADT) for integer numbers.
I've browsed the web for some tips, examples, tutorials but i couldn't find anything usefull, so i hope i will get here some answers.
I thinked a lot about how should i format the ADT that stores my integer and I'm thinking of something like this:
int lenght; // stores the length of the number(an limit since this numbers goes to infinite)
int[] digits; // stores the digits of my number, with the dimension equal to length
Now, I'm confused about how should i tackle the sign representation.Is it ok to hold the sign into an char something like: char sign?
But then comes the question what to do when I have to add and multiply two integers, what about the cases when i have overflows on this operations.
So , if some of you have some ideas about how should I represent the number(the format) and how should I do the multiply and add i would be very great full. I don't need any code, I i the learning stage just some ideas. Thank you.
One good way to do this is to store the sign as a bool (e.g. bool is_neg;). That way it's completely clear what that data means (vice with a char, where it's not entirely clear.
You might want to store each digit in an unsigned short (or if you want to be precise about sign, uint16_t). Then, when you do a multiply of two digits, you can just multiply them as unsigned ints (uint32_t), and then the low 16 bits are your result and the overflow is in the high 16 bits. You can then add this to the result array fairly easily. You know that the multiplication of a n-bit number by a k-bit number is at most n + k bits long, so you can preallocate your array to that size and then worry about removing extra zeros later.
Hope this helps, and let me know if you want more tips.
The first design decision you have to make is the choice of a basis.
You seem to lean towards plain decimal. Could be unpacked (one full byte per digit, numerical or ASCII representation), or packed digits pairs (Decimal Coded Binary, twice four bits in a byte).
Other schemes are more convenient for faster operations: basis being a power of 2 or a power of 10, fitting in a byte, a short, an int...
Powers of 10 have the benefit that conversion to and from base 10 can be done word by word.
Addition is an easy matter: add the words in pairs and handle the carries. Same for subtraction, with borrows.
Multiplies are a whole different story if you care about efficiency. The method of written computation taught at school can be used, but it requires length1 x length2 operations. For long numbers, more efficient methods are preferred (http://en.wikipedia.org/wiki/Multiplication_algorithm#Karatsuba_multiplication). They are also more complex.

Hash 16-bit integer to a 256-bit space efficiently

It sounds weird to be going bigger, but that's what I'm trying to do. I want to take the entire sequence of 16-bit integers and hash each one in such a way that it maps to 256-bit space uniformly.
The reason for this is that I'm trying to put a subset of the 16-bit number space into a 256-bit bloom filter, for fast membership testing.
I could use some well-known hashing function on each integer, but I'm looking for an extremely efficient implementation (just a few instructions) so that this runs well in a GPU shader program. I feel like the fact that the hash input is known to be only 16-bits can inform the hash function is designed somehow, but I am failing to see the solution.
Any ideas?
EDITS
Based on the responses, my original question is confusing. Sorry about that. I will try to restate it with a more concrete example:
I have a subset S1 of n numbers from the set S, which is in the range (0, 2^16-1). I need to represent this subset S1 with a 256-bit bloom filter constructed with a single hashing function. The reason for the bloom filter is a space consideration. I've chosen a 256-bit bloom filter because it fits my space requirements, and has a low enough probability of false positives. I'm looking to find a very simple hashing function that can take a number from set S and represent it in 256 bits such that each bit has roughly equal probability of being 1 or 0.
The reason for the requirement of simplicity in the hashing function is that this hashing function is going to have to run thousands of times per pixel, so anywhere where I can trim instructions is a win.
If you multiply (using uint32_t) a 16 bit value by prime (or for that matter any odd number) p between 2^31 and 2^32, then you "probably" smear the results fairly evenly across the 32 bit space. Then you might want to add another prime value, to prevent 0 mapping to 0 (you want each bit to have an equal probability of being 0 or 1, only one input value in 2^256 should have output all zeros, and since there are only 2^16 inputs that means you want none of them to have output all zeros).
So that's how to expand 16 bits to 32 with one operation (plus whatever instructions are needed to load the constant). Use four different values p1 ... p4 to get 256 bits, and run some tests with different p values to find good ones (i.e. those that produce not too many more false positives than what you expect for your Bloom filter given the size of the set you're encoding and assuming an ideal hashing function). For example I'm pretty sure -1 is a bad p-value.
No matter how good the values you'll see some correlations, though: for example as I've described it above the lowest bit of all 4 separate values will be equal, which is a pretty serious dependency. So you probably want a couple more "mixing" operations. For example you might say that each byte of the final output shall be the XOR of two of the bytes of what I've described (and not two least-siginficant bytes!), just to get rid of the simple arithmetic relations.
Unless I've misunderstood the question, though, this is not how a Bloom filter usually works. Usually you want your hash to produce an exact fixed number of set bits for each input, and all the arithmetic to compute the false positive rate relies on this. That's why for a Bloom filter 256 bits in size you'd normally have k 8-bit hashes, not one 256-bit hash. k is normally rather less than half the size of the filter in bits (the optimal value is the number of bits per value in the filter, times ln(2) which is about 0.7). So normally you don't want the probability of each bit being 1 to be anything like as high as 0.5.
The reason is that once you've ORed as few as 4 such 256-bit values together, almost all the bits in your filter are set (15 in 16 of them). So you're looking at a lot of false positives already.
But if you've done the math and you're happy with a single hash function producing a variable number of set bits averaging half of them, then fair enough. Or is the double-occurrence of the number 256 just a coincidence, because k happens to be 32 for the set size you have chosen and you're actually using the 256-bit hash as 32 8-bit hashes?
[Edit: your comment clarifies this, but anyway k should not get so high that you need 256 bits of hash in total. Clearly there's no point in this case using a Bloom filter with more than 16 bits per value (i.e fewer than 16 values), since using the same amount of space you could just list the values, and have a false positive rate of 0. A filter with 16 bits per value gives a false positive rate of something like 1 in 2200. Even there, optimal k is only 23, that is you should set 23 bits in the filter for each value in the set. If you expect the sets to be bigger than 16 values then you want to set fewer bits for each element, and you'll get a higher false positive rate.]
I believe there is some confusion in the question as posed. I will first try to clear up any inconsistencies I've noticed above.
OP originally states that he is trying to map a smaller space into a larger one. If this is truly the case, then the use of the bloom filter algorithm is unnecessary. Instead, as has been suggested in the comments above, the identity function is the only "hash" function necessary to set and test each bit. However, I make the assertion that this is not really what the OP is looking for. If so, then the OP must be storing 2^256 bits in memory (based on how the question is stated) in order for the space of 16-bit integers (i.e. 2^16) to be smaller than his set size; this is an unreasonable amount of memory to be using and is highly unlikely to be the case.
Therefore, I make the assumption that the problem constraints are as follows: we have a 256-bit bit vector in which we want to map the space of 16-bit integers. That is, we have 256 bits available to map 2^16 possible different integers. Thus, we are not actually mapping into a larger space, but, instead, a much smaller space. Similarly, it does appear (again, as previously pointed out in the comments above) that the OP is requesting a single hash function. If this is the case, there is clear misunderstanding about how bloom filters work.
Bloom filters typically use a set of hash independent hash functions to reduce false positives. Without going into too much detail, every input to the bloom filter runs through all n hash functions and then the resulting index in the bit vector is tested for each function. If all indices tested are set to 1, then the value may be in the set (with proper collisions in all n hash functions or overlap, false positives will occur). Moreover, if any of the indices is set to 0, then the value is absolutely not in the set. With this in mind, it is important to notice that an entirely saturated bloom filter has no benefit. That is, every query to the bloom filter will return that the item is in the set.
Hash Function Concerns
Now, back to the OP's original question. It is likely going to be best to use known hashing algorithms (since these are mathematically difficult to write and "rolling your own" typically doesn't end well). If you are worried about efficiency down to clock-cycles, implement the algorithm yourself in the appropriate assembly language for your architecture to reduce running time for each hash function. Remember, algorithmically, hash functions should run in O(1) time, so they should not contribute too much overhead if implemented properly. To start you off, I would recommend considering the modified bernstein hash. I have written a version for your specific case below (mostly for example purposes):
unsigned char modified_bernstein(short key)
{
unsigned ret = key & 0xff;
ret = 33 * ret ^ (key >> 8);
return ret % 256; // Try to do some modulo math to keep it in range
}
The bernstein method I have adapted generally runs as a function of the number of bytes of the input. Since a short type is 2 bytes or 16-bits, I have removed any variables and loops from the algorithm and simply performed some bit twiddling to get at each byte. Finally, an unsigned char can return a value in the range of [0,256) which forces the hash function to return a valid index in the bit vector.

Integer division algorithm

I was thinking about an algorithm in division of large numbers: dividing with remainder bigint C by bigint D, where we know the representation of C in base b, and D is of form b^k-1. It's probably the easiest to show it on an example. Let's try dividing C=21979182173 by D=999.
We write the number as sets of three digits: 21 979 182 173
We take sums (modulo 999) of consecutive sets, starting from the left: 21 001 183 356
We add 1 to those sets preceding the ones where we "went over 999": 22 001 183 356
Indeed, 21979182173/999=22001183 and remainder 356.
I've calculated the complexity and, if I'm not mistaken, the algorithm should work in O(n), n being the number of digits of C in base b representation. I've also done a very crude and unoptimized version of the algorithm (only for b=10) in C++, tested it against GMP's general integer division algorithm and it really does seem to fare better than GMP. I couldn't find anything like this implemented anywhere I looked, so I had to resort to testing it against general division.
I found several articles which discuss what seem to be quite similar matters, but none of them concentrate on actual implementations, especially in bases different than 2. I suppose that's because of the way numbers are internally stored, although the mentioned algorithm seems useful for, say, b=10, even taking that into account. I also tried contacting some other people, but, again, to no avail.
Thus, my question would be: is there an article or a book or something where the aforementioned algorithm is described, possibly discussing the implementations? If not, would it make sense for me to try and implement and test such an algorithm in, say, C/C++ or is this algorithm somehow inherently bad?
Also, I'm not a programmer and while I'm reasonably OK at programming, I admittedly don't have much knowledge of computer "internals". Thus, pardon my ignorance - it's highly possible there are one or more very stupid things in this post. Sorry once again.
Thanks a lot!
Further clarification of points raised in the comments/answers:
Thanks, everyone - as I didn't want to comment on all the great answers and advice with the same thing, I'd just like to address one point a lot of you touched on.
I am fully aware that working in bases 2^n is, generally speaking, clearly the most efficient way of doing things. Pretty much all bigint libraries use 2^32 or whatever. However, what if (and, I emphasize, it would be useful only for this particular algorithm!) we implement bigints as an array of digits in base b? Of course, we require b here to be "reasonable": b=10, the most natural case, seems reasonable enough. I know it's more or less inefficient both considering memory and time, taking into account how numbers are internally stored, but I have been able to, if my (basic and possibly somehow flawed) tests are correct, produce results faster than GMP's general division, which would give sense to implementing such an algorithm.
Ninefingers notices I'd have to use in that case an expensive modulo operation. I hope not: I can see if old+new crossed, say, 999, just by looking at the number of digits of old+new+1. If it has 4 digits, we're done. Even more, since old<999 and new<=999, we know that if old+new+1 has 4 digits (it can't have more), then, (old+new)%999 equals deleting the leftmost digit of (old+new+1), which I presume we can do cheaply.
Of course, I'm not disputing obvious limitations of this algorithm nor I claim it can't be improved - it can only divide with a certain class of numbers and we have to a priori know the representation of dividend in base b. However, for b=10, for instance, the latter seems natural.
Now, say we have implemented bignums as I outlined above. Say C=(a_1a_2...a_n) in base b and D=b^k-1. The algorithm (which could be probably much more optimized) would go like this. I hope there aren't many typos.
if k>n, we're obviously done
add a zero (i.e. a_0=0) at the beginning of C (just in case we try to divide, say, 9999 with 99)
l=n%k (mod for "regular" integers - shouldn't be too expensive)
old=(a_0...a_l) (the first set of digits, possibly with less than k digits)
for (i=l+1; i < n; i=i+k) (We will have floor(n/k) or so iterations)
new=(a_i...a_(i+k-1))
new=new+old (this is bigint addition, thus O(k))
aux=new+1 (again, bigint addition - O(k) - which I'm not happy about)
if aux has more than k digits
delete first digit of aux
old=old+1 (bigint addition once again)
fill old with zeroes at the beginning so it has as much digits as it should
(a_(i-k)...a_(i-1))=old (if i=l+1, (a _ 0...a _ l)=old)
new=aux
fill new with zeroes at the beginning so it has as much digits as it should
(a_i...a_(i+k-1)=new
quot=(a_0...a_(n-k+1))
rem=new
There, thanks for discussing this with me - as I said, this does seem to me to be an interesting "special case" algorithm to try to implement, test and discuss, if nobody sees any fatal flaws in it. If it's something not widely discussed so far, even better. Please, let me know what you think. Sorry about the long post.
Also, just a few more personal comments:
#Ninefingers: I actually have some (very basic!) knowledge of how GMP works, what it does and of general bigint division algorithms, so I was able to understand much of your argument. I'm also aware GMP is highly optimized and in a way customizes itself for different platforms, so I'm certainly not trying to "beat it" in general - that seems as much fruitful as attacking a tank with a pointed stick. However, that's not the idea of this algorithm - it works in very special cases (which GMP does not appear to cover). On an unrelated note, are you sure general divisions are done in O(n)? The most I've seen done is M(n). (And that can, if I understand correctly, in practice (Schönhage–Strassen etc.) not reach O(n). Fürer's algorithm, which still doesn't reach O(n), is, if I'm correct, almost purely theoretical.)
#Avi Berger: This doesn't actually seem to be exactly the same as "casting out nines", although the idea is similar. However, the aforementioned algorithm should work all the time, if I'm not mistaken.
Your algorithm is a variation of a base 10 algorithm known as "casting out nines". Your example is using base 1000 and "casting out" 999's (one less than the base). This used to be taught in elementary school as way to do a quick check on hand calculations. I had a high school math teacher who was horrified to learn that it wasn't being taught anymore and filled us in on it.
Casting out 999's in base 1000 won't work as a general division algorithm. It will generate values that are congruent modulo 999 to the actual quotient and remainder - not the actual values. Your algorithm is a bit different and I haven't checked if it works, but it is based on effectively using base 1000 and the divisor being 1 less than the base. If you wanted to try it for dividing by 47, you would have to convert to a base 48 number system first.
Google "casting out nines" for more information.
Edit: I originally read your post a bit too quickly, and you do know of this as a working algorithm. As #Ninefingers and #Karl Bielefeldt have stated more clearly than me in their comments, what you aren't including in your performance estimate is the conversion into a base appropriate for the particular divisor at hand.
I feel the need to add to this based on my comment. This isn't an answer, but an explanation as to the background.
A bignum library uses what are called limbs - search for mp_limb_t in the gmp source, which are usually a fixed-size integer field.
When you do something like addition, one way (albeit inefficient) to approach it is to do this:
doublelimb r = limb_a + limb_b + carryfrompreviousiteration
This double-sized limb catches the overflow of limb_a + limb_b in the case that the sum is bigger than the limb size. So if the total is bigger than 2^32 if we're using uint32_t as our limb size, the overflow can be caught.
Why do we need this? Well, what you typically do is loop through all the limbs - you've done this yourself in dividing your integer up and going through each one - but we do it LSL first (so the smallest limb first) just as you'd do arithmetic by hand.
This might seem inefficient, but this is just the C way of doing things. To really break out the big guns, x86 has adc as an instruction - add with carry. What this does is an arithmetic and on your fields and sets the carry bit if the arithmetic overflows the size of the register. The next time you do add or adc, the processor factors in the carry bit too. In subtraction it's called the borrow flag.
This also applies to shift operations. As such, this feature of the processor is crucial to what makes bignums fast. So the fact is, there's electronic circuitry in the chip for doing this stuff - doing it in software is always going to be slower.
Without going into too much detail, operations are built up from this ability to add, shift, subtract etc. They're crucial. Oh and you use the full width of your processor's register per limb if you're doing it right.
Second point - conversion between bases. You cannot take a value in the middle of a number and change it's base, because you can't account for the overflow from the digit beneath it in your original base, and that number can't account for the overflow from the digit beneath... and so on. In short, every time you want to change base, you need to convert the entire bignum from the original base to your new base back again. So you have to walk the bignum (all the limbs) three times at least. Or, alternatively, detect overflows expensively in all other operations... remember, now you need to do modulo operations to work out if you overflowed, whereas before the processor was doing it for us.
I should also like to add that whilst what you've got is probably quick for this case, bear in mind that as a bignum library gmp does a fair bit of work for you, like memory management. If you're using mpz_ you're using an abstraction above what I've described here, for starters. Finally, gmp uses hand optimised assembly with unrolled loops for just about every platform you've ever heard of, plus more. There's a very good reason it ships with Mathematica, Maple et al.
Now, just for reference, some reading material.
Modern Computer Arithmetic is a Knuth-like work for arbitrary precision libraries.
Donald Knuth, Seminumerical Algorithms (The Art of Computer Programming Volume II).
William Hart's blog on implementing algorithm's for bsdnt in which he discusses various division algorithms. If you're interested in bignum libraries, this is an excellent resource. I considered myself a good programmer until I started following this sort of stuff...
To sum it up for you: division assembly instructions suck, so people generally compute inverses and multiply instead, as you do when defining division in modular arithmetic. The various techniques that exist (see MCA) are mostly O(n).
Edit: Ok, not all of the techniques are O(n). Most of the techniques called div1 (dividing by something not bigger than a limb are O(n). When you go bigger you end up with O(n^2) complexity; this is hard to avoid.
Now, could you implement bigints as an array of digits? Well yes, of course you could. However, consider the idea just under addition
/* you wouldn't do this just before add, it's just to
show you the declaration.
*/
uint32_t* x = malloc(num_limbs*sizeof(uint32_t));
uint32_t* y = malloc(num_limbs*sizeof(uint32_t));
uint32_t* a = malloc(num_limbs*sizeof(uint32_t));
uint32_t m;
for ( i = 0; i < num_limbs; i++ )
{
m = 0;
uint64_t t = x[i] + y[i] + m;
/* now we need to work out if that overflowed at all */
if ( (t/somebase) >= 1 ) /* expensive division */
{
m = t % somebase; /* get the overflow */
}
}
/* frees somewhere */
That's a rough sketch of what you're looking at for addition via your scheme. So you have to run the conversion between bases. So you're going to need a conversion to your representation for the base, then back when you're done, because this form is just really slow everywhere else. We're not talking about the difference between O(n) and O(n^2) here, but we are talking about an expensive division instruction per limb or an expensive conversion every time you want to divide. See this.
Next up, how do you expand your division for general case division? By that, I mean when you want to divide those two numbers x and y from the above code. You can't, is the answer, without resorting to bignum-based facilities, which are expensive. See Knuth. Taking modulo a number greater than your size doesn't work.
Let me explain. Try 21979182173 mod 1099. Let's assume here for simplicity's sake that the biggest size field we can have is three digits. This is a contrived example, but the biggest field size I know if uses 128 bits using gcc extensions. Anyway, the point is, you:
21 979 182 173
Split your number into limbs. Then you take modulo and sum:
21 1000 1182 1355
It doesn't work. This is where Avi is correct, because this is a form of casting out nines, or an adaption thereof, but it doesn't work here because our fields have overflowed for a start - you're using the modulo to ensure each field stays within its limb/field size.
So what's the solution? Split your number up into a series of appropriately sized bignums? And start using bignum functions to calculate everything you need to? This is going to be much slower than any existing way of manipulating the fields directly.
Now perhaps you're only proposing this case for dividing by a limb, not a bignum, in which case it can work, but hensel division and precomputed inverses etc do to without the conversion requirement. I have no idea if this algorithm would be faster than say hensel division; it would be an interesting comparison; the problem comes with a common representation across the bignum library. The representation chosen in existing bignum libraries is for the reasons I've expanded on - it makes sense at the assembly level, where it was first done.
As a side note; you don't have to use uint32_t to represent your limbs. You use a size ideally the size of the registers of the system (say uint64_t) so that you can take advantage of assembly-optimised versions. So on a 64-bit system adc rax, rbx only sets the overflow (CF) if the result overspills 2^64 bits.
tl;dr version: the problem isn't your algorithm or idea; it's the problem of converting between bases, since the representation you need for your algorithm isn't the most efficient way to do it in add/sub/mul etc. To paraphrase knuth: This shows you the difference between mathematical elegance and computational efficiency.
If you need to frequently divide by the same divisor, using it (or a power of it) as your base makes division as cheap as bit-shifting is for base 2 binary integers.
You could use base 999 if you want; there's nothing special about using a power-of-10 base except that it makes conversion to decimal integer very cheap. (You can work one limb at a time instead of having to do a full division over the whole integer. It's like the difference between converting a binary integer to decimal vs. turning every 4 bits into a hex digit. Binary -> hex can start with the most significant bits, but converting to non-power-of-2 bases has to be LSB-first using division.)
For example, to compute the first 1000 decimal digits of Fibonacci(109) for a code-golf question with a performance requirement, my 105 bytes of x86 machine code answer used the same algorithm as this Python answer: the usual a+=b; b+=a Fibonacci iteration, but divide by (a power of) 10 every time a gets too large.
Fibonacci grows faster than carry propagates, so discarding the low decimal digits occasionally doesn't change the high digits long-term. (You keep a few extra beyond the precision you want).
Dividing by a power of 2 doesn't work, unless you keep track of how many powers of 2 you've discarded, because the eventual binary -> decimal conversion at the end would depend on that.
So for this algorithm, you have to do extended-precision addition, and division by 10 (or whatever power of 10 you want).
I stored base-109 limbs in 32-bit integer elements. Dividing by 109 is trivially cheap: just a pointer increment to skip the low limb. Instead of actually doing a memmove, I just offset the pointer used by the next add iteration.
I think division by a power of 10 other than 10^9 would be somewhat cheap, but would require an actual division on each limb, and propagating the remainder to the next limb.
Extended-precision addition is somewhat more expensive this way than with binary limbs, because I have to generate the carry-out manually with a compare: sum[i] = a[i] + b[i]; carry = sum < a; (unsigned comparison). And also manually wrap to 10^9 based on that compare, with a conditional-move instruction. But I was able to use that carry-out as an input to adc (x86 add-with-carry instruction).
You don't need a full modulo to handle the wrapping on addition, because you know you've wrapped at most once.
This wastes a just over 2 bits of each 32-bit limb: 10^9 instead of 2^32 = 4.29... * 10^9. Storing base-10 digits one per byte would be significantly less space efficient, and very much worse for performance, because an 8-bit binary addition costs the same as a 64-bit binary addition on a modern 64-bit CPU.
I was aiming for code-size: for pure performance I would have used 64-bit limbs holding base-10^19 "digits". (2^64 = 1.84... * 10^19, so this wastes less than 1 bit per 64.) This lets you get twice as much work done with each hardware add instruction. Hmm, actually this might be a problem: the sum of two limbs might wrap the 64-bit integer, so just checking for > 10^19 isn't sufficient anymore. You could work in base 5*10^18, or in base 10^18, or do more complicated carry-out detection that checks for binary carry as well as manual carry.
Storing packed BCD with one digit per 4 bit nibble would be even worse for performance, because there isn't hardware support for blocking carry from one nibble to the next within a byte.
Overall, my version ran about 10x faster than the Python extended-precision version on the same hardware (but it had room for significant optimization for speed, by dividing less often). (70 seconds or 80 seconds vs. 12 minutes)
Still, I think for this particular implementation of that algorithm (where I only needed addition and division, and division happened after every few additions), the choice of base-10^9 limbs was very good. There are much more efficient algorithms for the Nth Fibonacci number that don't need to do 1 billion extended-precision additions.

bit shifting - replacing a section of a bitset with a new number

I have a list of numbers encoded as a boost dynamic bitset. I dynamically choose the size of this bitset depending on the maximum value any number in this list can take. So let's say I have numbers from just 0 to 7, I only need three bits and my string 0,2,7 will be encoded as
000010111.
I now need to change say the 2nd number in this list (2) to another number, say 4.
I thought the most efficient way to do this would be to represent 4 as a dynamic bitset of the same length as the list but with all other values set to 1, so 111111011. I would then bitshift this the required amount using with 1s used to fill in values to get 111011111, and then just bitwise AND this with the original bitset to get my desired result.
However, I cannot find a way to do these two things, as it seems with both initialisation of a bitset from an integer, and when bit shifting, the default and fill in values are always set to 0, not 1. How can I get around this problem, or achieve my goal in a different and efficient way.
Thanks
If that is really the implementation, the most general and efficient method I can think of would be to first mask off all the bits for the part you are replacing:
value &= 111000111;
Then "or" in the actual bits for that position:
value |= 000011000;
Hopefully someone here has a better trick for me to learn, but that's what I do.
XOR the old value and the new value:
int valuetoset = oldvalue ^ newvalue; // 4 XOR 2 in your example
Just shift the value you need to set:
int bitstoset = valuetoset << position; // (4 XOR 2) << 3 in your example
Then XOR again bitstoset with your bitset and that's it !
int result = bitstoset ^ bitset;
Would you be able to use a vector of dynamic bitsets? Depending on your needs that might be sufficient and allow for easy updates.
Alternately fill your new bitset similiarly to how you proposed, but exactly inverted. Then right before you do the and at the end, flip all the bits.
I guess your understanding of bitset is elementary wrong:
set means it is NOT ordered, and the idea of a bitset is, that only one bit is necessary to show that the element is in-/outside the set.
So your original set 0,2,7 would have 8 bits because 0..7 are 8 elements and NOT 3 * 3 (3 bits required to represent 0..7), and the bitmap would look like 10000101.
What you describe is just a "packed" coding of the values. In your coding scheme 0,2,7 and 2,0,7 would coded completly different, but in a bitset they are the same.
In a (real) bitset (if that is what you want) you can then really easy "replace" elements by removing the old and adding the new. This happens as T.E.D. describes it.
To get the right mask you can easily use shift operations. So imagine you start counting by 0, you get the mask for value x by doing: 1<<x;
So you remove element x from the set by
value &= ~(1<<x);
and add another elemtn x (which might be the same) with
value | = 1<<x;
From you comment you misuse the bitset, so the masks must be build different (and you already had an almost right idea how to build them).
The command with bitmask for removal of element at position p:
value &= ~(111 p);
This 111 is for the above example where you need 3 bit for a position. If you dont want to hardcode it, you could for just take the next power of 2 and subtract 1 and then you got your only-1-string.
And to add you would just take your suggestest bitlist that contains only the new element and OR it to your bitlist:
value |= new_element_bitlist;

Looking for a Hash Function /Ordered Int/ to /Shuffled Int/

I am looking for constant time algorithm can change an ordered integer index value into a random hash index. It would nice if it is reversible. I need that hash key is unique for each index. I know that this could be done with a table look up in a large file. I.E. create an ordered set of all ints and then shuffle them randomly and write to a file in random sequence. You could then read them back as you need them. But this would require a seek into a large file. I wonder if there is a simple way to use say a pseudo random generator to create the sequence as needed?
Generating shuffled range using a PRNG rather than shuffling the answer by
erikkallen of Linear Feedback Shift Registers looks like the right sort of thing. I just tried it but it produces repeats and holes.
Regards
David Allan Finch
The question is now if you need a really random mapping, or just a "weak" permutation. Assuming the latter, if you operate with unsigned 32-bit integers (say) on 2's complement arithmetics, multiplication by any odd number is a bijective and reversible mapping. Of course the same goes for XOR, so a simple pattern which you might try to use is e.g.
unsigned int hash(int x) {
return (((x ^ 0xf7f7f7f7) * 0x8364abf7) ^ 0xf00bf00b) * 0xf81bc437;
}
There is nothing magical in the numbers. So you can change them, and they can be even randomized. The only thing is that the multiplicands must be odd. And you must be calculating with rollaround (ignoring overflows). This can be inverted. To do the inversion, you need to be able to calculate the correct complementary multiplicands A and B, after which the inversion is
unsigned int rhash(int h) {
return (((x * B) ^ 0xf00bf00b) * A) ^ 0xf7f7f7f7;
}
You can calculate A and B mathematically, but the easier thing for you is just to run a loop and search for them (once offline, that is).
The equation uses XORs mixed with multiplications to make the mapping nonlinear.
You could try building a suitable Feistel network. These are normally used for cryptography (e.g. DES), but with at least 64 bits, so you may need to build one yourself that suits your needs. They are invertible by construction.
Assuming your goal is to spread out grouped values across the whole range,
it seems like shuffling the bits in some pre-defined order might do the trick.
i.e. given 8 bits ABCDEFGH, arrange them like EGDBHCFA, or some such pattern.
The code would just be a simple sequence of masks, shifts and adds.
Mmm... depending if you have a lot of numbers, you could use a normal stl list, and order it by a "random" criteria
bool
nonsort(int i, int j)
{
return random() & 31 >16 ? true : false;
}
std::list<int> li;
// insert elements
li.sort(nonsort);
Then, you can get all the integers with a normal iterator. Remember to initialize random with srand() with time or any other pseudo-random value.
For the set of constraints there really is no solution. An attempt to hash 32 bit unsigned, into a 32 bit unsigned, will give you collisions, unless you do a something simple, like a 1 to 1 mapping. Every number is its own hash.